Skip to main content

Metal Ion Stress in Yeast

  • Chapter
Metal Ions in Gene Regulation

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

It is well known that metal ions are essential for normal physiology. At least 16 metal ions are known to be essential for life. The implication of being essential is that an optimal, intracellular concentration of each particular metal ion is required for homeostasis. Reduced concentrations cause reduced growth as a result of metal ion deficiency, and excess concentrations can cause metal-induced toxicity (Figure 11.1). The key issue is the intracellular concentration of available metal ions, which are likely to be present as metal complexes with dissociable ligands. Concentrations of available metal ions above or below a threshold value may evoke a variety of coordinated physiological responses that compensate for environmental changes to inadequate or excess metal ion concentrations. Although homeostasis can be maintained over a limited range of metal ion concentrations, extreme conditions of low or high concentrations in the environment or diet can result in impaired physiology (Figure 11.1). Deficiency of an essential metal ion may impair physiology through loss of critical enzymatic functions of metalloenzymes. Excessive metal concentrations may affect cellular metabolism in many ways, including disruption of cell membrane integrity, alteration of the cellular redox state, and inhibition of respiration. DNA replication, or protein synthesis (Ochai 1987; Gadd and White 1989; Agarwal et al. 1989). These toxic effects may arise from direct inhibition of protein function or indirect mechanisms such as metal-induced initiation of free radical reactions (Halliwell et al. 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abravaya K., M. P. Myers, S. P. Murphy, and R. I. Morimoto. 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 6: 1153–1164.

    Article  PubMed  CAS  Google Scholar 

  • Agarwal K., A. Sharma, and G. Talukder. 1989. Effects of copper on mammalian cell components. Chem. Biol. Interactions. 69: 1–16.

    Article  CAS  Google Scholar 

  • Ananthan A., A. L. Goldberg, and R. Voellmy. 1986. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232: 522–524.

    Article  PubMed  CAS  Google Scholar 

  • Ashida J., N. Higashi, and T. Kikuchi. 1963. An electronmicroscopic study on copper precipitation by copper-resistant yeast cells. Protoplasma 57: 27–32.

    Article  CAS  Google Scholar 

  • Askwith C., D. Eide, A. Van Ho, P. S. Bernard, L. Li, S. Davis-Kaplan, D. M. Sipe, and J. Kaplan. 1994. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76: 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Baler R., W. J. Welch, and R. Voellmy. 1992. Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J. Cell Biol. 117: 1151–1159.

    Article  PubMed  CAS  Google Scholar 

  • Beckmann R. P., M. Lovett, and W. J. Welch. 1992. Examining the function and regulation of hsp70 in cells subjected to metabolic stress. J. Cell Biol 117: 1137–1150.

    Article  PubMed  CAS  Google Scholar 

  • Bonner J. J., S. Heyward, and D. L. Fackenthal. 1992. Temperature-dependent regulation of heterologous transcriptional activation domain fused to yeast heat shock transcription factor. Mol. Cell Biol 12: 1021–1030.

    PubMed  CAS  Google Scholar 

  • Brenes-Pomales A., G. Lindegren, and C. C. Lindegren. 1955. Gene control of copper sensitivity in Saccharomyces. Nature 176: 841–842.

    Article  PubMed  CAS  Google Scholar 

  • Buchman C., P. Skroch, J. Welch, S. Fogel, and M. Karin. 1989. The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol 9: 4091–4095.

    PubMed  CAS  Google Scholar 

  • Buchman, C, P. Skroch, W. Dixon, T. D. Tullius, and M. Karin. 1990. A single amino acid change in CUP2 alters its mode of DNA binding. Mol Cell Biol 10: 4778–4787.

    PubMed  CAS  Google Scholar 

  • Bull, P. C, G. R. Thomas, J. M. Rommens, J. R. Forbes, and D. Wilson Cox. 1993. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet. 5: 327–337.

    Article  PubMed  CAS  Google Scholar 

  • Butt T. R., E. J. Sternberg, J. A. Gorman, P. Clark, D. Hamer, M. Rosenberg, and S.T. Crooke. 1984. Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proc. Natl Acad. Sci. U.S.A. 81: 3332–3336.

    Article  PubMed  CAS  Google Scholar 

  • Caplan A. J., D. M. Cyr, and M. G. Douglas. 1993. Eukaryotic homologues of Escherichia coli DnaJ:A diverse protein family that functions with hsp70 stress proteins. Molec. Biol Cell 4: 555–563.

    PubMed  CAS  Google Scholar 

  • Chelly J., Z. Turner, T. Tonnesen, A. Petterson, Y. Ishikawa-Brush, N. Tommerup, N. Horn, and A. P. Monaco. 1993. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet. 3: 14–19.

    Article  PubMed  CAS  Google Scholar 

  • Chen J., and D. S. Peterson. 1993. A distal heat shock element promotes the rapid response to heat shock of the hsp26 gene in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268: 7442–7448.

    PubMed  CAS  Google Scholar 

  • Chia, L.-L., and C. McLughlin. 1979. The half-life of mRNA in Saccharomyces cerevisiae. Mol Gen. Genet. 170: 137–14

    Article  PubMed  CAS  Google Scholar 

  • Chiang, H.-L., S. R. Terleckey, C. P. Plant, and J. F. Dice. 1989. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382–385.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A., D. Finley, and A. Varshavsky. 1984. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37: 57–6

    Article  PubMed  CAS  Google Scholar 

  • Craig E. A., D. B. Gambill, and J. R. Nelson. 1993. Heat shock proteins: Molecular chaperones of protein biogenesis. Microbiol Rev. 57: 402–414.

    PubMed  CAS  Google Scholar 

  • Craig E. A., J. S. Weissman, and A. L. Horwich. 1994. Heat shock proteins and molecular chaperones: Mediators of protein conformation and turnover in the cell. Cell 78: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Crosa, J. H. 1989. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Rev. 53: 517–530.

    PubMed  CAS  Google Scholar 

  • Culotta V. C., W. R. Howard, and X. F. Liu. 1994. CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J. Biol. Chem. 269: 25295–253

    Google Scholar 

  • Culotta V. C., T. Hsu, S. Hu, P. Furst, and D. Hamer. 1989. Copper and the ACE1 regulatory protein reversibly induce yeast metallothionein gene transcription in a mouse extract. Proc. Natl Acad. Sci. U.S.A.86: 8377–838

    Article  PubMed  CAS  Google Scholar 

  • Dameron C. T., G. N. George, P. Arnold, V. Santhanagopalan, and D. R. Winge. 1993. Distinct metal binding configurations in ACE1. Biochem. 32: 7294–7301

    Article  CAS  Google Scholar 

  • Dameron C. T., D. R. Winge, G. N. George, M. Sansone, S. Hu, and D. Hamer. 1991. A copper-thiolate polynuclear cluster in the ACE1 transcription factor. Proc. Natl. Acad. Sci. U.S.A. 88: 6127–6131.

    Article  PubMed  CAS  Google Scholar 

  • Dance, I. G. 1978. The hepta (µ-benzenethiolato) pentametallate(I) dianions of copper and silver: Formation and crystal structures. Aust. J. Chem. 31: 2195–2206.

    Article  CAS  Google Scholar 

  • Dance, I. G. 1986. The structural chemistry of metal thiolate complexes. Polyhedron 5: 1037–1104.

    Article  CAS  Google Scholar 

  • Dancis A., D. Haile, D. S. Yuan, and R. D. Klausner. 1994 a. The Saccharomyces cerevisiae copper transport protein (Ctrlp). J. Biol. Chem. 269: 25660–25667.

    PubMed  CAS  Google Scholar 

  • Dancis A., R. D. Klausner, A. G. Hinnebusch, and J. G. Barriocanal. 1990 a. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell. Biol. 10: 2294–23

    PubMed  CAS  Google Scholar 

  • Dancis A., D. G. Roman, G. J. Anderson, A. G. Hinnebush and R. D. Klausner. 1990 b. Ferric reductase of Saccharomyces cerevisiae:Molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. U.S.A. 89: 3869–3873.

    Article  Google Scholar 

  • Dancis A., D. S. Yuan, D. Halle, C. Askwith, D. Eide, C. Moehle, J. Kaplan, and R. D. Klausner. 1994 b. Molecular characterization of a copper transport protein in S. cerevisiae:An unexpected role for copper in iron transport. Cell 76: 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Dean R. T., S. Gieseg, and M. J. Davies. 1993. Reactive species and their accumulation on radical-damaged proteins. Trends in Biochem. Sci. 18: 437–441.

    Article  CAS  Google Scholar 

  • Dice, J. F. 1990. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends in Biochem. Sci. 15: 305–309.

    Article  CAS  Google Scholar 

  • Dobi A., C. T. Dameron, S. Hu, D. Hamer, and D. R. Winge. 1995. Distinct regions of Cu(I):ACEl contact two spatially resolved DNA major groove sites. J. Biol. Chem. 270: 10171–10178.

    Article  PubMed  CAS  Google Scholar 

  • Drees B., K. Flick, E. Grotkopp, C. Harrison, S. Hubl, P. Peteranderl, and H. C. M. Nelson. 1994. Structure and function of the DNA binding and trimerization domains of the heat shock transcription factor. In Biology of Heat Shock Proteins and Molecular Chaperones.1994 Cold Spring Harbor meeting, p. 5.

    Google Scholar 

  • Durrin L. K., R. K. Mann, and M. Grunstein. 1992. Nucleosome loss activates CUP1 and HIS3 promoters to fully induced levels in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 1621–16

    Google Scholar 

  • Ecker D. J., T. R. Butt, E. J. Sternberg, M. P. Neeper, C. Debouck, J. A. Gorman, and S. T. Crooke. 1986. Yeast metallothionein function in metal ion and detoxification. J. Biol. Chem. 261: 16895–16900.

    PubMed  CAS  Google Scholar 

  • Eide D. J., J. T. Bridgham, Z. Zhao, and J. R. Mattoon. 1993. The vacuolar H+ \-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol. Gen. Genet. 241: 447–456.

    Article  PubMed  CAS  Google Scholar 

  • Farrell R. A., J. L. Thorvaldsen, and D. R. Winge. 1996. Identification of the Zn(II) site in the copper-responsive transcription factor AMT1: A conserved Zn module. Biochem. (in press)

    Google Scholar 

  • Finley D., A. Ciechanover, and A. Varshavsky. 1984. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37: 43–55.

    Article  PubMed  CAS  Google Scholar 

  • Finley D., E. Ozkaynak, and A. Varshavsky. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses. Cell 48: 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Flick K. E., L. Gonzalez, C. J. Harrison, and H. C. M. Nelson. 1994. Yeast heat shock transcription factor contains a flexible linker between the DNA-binding and trimerization domains. J. Biol. Chem. 269: 12475–12481.

    PubMed  CAS  Google Scholar 

  • Fogel S., and J. W. Welch. 1982. Tandem gene amplification mediates copper resistance in yeast. Proc. Natl. Acad. Sci. U.S.A. 79: 5342–5346.

    Article  PubMed  CAS  Google Scholar 

  • Fogel S., and J. Welch. 1983. A recombinant DNA strategy for characterizing industrial yeast strains. In Genetics: New Frontiers: Proceedings of the XV International Congress of Genetics, eds.V. L. Chopra et al. pp. 133–142.

    Google Scholar 

  • Fogel S., J. W. Welch, G. Cathala, and M. Karin. 1983. Gene amplification in yeast: CUP1 copy number regulates copper resistance. Current Genet. 7: 347–355.

    Article  CAS  Google Scholar 

  • Fu D., T. J. Beeler, and T. M. Dunn. 1995. Sequence, mapping and disruption of CCC2, a gene that cross-complements the Ca(II)-sensitive phenotype of csg1 mutants and encodes a P-type ATPase belonging to the Cu(II)-ATPase subfamily. Yeast 11: 283–292.

    Article  PubMed  CAS  Google Scholar 

  • Furst P., S. Hu, R. Hackett, and D. Hamer. 1988. Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55: 705–717.

    Article  PubMed  CAS  Google Scholar 

  • Gadd G. M., and C. White. 1989. Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts. In Metal-Microbe Interactions, eds. edR. K. Poole and G. M. Gadd. pp. 19–38. IRL Press, Oxford.

    Google Scholar 

  • Geierstanger, B.H., B. F. Volkman, W. Kremer, and D. E. Wemmer. 1994. Short peptide fragments derived from HMG-I/Y proteins bind specifically to the minor groove of DNA. Biochem. 33: 5347–5355.

    Article  CAS  Google Scholar 

  • Georgatsou E., L. Mavrogiannis, G. Frangiadakis, A. Klinakis, and D. Alexandraki. 1995. The Saccharomyces cerevisiae ferric reductase genes FRE1 and FRE2 are distinctly regulated by iron, copper and stress related factors. 17th International Conference on Yeast Genetics and Molecular Biology, abstract, S155.

    Google Scholar 

  • Georgopoulos, C. 1992. The emergence of the chaperone machines. Trends in Biochem. Sci. 17: 295–299.

    Article  CAS  Google Scholar 

  • Goff S. A., and A. L. Goldberg. 1985. Production of abnormal proteins in E. coli stimulates transcription of Lon and other heat shock genes. Cell 41: 587–595.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg A. L., D. H. Lee, O. Kandror, and M. Sherman. 1994. Involvement of molecular chaperones in degradation of abnormal proteins in E. coli and yeast. In Biology of Heat Shock Proteins and Molecular Chaperones.1994 Cold Spring Harbor meeting, p. 231.

    Google Scholar 

  • Graden J. A., M. C. Posewitz, J. R. Simon, G. N. George, J. J. Pickering and I. R. Winge. 1996. In Presence of a Copper (II)-Thiolate Regulatory Domain in the Copper-Activated Transcription Factor Amtl. Biochemistry 35: 14583–14589.

    Article  PubMed  CAS  Google Scholar 

  • Gralla E. B., D. J. Thiele, P. Silar, and J. S. Valentine. 1991. ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase. Proc. Natl Acad. Sci. U.S.A. 88: 8558–8562.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B., J. R. Hoult, and D. R. Blake. 1988. Oxidants, inflammation, and antiinflammatory drugs. FASEB J. 2: 2867–2873.

    PubMed  CAS  Google Scholar 

  • Hamer, D. H. 1993. “Kinky hair” disease sheds light on copper metabolism. Nature Genet. 3: 3–4.

    Article  PubMed  CAS  Google Scholar 

  • Hamer D. H., D. J. Thiele, and J. E. Lemontt. 1985. Function and autoregulation of yeast copperthionein. Science 228: 685–690.

    Article  PubMed  CAS  Google Scholar 

  • Harrison C. J., A. A. Bohm, and H. C. M. Nelson. 1994. Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263: 224–227.

    Article  PubMed  CAS  Google Scholar 

  • Hassett R., and D. J. Kosman. 1995. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J. Biol. Chem. 270: 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Hatayama R., Y. Tsukimi, T. Wakatsuki, T. Kitamura, and H. Imahara. 1991. Different induction of 70,000-Da heat shock protein and metallothionein in HeLa cells by copper. J. Biochem. 110: 726–731.

    PubMed  CAS  Google Scholar 

  • Hendrick J. P., and F.-U. Hartl. 1993. Molecular chaperone functions of heat-shock proteins. Ann. Rev. Biochem. 62: 349–384.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M. 1992. Ubiquitin and intracellular protein degradation. Curr. Opin. Cell Biol. 4: 1024–103

    Article  PubMed  CAS  Google Scholar 

  • Hu S., P. Furst, and D. Hamer. 1990. The DNA and Cu binding functions of ACE1 are interdigitated within a single domain. New Biol. 2: 544–555.

    PubMed  CAS  Google Scholar 

  • Huibregtse J. M., D. R. Engelke, and D. J. Thiele. 1989. Copper-induced binding of cellular factors to yeast metallothionein upstream activation sequences. Proc. Natl. Acad. Sci. U.S.A. 86: 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen B. K., and H. R. B. Pelham. 1988. Constitutive binding of yeast heat shock factor to DNA in vivo. Mol. Cell. Biol. 8: 5040–504

    PubMed  CAS  Google Scholar 

  • Jakobsen B. K., and H. R. B. Pelham. 1991. A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J. 10: 369–375.

    PubMed  CAS  Google Scholar 

  • Jensen L. T., W. R. Howard, D. R. Winge, and V. C. Culotta. 1996. Enhanced effectiveness of CUP1 metallothionein compared to CRS5 metallothionein in copper iron buffering in Saccharomyces cerevisiae. J. Biol. Chem. 271: 18514–18519.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, S. 1992 a. The ubiquitin-conjugation system. Ann. Rev. Genet. 26: 179–207.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, S. 1992 b. Ubiquitin-dependent protein degradation: A cellular perspective. Trends Cell Biol. 2: 98–103.

    Article  PubMed  CAS  Google Scholar 

  • Jungmann J., H. A. Reins, J. Lee, A. Romeo, R. Hassett, D. Kosman, and S. Jentsch. 1993. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 12: 5061–5066.

    Google Scholar 

  • Jungmann J., H.-A. Reins, C. Schobert, and S. Jentsch. 1993. Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361:369–371.

    Article  PubMed  CAS  Google Scholar 

  • Kamizono A., M. Nishizawa, Y. Teranishi, K. Murata, and A. Kimura. 1989. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 219: 161–1

    Article  PubMed  CAS  Google Scholar 

  • Kampfenkel K., S. Kushnir, E. Babiychuk, D. Inze, and M. V. Montagu. 1995. Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homolog. J. Biol Chem. 270: 28479–28486.

    Article  PubMed  CAS  Google Scholar 

  • Karin M., R. Najarian, A. Haslinger, P. Valenzuela, J. Welch, and S. Fogel. 1984. Primary structure and transcription of an amplified genetic locus: The CUP1 locus of yeast. Proc. Natl Acad. Sci. U.S.A. 81: 337–341.

    Article  PubMed  CAS  Google Scholar 

  • Karin M., E. P. Slater, and H. R. Herschman. 1981. Regulation of metallothionein synthesis in HeLa cells by heavy metals and glucocorticoids. J. Cell Physiol. 106: 63–74.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, T. 1965. Studies on the pathway of sulfide production in a copper-adapted yeast. Plant Cell. Physiol. 68: 195–210.

    Google Scholar 

  • Kim U. J., M. Han, P. Kayne, and M. Grunstein. 1988. Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. EMBO J 7: 2211–22

    PubMed  CAS  Google Scholar 

  • Kirschner, M. 1992. The cell cycle then and now. Trends in Biochem. Sci. 17:281–285.

    Article  CAS  Google Scholar 

  • Kistler M., K. Maier, and F. Eckardt-Schupp. 1990. Genetic and biochemical analysis of glutathione-deficient mutants of Saccharomyces cerevisiae. Mutagenesis 5:39–4

    Article  PubMed  CAS  Google Scholar 

  • Klionsksy D. J., P. K. Herman, and S. D. Emr. 1990. The fungal vacuole: Composition, function and biogenesis, Microbiol. Rev. 54: 266–292.

    Google Scholar 

  • Kneer R., T. M. Kutchan, A. Hochberger, and M. H. Zenk. 1992. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch. Microbiol. 157: 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Knight, S. A. B., K. T. Tamai, D. J. Kosman, and D. J. Thiele. 1994. Identification and analysis of a Saccharomyces cerevisiae copper homeostasis gene encoding a homeodomain protein. Mol. Cell. Biol. 14: 7792–7804.

    PubMed  CAS  Google Scholar 

  • Kosman, D. J. 1994. Transition metal ion uptake in yeasts and filamentous fungi. In Metal Ions in Fungi, eds. G. Winkelmann and D. R. Winge. pp. 1–38. Marcel Dekker, New York.

    Google Scholar 

  • Lee R. L., S. Nacht, J. H. Lukens, and G. E. Cartwight. 1968. Iron metabolism in the copper-deficient swine. J. Clin. Invest. 47: 2058–2069.

    Article  PubMed  CAS  Google Scholar 

  • Lin C. M., and D. J. Kosman. 1990. Copper uptake in wild-type and copper metallothionein-deficient Saccharomyces cerevisiae. J. Biol. Chem. 265: 9194–92

    PubMed  CAS  Google Scholar 

  • Lindquist, S. 1986. The heat-shock response. Ann. Rev. Biochem. 55: 1151–1191.

    Article  PubMed  CAS  Google Scholar 

  • Liu X. F., and V. C. Culotta. 1994. The requirement for yeast superoxide dismutase is bypassed through mutations in BSD2, a novel metal homeostasis gene. Mol. Cell. Biol. 14: 7037–7045.

    PubMed  CAS  Google Scholar 

  • Macreadie I. G., A. K. Sewell, and D. R. Winge. 1994. Metal ion resistance and the role of metallothionein in yeast. In Metal Ions in Fungi, eds. G. Winkelmann and D.R. Winge. pp. 279–310. Marcel Dekker, New York.

    Google Scholar 

  • Masters B. A., E. J. Kelly, C. J. Quaife, R. L. Brinster, and R. D. Palmiter. 1994. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc. Natl. Acad. Sci. U.S.A. 91: 584–588.

    Article  PubMed  CAS  Google Scholar 

  • Mehra R. K., J. R. Garey, and D. R. Winge. 1990. Selective and tandem amplification of a member of the metallothionein gene family in Candida glabrata. J. Biol. Chem. 265: 6369–63

    PubMed  CAS  Google Scholar 

  • Mehra R. K., E. B. Tarbet, W. R. Gray, and D. R. Winge. 1988. Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata. Proc. Natl. Acad. Sci. U.S.A. 85: 8815–88

    Article  PubMed  CAS  Google Scholar 

  • Mehra R. K., J. L. Thorvaldsen, I. G. Macreadie, and D. R. Winge. 1992. Disruption analysis of metallothionein-encoding genes of Candida glabrata. Gene 114: 75–

    Article  PubMed  CAS  Google Scholar 

  • Mei B., and S. A. Leong. 1994. Molecular biology of iron transport in fungi. In Metal Ions in Fungi, eds.G. Winkelmann and D. R. Winge. pp. 117–148. Marcel Dekker, New York.

    Google Scholar 

  • Mercer, J. F. B., J. Livingston, B. Hall, J. A. Paynter, C. Begy, S. Chandrasenkharappa, P. Lockhart, A. Grimes, M. Bhave, D. Siemieniak, and T. W. Glover. 1993. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet. 3: 20–25.

    Article  PubMed  CAS  Google Scholar 

  • Messerschmidt A., R. Ladenstein, R. Huber, M. Bolognesi, L. Avigliano, R. Petruzzelli, A. Rossi, and A. Finazzi-Agro. 1992. Refined crystal structure of ascorbate oxidase at 1.9 Åresolution. J. Mol. Biol. 224: 179–205.

    Article  PubMed  CAS  Google Scholar 

  • Michalska A. E., and K. H. A. Choo. 1993. Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc. Natl. Acad. Sci. U.S.A. 90:8088–8092.

    Article  PubMed  CAS  Google Scholar 

  • Mifflin L. C., and R. E. Cohen. 1994a. Characterization of denatured protein inducers of the heat shock (stress) response in Xenopus laevis oocytes. J. Biol. Chem. 269: 15710–15717.

    PubMed  CAS  Google Scholar 

  • Mifflin, L. C, and R. E. Cohen. 1994b. Hsc70 moderates the heat shock (stress) response in Xenopus laevis oocytes and binds to denatured protein inducers. J. Biol. Chem. 269: 15718–15723.

    PubMed  CAS  Google Scholar 

  • Morimoto, R. I. 1993. Cells in stress: Transcriptional activation of heat shock genes. Science 259: 1409–141

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R. I., K. D. Sarge, and K. Abavaya. 1992. Transcriptional regulation of heat shock genes. J. Biol. Chem. 267: 21987–21990.

    PubMed  CAS  Google Scholar 

  • Mosser D. D., N. G. Theodorakis, and R. I. Morimoto. 1988. Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol. Cell Biol. 8: 4736–4744.

    PubMed  CAS  Google Scholar 

  • Mutoh N., and Y. Hayashi. 1988. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem. Biophys. Res. Comm. 151: 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Naiki, N. 1957. Studies on the adaptation of yeast to copper XVIII. Copper-binding sulfur substrates of the copper-resistant substrains. Mem. Coll. Sci. Univ. Kyoto. 24: 243–248.

    Google Scholar 

  • Narula S. S., R. K. Mehra, D. R. Winge, and I. M. Armitage. 1991. Establishment of the metal-to-cysteine connectivities in silver-substituted yeast metallothionein. J. Am. Chem. Soc. 113: 9354–9358.

    Article  CAS  Google Scholar 

  • Naumov G. I., E. S. Naumova, H. Turakainen, and M. Korhola. 1992. A new family of polymorphic metallothionein-encoding genes MTH1 (CUP1) and MTH2 in Saccharo-myces cerevisiae. Gene 119: 65–

    Article  PubMed  CAS  Google Scholar 

  • Nelson H., and N. Nelson. 1990. Disruption of genes encoding subunits of yeast vacuolar H+ -ATPase causes conditional lethality. Proc. Natl. Acad. Sci. U.S.A. 87: 3503–3507.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sotelo J., G. Wiederrecht, A. Okuda, and C. S. Parker. 1990. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62: 807–817.

    Article  PubMed  CAS  Google Scholar 

  • Noumi T., C. Beltran, H. Nelson, and N. Nelson. 1991. Mutational analysis of yeast vacuolar H+-ATPase. Proc. Natl. Acad. Sci. U.S.A. 88: 1938–1942.

    Article  PubMed  CAS  Google Scholar 

  • Ochai, E. I. 1987. In General Principles of Biochemistry of the Elements, Plenum Press, New York.

    Book  Google Scholar 

  • Ohtake Y., A. Satou, and S. Yabuuchi. 1990. Isolation and characterization of glutathione biosynthesis-deficient mutants in Saccharomyces cerevisiae. Agric. Biol. Chem. 54: 3145–31

    CAS  Google Scholar 

  • Okumura N., N. K. Nishizawa, Y. Umehara, and S. Mori. 1991. An iron deficiency-specific cDNA from barley roots having two homologous cysteine-rich MT domains. Plant Mol. Biol. 17: 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Ortiz D. F., L. Kreppel, D. M. Speiser, G. Scheel, G. McDonald, and D. W. Ow. 1992. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 11: 3491–3499.

    PubMed  CAS  Google Scholar 

  • Palmiter, R. D. 1987. Molecular biology of metallothionein gene expression. Experentia Suppl. 52: 63–80.

    CAS  Google Scholar 

  • Parker C. S., and J. Topol. 1984. A DrosophilaRNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene. Cell 37: 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Parsell D. A., and S. Lindquist. 1993. The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Ann. Rev. Genet. 27: 437–496.

    Article  PubMed  CAS  Google Scholar 

  • Parsell D. A., and R. T. Sauer. 1989. Induction of a heat shock-like response by unfolded protein in Escherichia coli:Dependence on protein degradation. Genes Dev. 3: 1226–1232.

    Article  PubMed  CAS  Google Scholar 

  • Pelham, H. R. 1986. Speculation on the functions of the major heat shock and glucose-regulated proteins. Cell 46: 959–961.

    Article  PubMed  CAS  Google Scholar 

  • Pelham, H. R. B. 1982. A regulatory upstream promoter element in the Drosophila Hsp70 heat-shock gene. Cell 30: 517–528.

    Article  PubMed  CAS  Google Scholar 

  • Petrukhin K., S. G. Fisher, M. Pirastu, R. E. Tanzi, I. Chernov, M. Devoto, et al. 1993. Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nature Genet. 5: 338–343.

    Article  PubMed  CAS  Google Scholar 

  • Posewitz, M. C, J. R. Simon, R. A. Farrell, and D. R. Winge. 1996. Role of the conserved histidines in the Zn module of the copper-activated transcription factors in yeast. J. Bioinorg. Chem. 1: 560–566.

    CAS  Google Scholar 

  • Rad M. R., L. Kirchrath, and C. P. Hollenberg. 1994. A putative P-type Cu(II)-transporting ATPase gene on chromosome II of Saccharomyces cerevisiae. Yeast 10: 1217–12

    Article  PubMed  CAS  Google Scholar 

  • Rauser, W. E. 1990. Phytochelatins. Ann. Rev. Biochem. 59: 61–86.

    Article  PubMed  CAS  Google Scholar 

  • Robbins A. H., D. E. McRee, M. Williamson, S. A. Collett, N. H. Xuong, W. F. Furey, B. C. Wang, and C. D. Stout. 1991. Refined crystal structure of Cd,Zn metallothionein at 2.0 Å resolution. J. Mol. Biol. 221: 1269–1293.

    PubMed  CAS  Google Scholar 

  • Rowley A., G. C. Johnston, B. Butler, M. Werner-Washburne, and R. A. Singer. 1993. Heat shock-mediated cell cycle blockage and Glcyclin expression in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 13:1034–1041.

    PubMed  CAS  Google Scholar 

  • Sadhu C., and L. Gedamu. 1989. Metal-specific posttranscriptional control of human metallothionein gene. Mol. Cell. Biol. 9: 5738–5741.

    PubMed  CAS  Google Scholar 

  • Sadis S., C. Atienza, and D. Finley. 1994. Short hydrophobic amino acid sequences target proteins for ubiquitin-dependent degradation. In Biology of Heat Shock Proteins and Molecular Chaperones. 1994 Cold Spring Harbor meeting,p. 264.

    Google Scholar 

  • Sanchez Y., J. Taulien, K. A. Borkovich, and S. Lindquist. 1992. Hspl04 is required for tolerance to many forms of stress. EMBO J. 11: 2357–2364.

    PubMed  CAS  Google Scholar 

  • Seufert W., and S. Jentsch. 1990. Ubiquitin-conjugatin enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 9: 543–550.

    PubMed  CAS  Google Scholar 

  • Sewell A. K., F. Yokoya, W. Yu, R. Miyagawa, T. Murayama, and D. R. Winge. 1995. Mutated yeast heat shock transcription factor exhibits elevated basal transcriptional activation and confers metal resistance. . Biol. Chem. 270: 25079–25086.

    Article  CAS  Google Scholar 

  • Silar P., G. Butler, and D. J. Thiele. 1991. Heat shock transcription factor activates transcription of the yeast metallothionein gene. Mol. Cell. Biol.. 11: 1232–1238.

    PubMed  CAS  Google Scholar 

  • Singhal R. K., M. E. Anderson, and A. Meister. 1987. Glutathione, a first line of defense against cadmium toxicity. FASEB J. 1: 220–223.

    PubMed  CAS  Google Scholar 

  • Skowyra D., C. Georgopoulos, and M. Zylicz. 1990. The E. coli DnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62: 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Sorger, P. K. 1990. Heat shock factor and the heat shock response. Cell 65: 363–366.

    Article  Google Scholar 

  • Sorger P., and H. R. B. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54: 855–864.

    Article  PubMed  CAS  Google Scholar 

  • Sorger P. K., M. Lewis, and H. R. B. Pelham. 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329: 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Sorger P. K., and H. C. M. Nelson. 1989. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59: 807–813.

    Article  PubMed  CAS  Google Scholar 

  • Sorger P. K., and H. R. B. Pelham. 1987. Purification and characterization of a heat shock element binding protein from yeast. EMBO J. 6: 3035–3041.

    PubMed  CAS  Google Scholar 

  • Szczypka M., and D. J. Thiele. 1989. A cysteine-rich nuclear protein activates yeast metallothionein gene transcription. Mol. Cell Biol. 9: 421–429.

    PubMed  CAS  Google Scholar 

  • Szczypka M. S., J. A. Wemmie, W. S. Moye-Rowley, and D. J. Thiele. 1994. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance. J. Biol. Chem. 269: 22853–22857.

    PubMed  CAS  Google Scholar 

  • Tamai K. T., X. Liu, P. Silar, T. Sosinowski, and D. J. Thiele. 1994. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol. Cell. Biol. 14: 8155–8165.

    PubMed  CAS  Google Scholar 

  • Thiele, D. J. 1988. ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol. Cell. Biol. 8: 2745–2752.

    PubMed  CAS  Google Scholar 

  • Thiele D. J., and D. H. Hamer. 1986. Tandemly duplicated upstream control sequences mediate copper-induced transcription of the Saccharomyces cerevisiae copper-metallo-thionein gene. Mol. Cell. Biol. 6: 1158–1163.

    PubMed  CAS  Google Scholar 

  • Thorvaldsen J. L., R. K. Mehra, W. Yu, A. K. Sewell, and D. R. Winge. 1995. Analysis of copper-induced metallothionein expression using autonomously replicating plasmids in Candida glabrata. Yeast 11: 1501–15

    Article  PubMed  CAS  Google Scholar 

  • Thorvaldsen J. L., A. K. Sewell, C. L. McCowen, and D. R. Winge. 1993. Regulation of metallothionein genes by the ACE1 and AMT1 transcription factors. J. Biol. Chem. 268: 12512–12518.

    PubMed  CAS  Google Scholar 

  • Thorvaldsen J. L., A. K. Sewell, A. M. Tanner, J. M. Peltier, I. J. Pickering, G. N. George, and D. R. Winge. 1994. Mixed Cu(I), Zn(II) coordination in the DNA binding domain of AMT1 transcription factor from Candida glabrata. Biochem. 33: 9566–95

    Article  CAS  Google Scholar 

  • Tohoyama H., M. Inouhe, M. Joho, and T. Murayama. 1990. Resistance to cadmium is under the control of the CAD2 gene in the yeast Saccharomyces cerevisiae. Current Genet 18: 181–1

    Article  CAS  Google Scholar 

  • Turner J. S., A. P. Morby, B. A. Whitton, A. Gupta, and N. J. Robinson. 1993. Construction of Zn(II)/Cd(II) hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J. Biol. Chem. 268: 4494–449

    PubMed  CAS  Google Scholar 

  • Vallee B. L., and D. D. Ulmer. 1972. Biochemical effects of mercury, cadmium and lead. Ann. Rev. Biochem. 41: 91–118.

    Article  PubMed  CAS  Google Scholar 

  • Vulpe, C, B. Levinson, S. Whitney, S. Packman, and J. Gitschier. 1993. Isolation of a candidate gene for Menkes’ disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3: 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Wagner I., W. Neupert, and T. Langer. 1994. Functions of chaperone proteins in degradation of mitochondrial proteins. In Biology of Heat Shock Proteins and Molecular Chaperones. 1994 Cold Spring Harbor meeting, p. 232.

    Google Scholar 

  • Welch J., S. Fogel, C. Buchman, and M. Karin. 1989. The CUP2 gene product regulates the expression of the CUP1 gene, coding for yeast metallothionein. EMBO J. 8: 255–260.

    PubMed  CAS  Google Scholar 

  • Werner-Washburne M., D. E. Stone, and E. A. Craig. 1987. Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Mol. Cell Biol 7: 2568–25

    PubMed  CAS  Google Scholar 

  • Williams G. T., and R. I. Morimoto. 1990. Maximal stress-induced transcription from the human HSP70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol Cell Biol. 10: 3125–3136.

    PubMed  CAS  Google Scholar 

  • Winge D. R., C. T. Dameron, and G. N. George. 1994. The metallothionein structural motif in gene expression. Adv. Inorg. Biochem. 10: 1–48.

    PubMed  CAS  Google Scholar 

  • Wright C. F., K. McKenney, D. H. Hamer, J. Byrd, and D. R. Winge. 1987. Structural and functional studies of the amino terminus of yeast metallothionein. J. Biol Chem. 262: 112912–112919.

    Google Scholar 

  • Wu A., J. A. Wemmie, N. P. Edgington, M. Goebl, J. L. Guevara, and W. S. Moye-Rowley. 1993. Yeast bZip proteins mediate pleitropic drug and metal resistance. J. Biol Chem. 268: 18850–18858.

    PubMed  CAS  Google Scholar 

  • Xiao H., O. Perisic, and J. T. Lis. 1991. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64: 585–593.

    Article  PubMed  CAS  Google Scholar 

  • Yang W., W. Gahl, and D. Hamer. 1991. Role of heat shock transcription factor in yeast metallothionein gene expression. Mol Cell Biol. 11: 3676–3681.

    PubMed  CAS  Google Scholar 

  • Yu W., R. A. Farrell, D. J. Stillman, and D. R. Winge. 1996. Identification of SLF1 as a new copper homeostasis gene in Saccharomyces cerevisiae involved in copper sulfide mineralization. Mol Cell Biol, (in press).

    Google Scholar 

  • Yu W., I. G. Macreadie, and D. R. Winge. 1991. Protection against cadmium toxicity in yeast by alcohol dehydrogenase. J. Inorg. Biochem. 44: 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Yu W., V. Santhanagopalan, A. K. Sewell, L. T. Jensen, and D. R. Winge. 1994. Dominance of metallothionein in metal ion buffering in yeast capable of synthesis of (γEC) nG isopeptides. J. Biol. Chem. 269: 21010–21015.

    PubMed  CAS  Google Scholar 

  • Yuan D. S., R. Stearman, A. Dancis, T. Dunn, T. Beeler, and R. D. Klausner. 1995. The Menkes/Wilson disease gene homolog in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. U.S.A. 92: 2632–2636.

    Article  PubMed  CAS  Google Scholar 

  • Zhou P., M. S. Szczypka, T. Sosinowski, and D. J. Thiele. 1992. Expression of a yeast metallothionein gene family is activated by a single metalloregulatory transcription factor. Mol. Cell. Biol. 12: 3766–3775.

    PubMed  CAS  Google Scholar 

  • Zhou P., and D. J. Thiele. 1991. Isolation of a metal-activated transcription factor gene from Candida glabrata by complementation in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. U.S.A. 88: 6112–61

    Article  PubMed  CAS  Google Scholar 

  • Zhou P., and D. J. Thiele. 1993. Rapid transcriptional autoregulation of a yeast metallo-regulatory transcription factor is essential for high-level copper detoxification. Genes Dev. 7: 1824–1835.

    Article  PubMed  CAS  Google Scholar 

  • Zimarino V., and C. Wu. 1987. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature 327: 727–730.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Winge, D.R., Sewell, A.K., Yu, W., Thorvaldsen, J.L., Farrell, R. (1998). Metal Ion Stress in Yeast. In: Silver, S., Walden, W. (eds) Metal Ions in Gene Regulation. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5993-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5993-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7745-0

  • Online ISBN: 978-1-4615-5993-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics