Skip to main content

Ontogenetic Systematics, Molecular Developmental Genetics, and the Angiosperm Petal

  • Chapter
Molecular Systematics of Plants II

Abstract

Phylogenetic systematics discovers pattern; ontogenetic systematics uncovers processes behind pattern. Plant diversity, as recognized in the field, herbarium, or library, stems from the diversity of plant form. How an organism develops determines its phenotype, and therefore differences among ontogenies are what generate diversity. The molecular basis for these differences is of fundamental importance to plant systematics, yet the topic remains poorly understood.

Anyone who pays a little attention to the growth of plants will readily observe that certain of their external members are sometimes transformed, so that they assume—either wholly or in some lesser degree—the form of the members nearest in the series … If we note that it is in this way possible for the plant to take a step backwards and thus to reverse the order of growth, we shall obtain so much the more insight into Nature’s regular procedure; and we shall make the acquaintance of the laws of transmutation, according to which she produces one part from another, and sets before us the most varied forms through modification of a single organ. (J. W. von Goethe, 1790; translation by Arber, 1946, p. 90)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Adams, L. G. 1996. Gentianaceae. In Flora of Australia vol. 28, ed. A. Wilson, pp. 72–103. CSIRO, Australia.

    Google Scholar 

  • Ainsworth, C., S. Crossley, V. Buchanan-Wollaston, M. Thangavelu and J. Parker. 1995. Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell 7:1583–1598.

    PubMed  CAS  Google Scholar 

  • Albert, V. A., A. Backlund, K. Bremer, M. W. Chase, J. R. Manhart, B. D. Mishler, and K. C. Nixon. 1994. Functional constraints and rbcL evidence for land plant phylogeny. Annals of the Missouri Botanical Garden 81:534–567.

    Article  Google Scholar 

  • Albert, V. A., M. Kotilainen, P. Elomaa, J. W. Grimes, Y. Helariutta, D. Yu, and T. H. Teeri. 1997. Inflorescence development in Asteraceae—a radial morphogenetic gradient in Gerbera. In Evolution of Plant Development, Keystone Symposium Bl, Taos, New Mexico, p. 22 [abstract].

    Google Scholar 

  • Angenent, G. C., J. Franken, M. Busscher, L. Colombo, and A. J. van Tunen. 1993. Petal and stamen formation in petunia is regulated by the homeotic genefbpl. Plant Journal 3:101–112.

    Article  Google Scholar 

  • Angenent, G. C., J. Franken, M. Busscher, D. Weiss, and A. J. van Tunen. 1994. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant Journal 5:33–44.

    Article  PubMed  CAS  Google Scholar 

  • Angenent, G. C., J. Franken, M. Busscher, A. van Dijken, J. L. van Went, H. J. M. Dons, and A. J. van Tunen. 1995. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7:1569–1582.

    PubMed  CAS  Google Scholar 

  • Arber, A. 1946. Goethe’s botany. Chronica Botanica 10:63–126.

    Google Scholar 

  • Armbruster, W. S. 1984. The role of resin in angiosperm pollination: ecological and chemical considerations. American Journal of Botany 71:1149–1160.

    Article  Google Scholar 

  • Bachmann, K. 1983. Evolutionary genetics and the genetic control of morphogenesis in flowering plants. Evolutionary Biology 16:157–208.

    Article  Google Scholar 

  • Bailey, I. W. 1922. The pollination of Marcgravia: a classical case of ornithophily? American Journal of Botany 9:370–384.

    Article  Google Scholar 

  • Baker, S. C., K. Robinson-Beers, J. M. Villanueva, J. C. Gaiser, and C. S. Gasser. 1997. Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics 145:1109–1124.

    PubMed  CAS  Google Scholar 

  • Bessey, C. E. 1915. The phylogenetic taxonomy of flowering plants. Annals of the Missouri Botanical Garden 2:109–164.

    Article  Google Scholar 

  • Bittrich, V., and M. C. E. Amaral. 1996. Flower morphology and pollination biology of some Clusia species from the Gran Sabana (Venezuela). Kew Bulletin 51:681–694.

    Article  Google Scholar 

  • Bowman, J. L. 1994. Arabidopsis: An Atlas of Development. Springer-Verlag, New York.

    Google Scholar 

  • Bowman, J. L., D. R. Smyth, and E. M. Meyerowitz. 1991. Genetic interaction among floral homeotic genes of Arabidopsis. Development 112:1–20.

    PubMed  CAS  Google Scholar 

  • Bradley, D., R. Carpenter, H. Sommer, N. Hartley, and E. S. Coen. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the PLENA locus of Antirrhinum. Cell 72:85–95.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D., R. Carpenter, L. Copsey, C. Vincent, S. Rothstein, and E. S. Coen. 1996. Control of inflorescence architecture in Anthirrhinum. Nature 379:791–797.

    Article  PubMed  CAS  Google Scholar 

  • Bremer, K. 1994. Asteraceae: Cladistics and Classification. Timber Press, Portland, Oregon.

    Google Scholar 

  • Carabelli, M., G. Sessa, S. Baima, G. Morelli, and I. Ruberti. 1993. The Arabidopsis Athb-2 and -4 genes are strongly induced by far-red-rich light. Plant Journal 4:469–479.

    Article  PubMed  CAS  Google Scholar 

  • Carolin, R. C., M. T. M. Rajput, and D. Morrison. 1992. Goodeniaceae. In Flora of Australia 35, ed. A. S. George, pp. 4–328. Australian Government Publishing Service, Canberra.

    Google Scholar 

  • Celakovsky, L. J. 1896/1900. Ueber den phylogenetischen Entwicklungsgang der Blüthe und über den Ursprung der Blumenkrone 1/2. Sitzungsberichte der Königlichen Bömischen Gesellschaft der Wissenschaften in Prag. Mathematisch-naturwissenschaftliche Classe 1896(40): 1–91, 1900(3): 1-221.

    Google Scholar 

  • Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W J. Kress, K. G. Karol, W. D. Clark, M. Hedrén, B. S. Gaut, R. K. Jansen, K.-J. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn, Jr., S. W. Graham, S. C. H. Barrett, S. Dayanandan, and V. A. Albert. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80:528–580.

    Article  Google Scholar 

  • Claβen-Bockhoff, R. 1996. A survey of flower-like inflorescences in the Rubiaceae. Opera Botanica Belgica 7:329–367.

    Google Scholar 

  • Coen, E. S., and E. M. Meyerowitz. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E. S., and J. M. Nugent. 1994. Evolution of flowers and inflorescences. Development 107:107–116.

    Google Scholar 

  • Colombo, L., J. Franken, E. Koetje, J. van Went, H. J. M. Dons, G. C. Angenent, and A. J. van Tunen. 1995. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868.

    PubMed  CAS  Google Scholar 

  • Cory, C. 1984. Pollination biology of two species of Hawaiian Lobelioideae (Clermontia kakeana and Cyanea angustifolia) and their presumed coevolved relationship with native honeycreepers (Drepanidae). M.S. thesis. California State University, Fullerton.

    Google Scholar 

  • Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden 72:716–793.

    Article  Google Scholar 

  • Crane, P. R., E. M. Friis, and K. R. Pedersen. 1994. Paleobotany evidence on the early radiation of magnoliid angiosperms. Plant Systematics and Evolution (suppl.) 8:51–72.

    Google Scholar 

  • Crepet, W. L., and K. C. Nixon. 1994. Flowers of Turonian Magnoliidae and their implications. Plant Systematics and Evolution (suppl.) 8:73–91.

    Google Scholar 

  • Crepet, W. L., E. M. Friis, and K. C. Nixon. 1991. Fossil evidence for the evolution of biotic pollination. Philosophical Transactions of the Royal Society of London B 333:187–195.

    Article  Google Scholar 

  • Crepet, W. L., K. C. Nixon, E. M. Friis, and J. V. Freudenstein. 1992. Oldest fossil flowers of hamamelidaceous affinity, from the late Cretaceous of New Jersey. Proceedings of the National Academy of Sciences U.S.A. 89:8986–8989.

    Article  CAS  Google Scholar 

  • Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants. Columbia University Press, New York.

    Google Scholar 

  • Davies, B., and Z. Schwarz-Sommer. 1994. Control of floral organ identity by homeotic MADS box transcription factors. In Results and Problems in Cell Differentiation, ed. L. Nover, pp. 235–258. Springer-Verlag, Berlin.

    Google Scholar 

  • Davies, B., M. Egea-Cortines, E. de Andrade Silva, H. Saedler, and H. Sommer. 1996. Multiple interactions amongst floral homeotic MADS box proteins. EMBO Journal 15:4330–4343.

    PubMed  CAS  Google Scholar 

  • Day, C. D., B. F. Galgoci, and V. F. Irish. 1995. Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development. Development 121:2887–2895.

    PubMed  CAS  Google Scholar 

  • Dellaporta, S. L., and A. Calderon-Urrea. 1993. Sex determination in flowering plants. Plant Cell 5:1241–1251.

    PubMed  CAS  Google Scholar 

  • Delprete, P. G. 1996a. Evaluation of the tribes Chiococceae, Condamineeae and Catesbaeeae (Rubiaceae) based on morphological characters. Opera Botanica Belgica 7:165–192.

    Google Scholar 

  • Delprete, P. G. 1996b. Notes on calycophyllous Rubiaceae: Part 1. Morphological comparisons of the genera Chimarrhis, Bathysa and Calycophyllum, with new combinations and a new species, Chimarrhis gentryana. Brittonia 48:35–44.

    Google Scholar 

  • De Pinna, M. C. C. 1991. Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367–394.

    Article  Google Scholar 

  • Di Laurenzio, L., J. Wysocka-Diller, J. E. Malamy, L. Pysh, Y. Helariutta, G. Freshour, M. G. Hahn, K. A. Feldmann, and P. N. Benfey. 1996. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433.

    Article  PubMed  Google Scholar 

  • Di Laurenzio, L., L. Struwe, A. S. Pepper, D. Kizirian, and V. A. Albert. 1997. Gene expression analysis of sepal identity in Clermontia (Lobelioideae: Campanulaceae): homeosis and floral diversification in the Hawaiian archipelago. In Evolution of Plant Development, Keystone Symposium Bl, Taos, New Mexico, p. 24 [abstract].

    Google Scholar 

  • Dilcher, D. L., and P. R. Crane. 1984. Archaeanthus: an early angiosperm from the Cenomanian of the western interior of North America. Annals of the Missouri Botanical Garden 71:351–383.

    Article  Google Scholar 

  • Donoghue, M. J. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43:1137–1156.

    Article  Google Scholar 

  • Donoghue, M. J. 1994. Progress and prospects in reconstructing plant phylpgeny. Annals of the Missouri Botanical Garden 81:405–418.

    Article  Google Scholar 

  • Donoghue, M. J., R. G. Olmstead, J. F. Smith, and J. D. Palmer. 1992. Phylogenetic relationships of Dipsacales based on rbcL sequences. Annals of the Missouri Botanical Garden 79:333–345.

    Article  Google Scholar 

  • Doyle, J. A. 1994. Origin of the angiosperm flower: a phylogenetic perspective. Plant Systematics and Evolution (suppl.) 8:7–29.

    Google Scholar 

  • Doyle, J. A., and M. J. Donoghue. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Review 52:321–431.

    Article  Google Scholar 

  • Doyle, J. A., and M. J. Donoghue. 1992. Fossils and seed plant phylogeny reanalyzed. Brittonia 44:89–106.

    Article  Google Scholar 

  • Doyle, J. A., and C. L. Hotton. 1991. Diversification of early angiosperm pollen in a cladistic context. In Pollen and Spores: Patterns of Diversification, eds. S. Blackmore and S. H. Barnes, pp. 169–195. Clarendon Press, Oxford.

    Google Scholar 

  • Doyle, J. A., M. J. Donoghue, and E. A. Zimmer. 1994. Integration of morphological and ribosomal RNA data on the origin of angiosperms. Annals of the Missouri Botanical Garden 81:419–450.

    Article  Google Scholar 

  • Doyle, J. J. 1994. Evolution of a plant homeotic multigene family: toward connecting molecular systematics and molecular developmental genetics. Systematic Biology 43:307–328.

    Google Scholar 

  • Drinnan, A. N., P. R. Crane, E. M. Friis, and K. R. Pedersen. 1991. Angiosperm flowers and tricolpate pollen of buxaceous affinity from the Potomac Group (mid-Cretaceous) of eastern North America. American Journal of Botany 78:153–176.

    Article  Google Scholar 

  • Drinnan, A. N., P. R. Crane, and S. B. Hoot. 1994. Patterns of floral evolution in the early diversification of nonmagnoliid dicotyledons (eudicots). Plant Systematics and Evolution (suppl.) 8:93–122.

    Google Scholar 

  • Elliott, R. C., A. S. Betzner, E. Huttner, M. P. Oakes, W. Q. J. Tucker, D. Gerentes, P. Perez, and D. R. Smyth. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168.

    PubMed  CAS  Google Scholar 

  • Endress, P. K. 1994. Diversity and Evolutionary Biology of Tropical Flowers. Cambridge University Press, Cambridge.

    Google Scholar 

  • Engler, A. 1925. Guttiferae. In Die Natürlichen Pflanzenfamilien, second edition, Vol. 21, eds. A. Engler and G. Prantl, pp. 154–237. Engelmann, Leipzig.

    Google Scholar 

  • Engström, P., and K. Tandre. 1997. Conservation of transcription factor function between angiosperms and conifers. In Evolution of Plant Development, Keystone Symposium Bl, Taos, New Mexico, p. 6 [abstract].

    Google Scholar 

  • Erbar, C. 1991. Sympetaly—a systematic character? Botanische Jahrbücher für Systematik,. Pflanzengeschichte und Pflanzengeographie 112:417–451.

    Google Scholar 

  • Ewan, J. 1948. A revision of Macrocarpaea, a neotropical genus of shrubby gentians. Contributions to the United States National Herbarium 29:209–251.

    Google Scholar 

  • Ewan, J. 1952. A review of the Neotropical lisianthoid genus Lagenanthus (Gentianaceae). Mutisia 4:1–5.

    Google Scholar 

  • Fitch, W. M. 1970. Distinguishing homologous from analogous proteins. Systematic Zoology 19:99–113.

    Article  PubMed  CAS  Google Scholar 

  • Friis, E. M., K. R. Pedersen, and P. R. Crane. 1994. Angiosperm floral structures from the Early Cretaceous of Portugal. Plant Systematics and Evolution (suppl.) 8:31–49.

    Google Scholar 

  • Goto, K., and E. M. Meyerowitz. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes and Development 8:1548–1560.

    Article  PubMed  CAS  Google Scholar 

  • Grey-Wilson, C. 1980. Impatiens of Africa. Morphology, Pollination and Pollinators, Ecology, Phytogeography, Hybridisation, Keys and Systematic Treatment of All African Species. Balkema, Rotterdam.

    Google Scholar 

  • Halfter, U., N. Ali, J. Stockhaus, L. Ren, and N. H. Chua. 1994. Ectopic expression of a single homeotic gene, the petunia gene GREEN PETAL, is sufficient to convert sepals to petaloid organs. EMBO Journal 13:1443–1449.

    PubMed  CAS  Google Scholar 

  • Harris, E. M. 1995. Inflorescence and floral ontogeny in Asteraceae: a synthesis of historical and current concepts. Botanical Review 61:93–278.

    Article  Google Scholar 

  • Helariutta, Y, P. Elomaa, M. Kotilainen, P. Seppänen, and T. H. Teeri. 1993. Cloning of cDNA coding for dihy-droflavonol-4-reductase (DFR) and characterization of DFR expression in the corollas of Gerbera hybrida var. Regina (Compositae). Plant Molecular Biology 22:183–193.

    Article  PubMed  CAS  Google Scholar 

  • Helariutta, Y, M. Kotilainen, P. Elomaa, and T. H. Teeri. 1995. Gerbera hybrida (Asteraceae) imposes regulation at several anatomical levels during inflorescence development on the gene for dihydroflavonol-4-reductase. Plant Molecular Biology 28:935–941.

    Article  PubMed  CAS  Google Scholar 

  • Helariutta, Y, M. Kotilainen, P. Elomaa, N. Kalkkinen, K. Bremer, T. H. Teeri, and V. A. Albert. 1996. Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification. Proceedings of the National Academy of Sciences U.S.A. 93:9033–9038.

    Article  CAS  Google Scholar 

  • Herschbach, B. M., M. B. Arnaud, and A. D. Johnson. 1994. Transcriptional repression directed by the yeast alpha 2 protein in vitro. Nature 370:309–311.

    Article  PubMed  CAS  Google Scholar 

  • Heywood, V. H. (ed.) 1985. Flowering Plants of the World. Croom Helm, London and Sydney.

    Google Scholar 

  • Hiepko, P. 1965. Vergleichend-morphologische und entwicklungs-geschichtliche Untersuchungen über das Perianth bei den Polycarpicae. Botanische Jahrbücher für Systematik, Pfanzengeschichte und Pflanzengeographie 84:359–508.

    Google Scholar 

  • Huijser, P., J. Klein, W.-E. Lönnig, H. Meijer, H. Saedler, and H. Sommer. 1992. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS box gene SQUAMOSA in Antirrhinum majus. EMBO Journal 11:1239–1249.

    PubMed  CAS  Google Scholar 

  • Ingram, G. C., J. Goodrich, M. D. Wilkinson, R. Simon, G. W. Haughn, and E. S. Coen. 1995. Parallels between UNUSUAL FLOWER ORGANS and FIMBRIATA genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7:1501–1510.

    PubMed  CAS  Google Scholar 

  • Irish V. F., and Y. T. Yamamoto. 1995. Conservation of floral homeotic gene function between Arabidopsis and Antirrhinum. Plant Cell 7:1635–1644.

    PubMed  CAS  Google Scholar 

  • Jack, T, L. L. Brockman, and E. M. Meyerowitz. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell 68:683–687.

    Article  PubMed  CAS  Google Scholar 

  • Jack, T., G. L. Fox, and E. M. Meyerowitz. 1994. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76:703–716.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D., K. Roberts, and C. Martin. 1992. Temporal and spatial control of expression of anthocyanin biosynthetic genes in developing flowers of Antirrhinum majus. Plant Journal 2:425–434.

    Article  CAS  Google Scholar 

  • Jofuku, K. D., B. G. den Boer, M. van Montagu, and J. K. Okamuro. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225.

    PubMed  CAS  Google Scholar 

  • Judd, W. S., R. W. Sanders, and M. J. Donoghue. 1994. Angiosperm family pairs: preliminary phylogenetic analyses. Harvard Papers in Botany 5:1–51.

    Google Scholar 

  • Klucher, K. J., H. Chow, L. Reiser, and R. L. Fischer. 1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153.

    PubMed  CAS  Google Scholar 

  • Kosuge, K. 1994. Petal evolution in Ranunculaceae. Plant Systematics and Evolution (suppl.) 8:185–191.

    Google Scholar 

  • Kotilainen, M., D. Yu, P. Elomaa, V. A. Albert, Y Helariutta, M. Mehto, and T. H. Teeri. 1997. Inflorescence development in Asteraceae—a novel MADS box gene RCD1 is differentially required for C-function in marginal versus central florets. In Evolution of Plant Development, Keystone Symposium Bl, Taos, New Mexico, p. 25 [abstract].

    Google Scholar 

  • Krizek, B. A., and E. M. Meyerowitz. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide B class organ identity function. Development 122:11–22.

    PubMed  CAS  Google Scholar 

  • Lammers, T. G. 1991. Systematics of Clermontia (Campanulaceae-Lobelioideae). Systematic Botany Monographs 32:1–97.

    Article  Google Scholar 

  • Lammers, T. G. 1995. Patterns of speciation and biogeography in Clermontia (Campanulaceae, Lobelioideae). In Hawaiian Biogeography: Evolution on a Hot Spot Archipelago, eds. W. L. Wagner and V. Funk, pp. 338–362. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Ma, H. 1994. The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes and Development 8:745–756.

    Article  PubMed  CAS  Google Scholar 

  • Ma, H., M. F. Yanofsky, and E. M. Meyerowitz. 1991. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes and Development 5:484–495.

    Article  PubMed  CAS  Google Scholar 

  • Mabberley, D. J. 1987. The Plant Book. Cambridge University Press, Cambridge.

    Google Scholar 

  • Maddison, W. P. 1990. A method for testing the correlated evolution of two binary characters: are gains or losses concentrated on certain branches of phylogenetic tree?. Evolution 44:539–557.

    Article  Google Scholar 

  • Maddison, W. P., and D. R. Maddison. 1992. MacClade: Interactive Analysis of Phylogeny and Character Evolution, version 3.0. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Maguire, B. 1972. Clusiaceae—Quapoya and Renggeria. In The Botany of the Guyana Highland, Part IX, Memoirs of the New York Botanical Garden Vol. 23, eds. B. Maguire and collaborators, pp. 192–196. New York Botanical Garden, New York.

    Google Scholar 

  • Maguire, B. 1977. A revision of Clusia L. section Cochlanthera (Choisy) Engler. Caldasia 11:129–146.

    Google Scholar 

  • Mandel, M. A., C. Gustafson-Brown, B. Savidge, and M. F. Yanofsky. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277.

    Article  PubMed  CAS  Google Scholar 

  • Martin C., and T. Gerats. 1993. Control of pigment biosynthesis genes during petal development. Plant Cell 5:1253–1264.

    PubMed  CAS  Google Scholar 

  • Martin, C., A. Prescott, S. Mackay, J. Bartlett, and E. Vrijlandt. 1991. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant Journal 1:37–49.

    Article  PubMed  CAS  Google Scholar 

  • Mattsson, J., E. Söderman, M. Svenson, C. Borkird, and P. Engström. 1992. A new homeobox-leucine zipper gene from Arabidopsis thaliana. Plant Molecular Biology 18:1019–1022.

    Article  PubMed  CAS  Google Scholar 

  • Mauthe, S., K. Bachmann, K. L. Chambers, and H. J. Price. 1984. Independent responses of two fruit characters to developmental regulation in Microseris douglasii (Asteraceae, Lactuceae). Experientia 40:1280–1281.

    Article  Google Scholar 

  • Mayer, U., R. A. Torres-Ruiz, T. Berleth, S. Miséra, and G. Jürgens. 1991. Mutations affecting body organization in the Arabidopsis embryo. Nature 353:402–407.

    Article  Google Scholar 

  • Mead, J., H. Zhong, T. B. Acton, and A. K. Vershon. 1996. The yeast alpha2 and Mcml proteins interact through a region similar to a motif found in homeodomain proteins of higher eukaryotes. Molecular and Cell Biology 16:2135–2143.

    CAS  Google Scholar 

  • Modrusan, Z., L. Reiser, K. A. Feldmann, R. L. Fischer, and G. W. Haughn. 1994. Homeotic transformation of ovules into carpel-like structures in Arabidopsis. Plant Cell 6:333–349.

    PubMed  CAS  Google Scholar 

  • Morgan, D. R., and D. E. Soltis. 1993. Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. Annals of the Missouri Botanical Garden 80:631–660.

    Article  Google Scholar 

  • Mori, S. A., and G. T. Prance. 1990a. Taxonomy, ecology, and economic botany of the Brazil nut (Bertholletia excelsa Humb. & Bonpl.: Lecythidaceae). Advances in Economic Botany 8:130–150.

    Google Scholar 

  • Mori, S. A., and G. T. Prance. 1990b. Lecythidaceae, part II: the zygomorphic-flowered New World genera (Couroupita, Corythophora, Bertholletia, Couratari, Eschweilera, & Lecythis). With a study of secondary xylem of neotropical Lecythidaceae by Carl de Zeeuw. FloraNeotropica Monographs 21:1–376.

    Google Scholar 

  • Mori, S. A., J. E. Orchard, and G. T. Prance. 1980. Intrafloral pollen differentiation in the New World Lecythidaceae, subfamily Lecythidoideae. Science 209:400–403.

    Article  PubMed  CAS  Google Scholar 

  • Morton, C. M., M. W. Chase, K. A. Kron, and S. A. Swensen. 1996. A molecular evaluation of the monophyly of the order Ebenales based upon rbcL sequence data. Systematic Botany 21:567–586.

    Article  Google Scholar 

  • Nixon, K. C., and W. L. Crepet. 1993. Late Cretaceous flowers of ericalean affinity. American Journal of Botany 80:616–623.

    Article  Google Scholar 

  • Nixon, K. C., W. L. Crepet, D. M. Stevenson, and E. M. Friis. 1994. A reevaluation of seed plant phylogeny. Annals of the Missouri Botanical Garden 81:484–533.

    Article  Google Scholar 

  • Nurrish, S. J., and R. Treisman. 1995. DNA binding specificity determinants in MADS-box transcription factors. Molecular and Cell Biology 15:4076–4085.

    CAS  Google Scholar 

  • Okamuro, J. K., B. G. W. den Boer, and K. D. Jofuku. 1993. Regulation of Arabidopsis flower development. Plant Cell 5:1183–1193.

    PubMed  CAS  Google Scholar 

  • Olmstead, R. G., B. Bremer, K. M. Scott, and J. D. Palmer. 1993. A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Annals of the Missouri Botanical Garden 80:700–722.

    Article  Google Scholar 

  • Patterson, C. 1988. Homology in classical and molecular biology. Molecular Biology and Evolution 5:603–625.

    PubMed  CAS  Google Scholar 

  • Prance, G. T., and S. A. Mori. 1979. The actinomorphicflowered New World Lecythidaceae. Lecythidaceae, part I. Flora Neotropica Monographs 21:1–270.

    Google Scholar 

  • Price, R. A., I. A. Al-Shehbaz, and J. D. Palmer. 1994. Systematic relationships of Arabidopsis: a molecular and morphological perspective. In Arabidopsis, eds. C. Somerville and E. M. Meyerowitz. Cold Spring Harbor Press, New York.

    Google Scholar 

  • Pringle, J. S. 1995. Gentianaceae. In Flora of Ecuador, vol. 159A, eds. G. Harling and L. Andersson, pp. 1–131. Department of Systematic Botany, Göteborg University, Göteborg.

    Google Scholar 

  • Purugganan, M. D., S. D. Rounsley, R. J. Schmidt, and M. F. Yanofsky. 1995. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356.

    PubMed  CAS  Google Scholar 

  • Raubeson, L. A., and R. K. Jansen. 1992. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699.

    Article  PubMed  CAS  Google Scholar 

  • Reiser, L., Z. Modrusan, L. Margossian, A. Samach, N. Ohad, G. W. Haughn, and R. L. Fischer. 1995. The BELLI gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83:735–742.

    Article  PubMed  CAS  Google Scholar 

  • Rodman, J. E., R. A. Price, K. Karol, E. Conti, K. Sytsma, and J. D. Palmer. 1993. Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants. Annals of the Missouri Botanical Garden 80:686–699.

    Article  Google Scholar 

  • Rounsley, S. D., G. S. Ditta, and M. F. Yanofsky. 1995. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269.

    PubMed  CAS  Google Scholar 

  • Schwarz-Sommer, Z., P. Huijser, W. Nacken, H. Saedler, and H. Sommer. 1990. Genetic control of flower development: homeotic genes in Antirrhinum majus. Science 250:931–936.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer, Z., I. Hue, P. Huijser, P. J. Flor, R. Hansen, F. Tetens, W. E. Lönnig, H. Saedler, and H. Sommer. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene DEFICIENS: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO Journal 11:251–263.

    PubMed  CAS  Google Scholar 

  • Sessa, G., G. Morelli, and I. Ruberti. 1993. The Athb-1 and-2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO Journal 12:3507–3517.

    PubMed  CAS  Google Scholar 

  • Shore, P., and A. D. Sharrocks. 1995. The MADS-box family of transcription factors. European Journal of Biochemistry 229:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Söderman, E., J. Mattsson, M. Svenson, C. Borkird, and P. Engström. 1994. Expression pattern of novel genes encoding homeodomain leucine-zipper proteins in Arabidopsis thaliana. Plant Molecular Biology 26:145–154.

    Article  PubMed  Google Scholar 

  • Soltis, D. E., P. S. Soltis, D. L. Nickrent, L. A. Johnson, W. J. Hahn, S. B. Hoot, J. A. Sweere, R. K. Kuzoff, K. A. Kron, M. W. Chase, S. M. Swensen, E. A. Zimmer, S.-M. Chaw, L. J. Gillespie, W. J. Kress, and K. J. Sytsma. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Annals of the Missouri Botanical Garden 84:1–49.

    Article  Google Scholar 

  • Sommer, H., J.-P. Beltrán, P. Huijser, H. Pape, W.-E. Lönnig, H. Saedler, and Z. Schwarz-Sommer. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO Journal 9:605–613.

    PubMed  CAS  Google Scholar 

  • Spooner, D. M., G. J. Anderson, and R. K. Jansen. 1993. Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes and pepinos (Solanaceae). American Journal of Botany 80:676–688.

    Article  CAS  Google Scholar 

  • Stewart, W. N., and G. W. Rothwell. 1993. Paleobotany and the Evolution of Plants, second edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • Struwe, L., V. A. Albert, and B. Bremer. 1994. Cladistics and family level classification of the Gentianales. Cladistics 10:175–206.

    Article  Google Scholar 

  • Svensson, M., and P. Engström. 1997. The L421 gene isolated from Lycopodium annotinum L. strobilus cDNA library is a distant relative to seed plant MADS-box genes. In Evolution of Plant Development, Keystone Symposium B1, Taos, New Mexico, p. 27 [abstract].

    Google Scholar 

  • Sytsma, K. J., and L. D. Gottlieb. 1986. Chloroplast DNA evidence for the origin of the genus Heterogaura from a species of Clarkia (Onagraceae). Proceedings of the National Academy of Sciences U.S.A. 83:5554–5557.

    Article  CAS  Google Scholar 

  • Takhtajan, A. L. 1991. Evolutionary Trends in Flowering Plants. Columbia University Press, New York.

    Google Scholar 

  • Tandre, K., V. A. Albert, A. Sundås, and P. Engström. 1995. Conifer homologues to genes that control floral development in angiosperms. Plant Molecular Biology 27:69–78.

    Article  PubMed  CAS  Google Scholar 

  • Theiβen, G., and H. Saedler. 1995. MADS-box genes in plant ontogeny and phylogeny: Haeckel’s “biogenetic law” revisited. Current Opinion in Genetics and Development 5:628–639.

    Article  Google Scholar 

  • Theiβen, G., J. T. Kim, and H. Saedler. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution 43:484–516.

    Article  Google Scholar 

  • Tröbner, W., L. Ramirez, P. Motte, I. Hue, P. Huijser, W. Lönnig, H. Saedler, H. Sommer, and Z. Schwarz-Sommer. 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO Journal 11:4693–4704.

    PubMed  Google Scholar 

  • Tsuchimoto, S., A. R. van der Krol, and N.-H. Chua. 1993. Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell 5:843–853.

    PubMed  CAS  Google Scholar 

  • van der Krol, A. R., and N.-H. Chua. 1993. Flower development in petunia. Plant Cell 5:1195–1203.

    Google Scholar 

  • van der Krol, A. R., A. Brunelle, S. Tsuchimoto, and N.-H. Chua. 1993. Functional analysis of petunia floral homeotic MADS box gene pMADSl. Genes and Development 7:1214–1228.

    Article  PubMed  Google Scholar 

  • Vollbrecht, E., B. Veit, N. Sinha, and S. Hake. 1991. The developmental gene KNOTTED-1 is a member of a maize homeobox gene family. Nature 350:241–243.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D., and S. E. Clark. 1996. Sizing up the floral meristem. Plant Physiology 112:5–10.

    PubMed  CAS  Google Scholar 

  • Weigel, D., and E. M. Meyerowitz. 1994. The ABCs of floral homeotic genes. Cell 78:203–209.

    Article  PubMed  CAS  Google Scholar 

  • Weiler, S. G., M. J. Donoghue, and D. Charlesworth. 1995. The evolution of self-incompatibility in flowering plants: a phylogenetic approach. In Experimental and Molecular Approaches to Plant Biosystematics, eds. P. C. Hoch and A. G. Stephenson, pp. 355–382. The Missouri Botanical Garden, St. Louis.

    Google Scholar 

  • Werdelin, L., and B. S. Tullberg. 1995. A comparison of the two methods to study correlated discrete characters on phylogenetic trees. Cladistics 11:265–277.

    Article  Google Scholar 

  • Yanofsky, M. F, H. Ma, J. L. Bowman, G. N. Drew, K. A. Feldmann, and E. M. Meyerowitz. 1990. The protein encoded by the Arabidopsis homeotic gene AGA-MOUS resembles transcription factors. Nature 346:35–39.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D., M. Kotilainen, P. Elomaa, M. Mehto, Y Helariutta, V. A. Albert, and T. H. Teeri. 1997. Inflorescence development in Asteraceae: B-function MADS-box genes are required for congenital fusion in corolla and stamen, and the DEFICIENS ortholog has differential radial effects within capitulum. In Evolution of Plant Development, Keystone Symposium Bl, Taos, New Mexico, p. 28 [abstract].

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Albert, V.A., Gustafsson, M.H.G., Di Laurenzio, L. (1998). Ontogenetic Systematics, Molecular Developmental Genetics, and the Angiosperm Petal. In: Soltis, D.E., Soltis, P.S., Doyle, J.J. (eds) Molecular Systematics of Plants II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5419-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5419-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-11131-0

  • Online ISBN: 978-1-4615-5419-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics