Skip to main content

Mediators of Cerebral Edema

  • Chapter
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 474))

Abstract

The blood-brain barrier (BBB) which is located in the continuous endothelial lining of cerebral blood vessels rigidly controls exchange of water soluble compounds under physiological conditions. Under pathological conditions such as trauma or ischemia, BBB permeability may increase thus allowing plasma constituents to escape into brain tissue. This “opening” of the BBB may, at least in part, be mediated by massive release of autacoids resulting in vasogenic brain edema. Five criteria have to be fulfilled by an individual autacoid to be considered a mediator candidate of cerebral edema: i) a permeability-enhancing action under physiological conditions, ii) a vasodilatory action, iii) the ability to induce vasogenic brain edema, iv) an increase of concentration in the tissue or interstitial fluid under pathological conditions, and v) a decrease of brain edema by specific interference with the release or action of a given autacoid. Among the mediator candidates considered, bradykinin is the only one to meet all criteria. Histamine, arachidonic acid and free radicals including nitric oxide may also be considered mediators of brain edema, but for each of these compounds evidence is less clear than for bradykinin. Although the concept of mediators inducing brain edema is well established by experimental studies, only a bradykinin receptor antagonist has so far gained entrance into clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, N. J., and P. A. Revest. Control of brain endothelial permeability. Cerebrovasc. Brain Metab. Rev. 3: 39–72, 1991.

    PubMed  CAS  Google Scholar 

  2. Adachi, N., Y. Itoh, R. Oishi, and K. Saeki. Direct evidence for increased continuous histamaine release in the stiatum of conscious freely moving rats produced by middle cerebral artery occlusion. J. Cereb.Blood Flow Metab. 12:477–483, 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Baethmann, A., K. Maier-Hauff, L. Schürer, M. Lange, C. Guggenbichler, W. Vogt, K. Jacob, and O. Kempski. Release of glutamate and of free fatty acids in vasogenic brain edema. J. Neurosurg. 70: 578–591, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Barbosa-Coutinho, L. M., A. Hartmann, K.-A. Hossmann, and T. Rommel. Effect of dexamethasone on serum protein extravasation in experimental brain infarcts of monkey: an immunohistochemical study. Acta Neuropathol. 65: 255–260, 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Beckman, J. S. The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J. Develop. Physiol. 15: 53–59, 1991.

    CAS  Google Scholar 

  6. Betz, A. L., J. A. Firth, and G. W. Goldstein. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 192: 17–28, 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Bhakoo, K. K., H. A. Crockard, and P. T. Lascelles. Regional studies of changes in brain fatty acids following experimental ischaemia and reperfusion in the gerbil. J. Neurochem. 43: 1025–1031, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Biegel, D., D. D. Spencer, and J. S. Pachter. Isolation and culture of human brain microvessel endothelial cells for the study of blood-brain barrier properties in vitro. Brain Res. 692: 183–189, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Black, K. L., and J. T. Hoff. Leukotrienes increase blood-brain barrier permeability following intraparenchymal injections in rats. Ann. Neurol. 18: 349–351, 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Bonventre, J. V., Z. Huang, M. R. Taheri, E. O’Leary, E. Li, M. A. Moskowitz, and A. Sapirstein. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390: 622–625, 1997.

    Article  PubMed  CAS  Google Scholar 

  11. Brightman, M. W. The anatomic basis of the blood-brain barrier. In: Implications of the blood-brain barrier and its manipulation, edited by E. A. Neuwelt. New York: Plenum, 1989, p. 53–83.

    Chapter  Google Scholar 

  12. Brightman, M. W., T. S. Reese, and N. Feder. Assessment with the electromicroscope of the permeability to peroxidase of cerebral endothelium and epithelium in mice and sharks. In: Capillary permeability, edited by C. Crone and N. A. Lassen. Copenhagen: Munksgaard, 1970, p. 468–476.

    Google Scholar 

  13. Bundgaard, M. Ultrastructure of frog cerebral and pial microvessels and their impermeability to lanthanum ions. Brain Res. 241: 57–65, 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Butt, A. M. Effect of inflammatory agents on electrical resistance across the blood-brain barrier in pial microvessels of anaesthetised rats. Brain Res. 696: 145–150, 1995.

    Article  PubMed  CAS  Google Scholar 

  15. Butt, A. M., and H. C. Jones. Effect of histamine and antagonists on electrical resistance across the blood-brain barrier in rat brain-surface microvessels. Brain Res. 569: 100–105, 1992.

    Article  PubMed  CAS  Google Scholar 

  16. Chan, P. H., R. A. Fishman, J. Caronna, J. W. Schmidley, G. Prioleau, and J. Lee. Induction of brain edema following intracerebral injection of arachidonic acid. Ann. Neurol. 13: 625–632, 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Chan, P. H., J. W. Schmidley, R. A. Fishman, and S. M. Longar. Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34: 315–20, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Cornford, E. M., S. Hyman, and W. M. Pardridge. An electron microscopic immunogold analysis of developmental up-regulation of the blood-brain barrier GLUT 1 glucose transporter. J. Cereb. Blood Flow Metab. 13: 841–854, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Cornford, E. M., S. Hyman, and B. E. Swartz. The human brain GLUT 1 glucose transporter: ultrastructural localization to the blood-brain barrier endothelia. J. Cereb. Blood Flow Metab. 14: 106–112, 1994.

    Article  PubMed  CAS  Google Scholar 

  20. Crone, C. Modulation of solute permeability in microvascular endothelium. Federation Proc. 45: 77–83, 1986.

    CAS  Google Scholar 

  21. Crone, C., and S. P. Olesen. Electrical resistance of brain microvascular endothelium. Brain Res. 241: 49–55, 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Csanda, E. Radiation brain edema. In: Brain Edema, edited by J. Cervos-Navarro and R. Ferszt. New York: Raven Press, 1980, p. 125–146.

    Google Scholar 

  23. Dick, A. R., M. E. McCallum, J. A. Maxwell, and S. R. Nelson. Effect of dexamethasone on experimental brain edema in cats. J. Neurosurg. 45: 141–147, 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Domer, F. R., S. B. Boertje, E. G. Bing, and I. Reddix. Histamine-and acetylcholine-induced changes in the permeability of the blood-brain barrier of normotensive and spontaneously hypertensive rats. Neuropharmacology 22: 615–619, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Dux, E., T. Doczi, F. Joó, P. Szerdahelyi, and L. Siklos. Reverse pinocytosis induced in cerebral endothelial cells by injection of histamine into the cerebral ventricle. Acta Neuropathol. 76: 484–488, 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Dux, E., and F. Joó. Effects of histamine on brain capillaries. Fine structural and and immunohistochemical studies after intracarotid infusion. Exp. Brain Res. 47: 252–258, 1982.

    Article  PubMed  CAS  Google Scholar 

  27. Dux, E., P. Temesvari, P. Szerdahelyi, A. Nagy, J. Kovacs, and F. Joó. Protective effects of antihistamines on cerebral oedema induced by experimental pneumothorax in newborn piglets. Neuroscience 22: 317–321, 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Easton, A. S., M. H. Sarker, and P. A. Fraser. Two components of blood-brain barrier disruption in the rat. J Physiol. 503: 613–623, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Ehrenreich, H., and L. Schilling. New developments in understanding cerebral vasoregulation and vasospasm. The endothelin-nitric oxide network. Cleveland Clin. J. Med. 62: 105–116, 1995.

    CAS  Google Scholar 

  30. Elliott, P. J., N. J. Hayward, M. R. Huff, T. L. Nagle, K. L. Black, and R. T. Bartus. Unlocking the blood-brain barrier: a role of RMP-7 in brain tumor therapy. Exp. Neurol. 141: 214–224, 1996.

    Article  PubMed  CAS  Google Scholar 

  31. Ellis, E. F., J. Chao, and M. L. Heizer. Brain kininogen following experimental brain injury: evidence for a secondary event. J. Neurosurg. 71:437–442, 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Ellis, E. F., M. L. Heizer, G. S. Hambrecht, S. A. Holt, J. M. Stewart, and R. J. Vavrek. Inhibition of bradykinin-and kallikrein-induced cerebral arteriolar dilation by a specific bradykinin antagonist. Stroke 18: 792–795, 1987.

    Article  PubMed  CAS  Google Scholar 

  33. Földes, I., and B. Kelentei. Studies on the haemato-encephalic barrier II. The effects of histamine with special reference to the passage of antibiotics. Acta Physiol. Acad. Sci. Hung. 5: 149–161, 1954.

    Google Scholar 

  34. Gabbiani, G., M. C. Badonnel, and G. Majno. Intra-arterial injections of histamine, serotonin, or bradykinin: a topograhic study of vascular leakage. Proc. Soc. Exp. Biol. Med. 135: 447–452, 1970.

    PubMed  CAS  Google Scholar 

  35. Garbarg, M., G. Barbin, J. Feger, and J.-C. Schwartz. Histaminergic pathway in rat brain evidenced by lesions of the medial forebrain bundle. Science 186: 833–835, 1974.

    Article  PubMed  CAS  Google Scholar 

  36. Görlach, C., and M. Wahl. Bradykinin dilates rat middle cerebral artery and its large branches via endothelial B2 receptors and release of nitric oxide. Peptides 17:1373–1378, 1996.

    Article  PubMed  Google Scholar 

  37. Gross, P. M. Circumventricular organs and body fluids. Boca Raton: CRC Press, 1987.

    Google Scholar 

  38. Gross, P. M., A. M. Harper, and G. M. Teasdale. Cerebral circulation and histamine: 2. responses of pial veins and arterioles to receptor agonists. J. Cereb. Blood Flow Metab. 1:219–225, 1981.

    Article  PubMed  CAS  Google Scholar 

  39. Gross, P. M., G. M. Teasdale, D. I. Graham, W. J. Angerson, and A. M. Harper. Intra-arterial histamine increases blood-brain transport in rats. Amer. J. Physiol. 243: H307–H317, 1982.

    PubMed  CAS  Google Scholar 

  40. Hurst, E. W., and O. L. Davies. Studies on the blood-brain barrier. II. Attempts to influence the passage of substances into the brain. Brit. J. Pharmacol. 5: 147–164, 1950.

    PubMed  CAS  Google Scholar 

  41. Ibrahim, M. Z. M. The mast cells of the mammalian central nervous system. Part I. Morphology, distribution and histochemistry. J. Neurol. Sci. 21: 431–478, 1974.

    Article  Google Scholar 

  42. Imaizumi, S., T. Kondo, M. A. Deli, G. Gobbel, F. Joó, C. J. Epstein, T. Yoshimoto, and P. H. Chan. The influence of oxygen free radicals on the permeability of the monolayer of cultured brain endothelial cells. Neurochem. Int. 29: 205–211, 1996.

    Article  PubMed  CAS  Google Scholar 

  43. Jetté, L., J.-F. Pouliot, G. F. Murphy, and R. Béliveau. Isoform I (mdr3) is the major form of P-glycoprotein expressed in mouse brain capillaries. Biochem. J. 305: 761–766, 1995.

    PubMed  Google Scholar 

  44. Joó, F., A. Szücs, and E. Csanda. Metiamide-treatment of brain oedema in animals exposed to 90yttrium irradiation. J. Pharm. Pharmacol. 28: 162–163, 1976.

    Article  PubMed  Google Scholar 

  45. Kalaria, R. N., and S. I. Harik. Blood-brain barrier monoamine oxidase: enzyme characterization in cerebral microvessels and other tissues from six mammalian species, including human. J. Neurochem. 49: 856–864, 1987.

    Article  PubMed  CAS  Google Scholar 

  46. Kalayci, Ö., S. Cataltepe, and O. Cataltepe. The effect of bolus methylprednisolone in prevention of brain edema in hypoxic ischemic brain injury: an experimental study in 7day-old rat pups. Brain Res. 569: 112–116, 1992.

    Article  PubMed  CAS  Google Scholar 

  47. Kamiya, T., Y. Katayama, F. Kashiwagi, and A. Terashi. The role of bradykinin in mediating ischemic brain edema in rats. Stroke 24: 571–576, 1993.

    Article  PubMed  CAS  Google Scholar 

  48. Kawauchi, N. S., M. Yunoki, Y. Noguchi, M. Kawauchi, S. Asari, and T. Ohmoto. Detection of lipid peroxidation and hydroxyl radicals in brain contusion of rats. Acta Neurochir. Suppl. 70: 84–86, 1997.

    PubMed  Google Scholar 

  49. Kondo, T., H. Kinouchi, M. Kawase, and T. Yoshimoto. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci. Lett. 208: 101–104, 1996.

    Article  PubMed  CAS  Google Scholar 

  50. Kontos, H. A., E. P. Wei, R. C. Kukreja, E. F. Ellis, and M. L. Hess. Differences in endothelium-dependent cerebral dilation by bradykinin and acetylcholine. Amer. J. Physiol. 258: H1261–H1266, 1990.

    PubMed  CAS  Google Scholar 

  51. Kontos, H. A., E. P. Wei, J. T. Povlishock, and C. W. Christman. Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats. Circ. Res. 55: 295–303, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Leistra, H. P. J. M., and H. H. Dietrich. Effect of the histamine antagonist cimetidine on infarct size in the rat. J. Neurotrauma 10: 83–89, 1993.

    Article  PubMed  CAS  Google Scholar 

  53. Maier-Hauff, K., A. J. Baethmann, M. Lange, L. Schürer, and A. Unterberg. The kallikrein-kinin system as a mediator in vasogenic brain edema. Part 2: Studies on kinin formation in focal and perifocal brain tissue. J. Neurosurg. 61: 97–106, 1984.

    Article  PubMed  CAS  Google Scholar 

  54. Malinski, T., F. Bailey, Z. G. Zhang, and M. Chopp. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 13: 355–358, 1993.

    Article  PubMed  CAS  Google Scholar 

  55. Mándi, Y., I. Ocsovszki, D. Szabo, Z. Nagy, J. Nelson, and J. Molnar. Nitric oxide production and MDR expression by human brain endothelial cells. Anticanc. Res. 18: 3049–3052, 1998.

    Google Scholar 

  56. Mayhan, W. G. Impairment of endothelium-dependent dilatation of basilar artery during chronic hypertension. Amer. J. Physiol. 259: H1455–H1462, 1990.

    PubMed  CAS  Google Scholar 

  57. Mayhan, W. G. Role of nitric oxide in disruption of the blood-brain barrier during acute hypertension. Brain Res. 686: 99–103, 1995.

    Article  PubMed  CAS  Google Scholar 

  58. Mayhan, W. G. Role of nitric oxide in histamine-induced increases in permeability of the blood-brain barrier. Brain Res. 743: 70–76, 1996.

    Article  PubMed  CAS  Google Scholar 

  59. Mayhan, W. G., and S. P. Didion. Glutamate-induced disruption of the blood-brain barrier in rats. Role of nitric oxide. Stroke 27: 965–970, 1996.

    CAS  Google Scholar 

  60. Mohanty, S., P. K. Dey, H. S. Sharma, S. Singh, J. P. N. Chansouria, and Y. Olsson. Role of histamine in traumatic brain edema. An experimental study in the rat. J. Neurol. Sci. 90: 87–98, 1989.

    Article  PubMed  CAS  Google Scholar 

  61. Naftchi, N. E., M. Demeny, V. DeCrescito, J. J. Tomasula, E. S. Hamm, and J. B. Campbell. Biogenic amine concentrations in traumatized spinal cords of cats. Effect of drug therapy. J. Neurosurg. 40: 52–57, 1974.

    Article  PubMed  CAS  Google Scholar 

  62. Nag, S. Ultracytochemical localization of Na+,K+-ATPase in cerebral endothelium in acute hypertension. Acta Neuropathol. 80: 7–11, 1990.

    Article  PubMed  CAS  Google Scholar 

  63. Nakano, S., K. Matsukado, and K. L. Black. Increased brain tumor microvessel permeability after intracarotid bradykinin infusion is mediated by nitric oxide. Cancer Res. 56: 4027–4031, 1996.

    PubMed  CAS  Google Scholar 

  64. Narotam, P. K., T. C. Roden, S. S. Nadvi, K. D. Bhoola, J. M. Troha, R. Parbhoosingh, and J. R. van Dellen. Traumatic brain contusions: a clinical role for the kinin antagonist CP-0127. Acta Neurochir. 141: 793–803, 1998.

    Article  Google Scholar 

  65. Németh, L., M. A. Deli, A. Falus, C. Szabó, and C. S. Ábraham. Cerebral ischemia reperfusion-induced vasogenic brain edema formation in rats: effect of an intracellular histamine receptor antagonist. Eur. J. Pediatr. Surg. 8: 216–219, 1998.

    Article  PubMed  Google Scholar 

  66. Oldendorf, W. H., E. M. Comford, and W. J. Brown. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissue of the rat. Ann. Neurol. 1:409–417, 1977.

    Article  PubMed  CAS  Google Scholar 

  67. Olesen, S.-P. An electrophysiological study of microvascular permeability and its modulation by chemical mediators. Acta Physiol. Scand. 136 (Suppl 579): 7–28, 1989.

    Google Scholar 

  68. Olesen, S.-P., and C. Crone. Substances that rapidly augment ionic conductance of endothelium in cerebral ventiles. Acta Physiol. Scand. 127: 233–241, 1986.

    Article  PubMed  CAS  Google Scholar 

  69. Onoue, H., N. Kaito, M. Tornii, S. Tokudome, M. Nakajima, and T. Abe. Human basilar and middle cerebral arteries exhibit endothelium-dependent responses to peptides. Amer. J. Physiol. 267: H880–H886, 1994.

    PubMed  CAS  Google Scholar 

  70. Orr, E. L. Cryogenic lesions induce a mast cell-dependent increase in cerebral cortical histamine levels in the mouse. Neurochem. Pathol. 8: 43–51, 1988.

    CAS  Google Scholar 

  71. On,E. L., and K. R. Pace. The significance of mast cells as a source of histamine in the mouse brain. J. Neurochem. 42: 727–732, 1984.

    Article  Google Scholar 

  72. Oury, T. D., C. A. Piantadosi, and J. D. Crapo. Cold-induced brain edema in mice. Involvement of extracellular superoxide dismutase and nitric oxide. J. Biol. Chem. 268: 15394–15398,1993.

    PubMed  CAS  Google Scholar 

  73. Papadopoulos, S. M., K. L. Black, and J. T. Hoff. Cerebral edema induced by arachidonic acid: role of leukocytes and 5-lipoxygenase products. Neurosurgery 25: 369–372, 1989.

    Article  PubMed  CAS  Google Scholar 

  74. Pelligrino, D. A. Saying NO to cerebral ischemia. J. Neurosurg. Anesthesiol. 5: 221–231, 1993.

    CAS  Google Scholar 

  75. Rahner-Welsch, S., J. Vogel, and W. Kuschinsky. Regional congruence and divergence of glucose transporters (GLUT1) and capillaries in rat brains. J. Cereb. Blood Flow Metab. 15: 681–686, 1995.

    Article  PubMed  CAS  Google Scholar 

  76. Raymond, J. J., D. M. Robertson, and H. B. Dinsdale. Pharmacological modification of bradykinin induced breakdown of the blood-brain barrier. Can. J. Neurol. Sci. 13: 214–220, 1986.

    PubMed  CAS  Google Scholar 

  77. Reese, T. S., and M. J. Karnovsky. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34: 207–217, 1967.

    Article  PubMed  CAS  Google Scholar 

  78. Relton, J. K., V. E. Beckey, W. L. Hanson, and E. T. Whalley. CP-0597, a selective bradykinin B2 receptor antagonist, inhibits brain injury in a rat model of reversible middle cerebral artery occlusion. Stroke 28: 1430–1436, 1997.

    Article  PubMed  CAS  Google Scholar 

  79. Revest, P. A., H. C. Jones, and N. J. Abbott. Transendothelial electrical potential across pial vessels in anaesthetised rats: a study of ion permeability and transport at the blood-brain barrier. Brain Res. 652: 76–82, 1994.

    Article  PubMed  CAS  Google Scholar 

  80. Rosenblum, W. I. Effects of free radical generation on mouse pial arterioles: probable role of hydroxyl radicals. Amer. J. Physiol. 245: H139–H142, 1983.

    PubMed  CAS  Google Scholar 

  81. Rosenblum, W. I. Hydroxyl radical mediates the endothelium-dependent relaxation produced by bradykinin in mouse cerebral arterioles. Circ. Res. 61: 601–603, 1987.

    Article  PubMed  CAS  Google Scholar 

  82. Rosenblum, W. I., and G. H. Nelson. Endothelium-dependent constriction demonstrated in vivo in mouse cerebral arterioles. Circ. Res. 63: 837–843, 1988.

    Article  PubMed  CAS  Google Scholar 

  83. Sánchez del Pino, M. M., R. A. Hawkins, and D. R. Peterson. Biochemical discrimination between luminal and abluminal enzyme and transport activities of the blood-brain barrier. J. Biol. Chem. 270: 14907–14912, 1995.

    Article  Google Scholar 

  84. Sánchez del Pino, M. M., D. R. Peterson, and R. A. Hawkins. Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood-brain barrier. J. Biol. Chem. 270: 14913–14918, 1995.

    Article  Google Scholar 

  85. Sanovich, E., R. T. Battus, P. M. Friden, R. L. Dean, H. Q. Le, and M. W. Brightman. Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res. 705: 125–135, 1995.

    Article  PubMed  CAS  Google Scholar 

  86. Saria, A., J. M. Lundberg, G. Skofitsch, and F. Lembeck. Vascular protein leakage in various tissues induced by substance P, capsaicin, bradykinin, serotonin, histamine and by antigen challenge. Naunyn-Schmiedeberg’s Arch. Pharmacol. 324: 212–218, 1983.

    Article  CAS  Google Scholar 

  87. Schilling, L., and M. Wahl. Brain edema: pathogenesis and therapy. Kidney Int. 51, Suppl. 59: S69–S75, 1997.

    CAS  Google Scholar 

  88. Schilling, L., and M. Wahl. Effects of antihistaminics on experimental brain edema. Acta Neurochir. 60 (Suppl): 79–82, 1994.

    CAS  Google Scholar 

  89. Schilling, L., and M. Wahl. Histaminergic effects on cerebral hemodynamics. In: The regulation of cerebral blood flow, edited by J. W. Phillis. Boca Raton: CRC Press, 1993, p. 114–128.

    Google Scholar 

  90. Schilling, L., and M. Wahl. Opening of the blood-brain barrier during cortical superfusion with histamine. Brain Res. 653: 289–296, 1994.

    Article  PubMed  CAS  Google Scholar 

  91. Shapira, Y., E. Davidson, Y. Weidenfeld, S. Cotev, and E. Shohami. Dexamethasone and indomethacin do not affect brain edema following head injury in rats. J. Cereb. Blood Flow Metab. 8: 395–402, 1988.

    Article  PubMed  CAS  Google Scholar 

  92. Shukla, A., M. Dikshit, and R. C. Srimal. Nitric oxide-dependent blood-brain barrier permeability alterations in the rat brain. Experientia 52: 136–140, 1996.

    Article  PubMed  CAS  Google Scholar 

  93. Sobey, C. G., D. D. Heistad, and F. M. Faraci. Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke 28: 2290–2295, 1997.

    Article  PubMed  CAS  Google Scholar 

  94. Spector, R., and C. E. Johanson. The mammalian choroid plexus. Sci. Amer. 261: 68–74, 1989.

    Article  PubMed  CAS  Google Scholar 

  95. Steinbusch, H. W. M., and A. H. Mulder. Immunohistochemical localization of histamine in neurons and mast cells in the rat brain. In: Handbook of Chemical Neuronanatomy. Vol.3: Classical Transmitters and Transmitter Receptors in the CNS. Part II, edited by A. Björklund, T. Hökfelt and M. J. Kuhar. Amsterdam: Elsevier, 1984, p. 126–140.

    Google Scholar 

  96. Steinbusch, H. W. M., and A. A. J. Verhofstad. Immunocytochemical demonstration of noradrenaline, serotonin and histamine and some observations on the innervation of the intracerebral blood vessels. In: Neural Regulation of Brain Circulation, edited by C. Owman and J. E. Hardebo. Amsterdam: Elsevier, 1986, p. 181–194.

    Google Scholar 

  97. Stewart, P. A., and E. M. Hayakawa. Interendothelial junctional changes underlie the developmental ‘tightening’ of the blood-brain barrier. Develop. Brain Res. 32: 271–281, 1987.

    Article  Google Scholar 

  98. Subramanian, N., D. Theodore, and J. Abraham. Experimental cerebral infarction in primates: Regional changes in brain histamine content. J. Neural Transm. 50: 225–232, 1981.

    Article  PubMed  CAS  Google Scholar 

  99. Tayarani, I., J. M. LeFauconnier, F. Roux, and J. M. Bourre. Evidence for an alanine, serine, and cysteine system of transport in isolated brain capillaries. J. Cereb. Blood Flow Metab. 7: 585–591, 1987.

    Article  PubMed  CAS  Google Scholar 

  100. Toda, N. Mechanism underlying responses to histamine of isolated monkey and human cerebral arteries. Amer. J. Physiol. 258: H311–H317, 1990.

    PubMed  CAS  Google Scholar 

  101. Tsuji, A., T. Terasaki, Y. Takabatake, Y. Tenda, I. Tamai, T. Yamashima, S. Moritani, T. Tsuruo, and J. Yamashita. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 51:1427–1437, 1992.

    Article  PubMed  CAS  Google Scholar 

  102. Unterberg, A., and A. J. Baethmann. The kallikrein-kinin system as mediator in vasogenic brain edema. Part 1: Cerebral exposure to bradykinin and plasma. J. Neurosurg. 61: 87–96, 1984.

    Article  PubMed  CAS  Google Scholar 

  103. Unterberg, A., C. Dautermann, A. Baethmann, and W. Müller-Esterl. The kallikreinkinin system as mediator in vasogenic brain edema. Part 3: Inhibition of the kallikreinkinin system in traumatic brain swelling. J. Neurosurg. 64: 269–276, 1986.

    Article  PubMed  CAS  Google Scholar 

  104. Unterberg, A., M. Wahl, and A. Baethmann. Effects of bradykinin on permeability and diameter of pial vessels in vivo. J. Cereb. Blood Flow Metab. 4: 574–585, 1984.

    Article  PubMed  CAS  Google Scholar 

  105. Unterberg, A., M. Wahl, and A. Baethmann. Effects of free radicals on permeability and vasomotor response of cerebral vessels. Acta Neuropathol. 76: 238–244, 1988.

    Article  PubMed  CAS  Google Scholar 

  106. Unterberg, A., M. Wahl, F. Hammersen, and A. Baethmann. Permeability and vasomotor responses of cerebral vessels during exposure to arachidonic acid. Acta Neuropathol. 73: 209–219, 1987.

    Article  PubMed  CAS  Google Scholar 

  107. Vannucci, S. J., L. B. Seaman, and R. C. Vannucci. Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain. J. Cereb. Blood Flow Metab. 16: 77–81, 1996.

    Article  PubMed  CAS  Google Scholar 

  108. Vorbrodt, A. W., A. S. Lossinsky, and H. M. Wisniewski. Enzyme cytochemistry of blood-brain barrier (BBB) disturbance. Acta Neuropathol. Suppl. VIII: 43–57, 1983.

    Article  Google Scholar 

  109. Wahl, M., and W. Kuschinsky. The dilating effect of histamine on pial arteries of cats and its mediation by H2 receptors. Circ. Res. 44: 161–165, 1979.

    Article  PubMed  CAS  Google Scholar 

  110. Wahl, M., and L. Schilling. Effects of bradykinin in the cerebral microcirculation. In: The regulation of cerebral blood flow, edited by J. W. Phillis. Boca Raton: CRC Press, 1993, p. 315–328.

    Google Scholar 

  111. Wahl, M., L. Schilling, A. Unterberg, and A. Baethmann. Autacoids as mediators of vasogenic brain oedema. In: New concepts of a blood-brain barrier, edited by J. Greenwood, D. J. Begley and M. B. Segal. New York: Plenum Press, 1995, p. 147–157.

    Google Scholar 

  112. Wahl, M., L. Schilling, A. Unterberg, and A. Baethmann. Mediators of vascular and parenchymal mechanisms in secondary brain damage. Acta Neurochir. 57 (Suppl): 64–72, 1993.

    CAS  Google Scholar 

  113. Wahl, M., A. Unterberg, and A. Baethmann. Intravital fluorescence microscopy for the study of blood-brain-barrier function. Int. J. Microcirc. Clin. Exp. 4: 3–18, 1985.

    PubMed  CAS  Google Scholar 

  114. Wahl, M., A. Unterberg, A. Baethmann, and L. Schilling. Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema. J. Cereb. Blood Flow Metab. 8: 621–634, 1988.

    Article  PubMed  CAS  Google Scholar 

  115. Wahl, M., E. T. Whalley, A. Unterberg, L. Schilling, A. A. Parsons, A. Baethmann, and A. R. Young. Vasomotor and permeability effects of bradykinin in the cerebral microcirculation. Immunopharmacology 33: 257–263, 1996.

    Article  PubMed  CAS  Google Scholar 

  116. Wahl, M., A. R. Young, L. Edvinsson, and F. Wagner. Effects of bradykinin on pial arteries and arterioles in vitro and in situ. J. Cereb. Blood Flow Metab. 3: 231–237, 1983.

    Article  PubMed  CAS  Google Scholar 

  117. Watanabe, M., and W. I. Rosenblum. In vivo studies of pial vascular permeability to sodium fluorescein: absence of alterations by bradykinin, histamine, serotonin, or arachidonic acid. Stroke 18: 1157–1159, 1987.

    Article  PubMed  CAS  Google Scholar 

  118. Watanabe, T., Y. Taguchi, H. Hayashi, J. Tanaka, S. Shiosaka, M. Tohyama, H. Kubota, Y. Terano, and H. Wada. Evidence for the presence of a histaminergic neuron system in the rat brain: an immunohistochemical analysis. Neurosci. Lett. 39: 249–254, 1983.

    Article  PubMed  CAS  Google Scholar 

  119. Wei, E. P., C. W. Christman, H. A. Kontos, and P. J.T. Effects of oxygen radicals on cerebral arterioles. Amer. J. Physiol. 248: H157–H162, 1985.

    PubMed  CAS  Google Scholar 

  120. Wei, E. P., M. D. Ellison, H. A. Kontos, and J. T. Povlishock. O2 radicals in arachidonate-induced increased blood-brain barrier permeability to proteins. Amer. J. Physiol. 251: H693–H699, 1986.

    PubMed  CAS  Google Scholar 

  121. Whalley, E. T., Y. O. Amure, and R. H. Lye. Analysis of the mechanism of action of bradykinin on human basilar artery in vitro. Naunyn-Schmiedeberg’s Arch. Pharmacol. 335: 433–437, 1987.

    Article  CAS  Google Scholar 

  122. Whittle, I. R., I. R. Piper, and J. D. Miller. The role of bradykinin in the etiology of vasogenic brain edema and perilesional brain dysfunction. Acta Neurochir. 115: 53–59, 1992.

    Article  CAS  Google Scholar 

  123. Wolburg, H., J. Neuhaus, U. Kniesel, B. Krauß, E.-M. Schmid, M. Öcalan, C. Farrell, and W. Risau. Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107: 1347–1357, 1994.

    PubMed  CAS  Google Scholar 

  124. Xu, J., C. Y. Hsu, H. Junker, S. Chao, E. L. Hogan, and J. Chao. Kininogen and kinin in experimental spinal cord injury. J. Neurochem. 57: 975–980, 1991.

    Article  PubMed  CAS  Google Scholar 

  125. Yang, S.-T., W. G. Mayhan, and D. D. Heistad. Endothelium-dependent responses of cerebral blood vessels during chronic hypertension. Hypertension 17: 612–618, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schilling, L., Wahl, M. (1999). Mediators of Cerebral Edema. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 474. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4711-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4711-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7134-2

  • Online ISBN: 978-1-4615-4711-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics