Skip to main content
Log in

Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A DNA fragment conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae was isolated from a library of yeast genomic DNA. Its nucleotide sequence revealed the presence of a single open reading frame (ORF; 1326 bp) having the potential to encode a protein of 442 amino acid residues (molecular mass of 48.3 kDa). A frameshift mutation introduced within the ORF abolished resistance to heavy metal ions, indicating the ORF is required for resistance. Therefore, we termed it the ZRC1 (zinc resistance conferring) gene. The deduced amino acid sequence of the gene product predicts a rather hydrophobic protein with six possible membrane-spanning regions. While multiple copies of the ZRC1 gene enable yeast cells to grow in the presence of 40 mM Zn2+, a level at which wild-type cells cannot survive, the disruption of the chromosomal ZRC1 locus, though not a lethal event, makes cells more sensitive to zinc ions than are wild-type cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adzuma K, Ogawa T, Ogawa H (1984) Primary structure of the RAD52 gene in S. cerevisiae. Mol Cell Biol 4:2735–2744

    Google Scholar 

  • Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364

    Google Scholar 

  • Butt TR, Sternberg E, Herd J, Crooke ST (1984) Cloning and expression of a yeast copper metallothionein gene. Gene 27:23–33

    Google Scholar 

  • Byrd J, Berger RM, McMillin DR, Wright CF, Hamer D, Winge DR (1988) Characterization of the copper-thiolate cluster in yeast metallothionein and two truncated mutants. J Biol Chem 263:6688–6694

    Google Scholar 

  • Ecker DJ, Butt TR, Sternberg EJ, Neeper MP, Debouck C, Gorman JA, Crooke ST (1986) Yeast metallothionein function in metal detoxification. J Biol Chem 261:16895–16900

    Google Scholar 

  • Evans RM, Hollenberg SM (1988) Zinc fingers: gilt by association. Cell 52:1–3

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    CAS  PubMed  Google Scholar 

  • Fogel S, Welch JW (1982) Tandem gene amplification mediates copper resistance in yeast. Proc Natl Acad Sci USA 79:5342–5346

    Google Scholar 

  • Fogel S, Welch JW, Karin M (1983) Gene amplification in yeast: CUP1 copy number regulates copper resistance. Curr Genet 7:1–9

    Google Scholar 

  • Fukuda Y, Saikusa T, Watanabe K, Shimosaka M, Murata K, Kimura A (1986) Cloning of genes enhancing the resistance of Saccharomyces cerevisiae to zinc and cadmium ions. Agric Biol Chem 50:1341–1343

    Google Scholar 

  • Furst P, Hu S, Hackett R, Hamer D (1988) Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55:705–717

    Article  PubMed  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1986) Synthesis of seven different homologous phytochelatins in metal exposed Schizosaccharomyces pombe cells. FEBS Lett 197:115–120

    Google Scholar 

  • Gros P, Croop J, Housman D (1986) Mammalian multidrug resistance gene: complete eDNA sequence indicates strong homology to bacterial transport protein. Cell 47:371–380

    Google Scholar 

  • Hartman H, Weser W (1985) Cobalt-(cystein)4 tetrahedra in yeast cobalt(II) thionein. Biochem Biophys Res Commun 132:277–283

    Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359

    Google Scholar 

  • Ikemura T (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. J Mol Biol 158:573–597

    Google Scholar 

  • Inouye S, Nakazawa A, Nakazawa T (1981) Molecular cloning of TOL genes, xylB and xylE in Escherichia coli. J Bacteriol 145:1137–1143

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact cells treated with alkali cations. J Bacteriol 153:163–168

    Google Scholar 

  • Jones JS, Weber S, Prakash L (1988) The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Res 16:7119–7131

    Google Scholar 

  • Kanehisa M (1982) Los Alamos sequence analysis package for nucleic acids and proteins. Nucleic Acids Res 10:183–196

    Google Scholar 

  • Klein P, Kanehisa M, Delisi C (1985) The detection and classification of membrane spanning proteins. Biochim Biophys Acta 815:468–475

    Google Scholar 

  • Kondo N, Isobe M, Imai K, Goto J, Murasugi A, Hayashi Y (1983) Structure of cadystin, the unit-peptide of cadmium-binding peptides induced in a fission yeast Schizosaccharomyces pombe. Tetrahedron Lett 24:925–928

    Google Scholar 

  • Kornfeld K, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharide. Annu Rev Biochem 54:631–664

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    CAS  PubMed  Google Scholar 

  • Lerch K (1980) Copper metallothionein, a copper-binding protein from Neurospora crssa. Nature 284:368–370

    Google Scholar 

  • Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441

    Google Scholar 

  • Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    Google Scholar 

  • Maniatis TE, Fritsch F, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • McClanahan T, McEntee K (1984) Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol Cell Biol 4:2356–2363

    Google Scholar 

  • McClanahan T, McEntee K (1986) DNA damage and heat shock dually regulate genes in Saccharomyces cerevisiae. Mol Cell Biol 6:90–96

    Google Scholar 

  • Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and γ-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci USA 85: 8815–8819

    Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1985) Cadmium-binding peptide induced in fission yeast Schizosaccharomyces pombe. J Biochem 96:1561–1564

    Google Scholar 

  • Murata K, Fukuda Y, Shimosaka M, Watanabe K, Saikusa T, Kimura A (1985) Phenotypic character of the methylglyoxal resistance gene in Saccharomyces cerevisiae: expression in E. coli and application to breeding wild-type yeast strains. Appl Environ Microbiol 50:1200–1207

    Google Scholar 

  • Nishizawa M, Araki R, Teranishi Y (1989) Identification of an upstream activating sequence and an upstream repressible sequence of pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Mol Cell Biol 9:442–451

    Google Scholar 

  • Ostrowski J, Burdzy GJ, Kredich NM (1987) DNA sequence of the cysB regions of Salmonella typhimurium and E. coli. J Biol Chem 262:5999–6005

    Google Scholar 

  • Perozzi G, Prakash S (1986) RAD7 gene of S. cerevisiae: transcripts, nucleotide sequence analysis, and functional relationship between the RAD7 and RAD23 gene products. Mol Cell Biol 6:1497–1507

    Google Scholar 

  • Perron CY, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Reynolds P, Higins DR, Prakash L, Prakash S (1985a) The nucleotide sequence of the RAD3 gene of S. cerevisiae: a potential adenine nucleotide binding amino acid sequence and a nonessential acidic calboxyl terminal region. Nucleic Acids Res 13:2357–2372

    Google Scholar 

  • Reynolds P, Weber S, Prakash L (1985b) RAD6 gene of S. cerevisiae encodes a protein containing a tract of 13 consecutive aspartates. Proc Natl Acad Sci USA 82:168–172

    Google Scholar 

  • Rine J, Hansen W, Hardeman E, Davis RW (1983) Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci USA 80:6750–6754

    Google Scholar 

  • Rothstein R (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Google Scholar 

  • Ruby SW, Szostak JW (1985) Specific Saccharomyces cerevisiae genes are expressed in response to DNA-damage agents. Mol Cell Biol 5:75–84

    Google Scholar 

  • Sanger F, Micklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Shatzman AR, Kosman DJ (1979) Characterization of two copperbinding components of the fungus Dactylium dendroides. Arch Biochem Biophys 194:226–235

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Laboratory course manual for methods in yeast genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 8:503–517

    CAS  PubMed  Google Scholar 

  • Struhl K, Davis RW (1981) Transcription of the HIS3 gene region in Saccharomyces cerevisiae. J Mol Biol 152:535–552

    Google Scholar 

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    Google Scholar 

  • Weiss WA, Friedberg EC (1985) Molecular cloning and characterization of the yeast RAD10 gene and expression of RAD10 protein in E. coli. EMBO J 4:1575–1582

    Google Scholar 

  • Winge DR, Nielson RB, Gray WR, Hamer DH (1985) Yeast metallothionein sequence and metal-binding properties. J Biol Chem 260:14464–14470

    Google Scholar 

  • Yang E, Friedberg EC (1984) Molecular cloning and nucleotide sequence analysis of the S. cerevisiae RAD1 gene. Mol Cell Biol 4:2161–2169

    Google Scholar 

  • Zaret KS, Sherman F (1982) DNA sequence required for efficient transcription termination in yeast. Cell 28:563–573

    Google Scholar 

  • Zukowski MM, Gaffney DF, Speck D, Kauffman A, Findeli A, Wisecup A, Lecocq JP (1983) Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci USA 80:1101–1105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamizono, A., Nishizawa, M., Teranishi, Y. et al. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae . Molec. Gen. Genet. 219, 161–167 (1989). https://doi.org/10.1007/BF00261172

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00261172

Key words

Navigation