Skip to main content
Log in

The role of bradykinin in the etiology of vasogenic brain edema and perilesional brain dysfunction

  • Research Articles
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The feline infusion model of brain edema was used to evaluate the role of bradykinin in the etiology and pathophysiology of vasogenic brain edema. Bradykinin (3 or 90 ug in 600 μL saline) did not alter normocapnic regional cerebral blood flow (rCBF) nor induce specific changes in either the somatosensory (SEP) or motor (MEP) evoked potentials. The mean increases in ICP (from 4.5 to 16.1 mmHg) and peri-infusion white matter water content (from 69.4 to 79.8 ml/100 g tissue), mean decrease in lumped craniospinal compliance (from 0.040 to 0.014 ml/mmHg) and local histological changes were all similar to those after 600 μL saline infusion. The interstitial bradykinin infusion caused focal blood-brain-barrier (BBB) opening to Evans Blue dye and was chemotaxic for granulocytes. After the infusion there was a global loss of rCBF CO2 reactivity but there was no ischemia at normocapnia. These results show that bradykinin in brain edema fluid, at concentrations greater than those found in neuropathological conditions, can open the BBB of normal cerebral parenchymal capillaries and cause vascular dysregulation. In neuropathological conditions bradykinin may therefore potentiate formation of vasogenic brain edema but does not contribute to perilesional brain dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baethmann A, Oettinger W, Rothenfusser Oet al (1980) Brain edema factors: Current state with particular reference to plasma constituents and glutamate. Adv Neurology 28: 171–195

    Google Scholar 

  2. Bodsch W, Rommel T, Ophoff BGet al (1987) Factors responsible for the retention of fluid in human tumour edema and the effect of dexamethasone. J Neurosurg 67: 250–257

    PubMed  Google Scholar 

  3. Clark MA, Bomalaski JS, Conway TMet al (1986) Differential effects of apsirin and dexamethasone on phospholipase A2 and C activities and arachidonic acid release from endothelial cells in response to bradykinin and leukotriene D4. Prostaglandins 32: 703–708

    PubMed  Google Scholar 

  4. Czernicki Z (1979) Treatment of experimental brain edema following sudden decompression, surgical wound and cold lesion with vasopressor drugs and proteinase inhibitor trasylol. Acta Neurochir (Wien) 50: 311–326

    Google Scholar 

  5. Dacey RG, Bassett JE, Takayasu M (1988) Vasomotor responses of rat intracerebral arterioles to vasoactive intestinal peptide, Substance P, Neuropeptide Y and bradykinin. J Cerebral Blood Flow Metab 8: 254–261

    Google Scholar 

  6. Deblois D, Bouthillier J, Marceau F (1988) Effect of glucocorticoids, monokines and growth factors on the spontaneously developing response of the rabbit isolated aorta to des-Arg9-bradykinin. Br J Pharmacol 93: 969–977

    PubMed  Google Scholar 

  7. Ellis EF, Heizer ML, Hambrecht GSet al (1987) Inhibition of bradykinin and kallikrein induced cerebral arteriolar dilation by a specific bradykinin antagonist. Stroke 18: 792–795

    PubMed  Google Scholar 

  8. Ellis EF, Chao J, Heizer ML (1989) Brain kininogen following experimental brain injury: evidence for a second event. J Neurosurg 71: 437–442

    PubMed  Google Scholar 

  9. Francel PC, Dawson G (1986) Bradykinin induces a rapid release of inositol triphosphate from a neuroblastoma hybrid cell line NCB-20 that is not antagonized by enkephalin. Biochem Biophs Res Commun 135: 507–514

    Google Scholar 

  10. Greenfield JG (1939) The histology of cerebral oedema associated with intracranial tumours. Brain 62: 129–1152

    Google Scholar 

  11. Hamprecht B (1984) Cell culture as models for studying neural functions. Prog Neuropsychopharmacol Biol Psychiat 8: 481–486

    Google Scholar 

  12. Hardebo JE, Kahrstom J, Owman Cet al (1987) Vasomotor effects of neurotransmitters and neuromodulators on isolated human pial vessels. J Cerebral Blood Flow Metab 7: 612–618

    Google Scholar 

  13. Hatashita S, Hoff JT (1988) Biomechanics of brain edema in acute cerebral ischemia in the cat. Stroke 19: 91–97

    PubMed  Google Scholar 

  14. Huston JP, Holzhauer MS (1988) Behaviour and electrophysiological effects of intracerbrally applied neuropeptides with special attention to DC slow wave potential changes. Ann N Y Acad Sci 525: 375–390

    PubMed  Google Scholar 

  15. Kariya K, Iwaki H, Ihda Met al (1981) Central action of bradykinin; Electroencephalogram of bradykinin and its degradation system in rat brain. Jpn J Pharmacol 31: 261–267

    PubMed  Google Scholar 

  16. Kontos HA, Wei EP, Povlishock JTet al (1984) Oxygen radicals mediate the cerebral arteriolar dilation of arachidonate and bradykinin. Circ Res 55: 295–303

    PubMed  Google Scholar 

  17. Levy WJ, McCaffrey M, York DMet al (1984) Motor evoked potentials from transcranial stimulation of the motor coretex in cats. Neurosurgery 15: 214–227

    PubMed  Google Scholar 

  18. Lewis GD, Campbell WB, Johnson AR (1986) Inhibition of prostaglandin synthesis by glucocorticoids in human endothelial cells. Endocrinology 119: 62–69

    PubMed  Google Scholar 

  19. Maier-Hauff K, Baethmann AJ, Lange Met al (1984) The kallikrein-kinin system as a mediator in vasogenic brain edema Part II: Studies on kinin formation in focal and perifocal brain tissue. J Neurosurg 61: 97–106

    PubMed  Google Scholar 

  20. Marmarou A, Shulman K, LaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 48: 523–534

    Google Scholar 

  21. Marmarou A, Takagi H, Shulman K (1980) Biomechanics of brain edema and effects on local blood flow. Adv Neurol 28: 345–358

    PubMed  Google Scholar 

  22. Marmarou A, Tanaķa K, Shulman K (1982) An improved gravimetric measure of cerebral edema. J Neurosurg 56: 246–253

    PubMed  Google Scholar 

  23. Osugi Y, Uchida S, Imaizumi Tet al (1986) Bradykinin induced intracellular Ca2+ elevation in neuroblastoma × glioma hybrid NG108-15 cells: relationship to the action of inositol phospholipid metabolites. Brain Res 379: 84–89

    PubMed  Google Scholar 

  24. Pirola CJ, Balda MS, Alvarez Aet al (1986) Interaction between acetylcholine and bradykinin in the lateral septal area of rat brain: Involvement of muscarinic receptors in the cardiovascular response. Neuropharmacol 25: 1387–1393

    Google Scholar 

  25. Poliakova AG (1972) Origin of early component of thye evoked response in the association cortex of the cat. Electroencephal Clin Neurophysiol 32: 129–138

    Google Scholar 

  26. Raymond JJ, Robertson DM, Dinsdale HB (1986) Pharmacological modification of bradykinin induced breakdown of the blood brain barrier. Canad J Neurol Sci 13: 214–220

    PubMed  Google Scholar 

  27. Regoli D (1986) Kinins, receptors and antagonists. Adv Exp Med Biol 198: 549–558

    Google Scholar 

  28. Regoli D, Barabe J (1980) The pharmacology of bradykinin and related kinins. Pharm Rev 32: 1–47

    PubMed  Google Scholar 

  29. Reiser G, Hamprecht B (1982) Bradykinin induces hyperpolerization in rat glioma cells and neuroblastoma×glioma hybrid cells. Brain Res 239: 191–199

    PubMed  Google Scholar 

  30. Reiser G, Hamprecht B (1985) Bradykinin causes a transient rise of intracellular Ca2+ activity in cultured neuronal cells. Pflügers Arch 405: 260–264

    Google Scholar 

  31. Reiser G, Walter U, Hamprecht B (1984) Bradykinin regulates the level of guanosine 3′,5′ cyclic monophosphate in neural cell lines. Brain Res 290: 367–371

    PubMed  Google Scholar 

  32. Seitz RJ, Wechsler W (1987) Immunohistochemical demonstration of serum proteins in human cerebral gliomas. Acta Neuropathol (Berl) 73: 145–152

    Google Scholar 

  33. Stewart PA, Hayakawa K, Farrel CIet al (1987) Quantitative study of microvessel ultrastructure in human peritumoural brain tissue. J Neurosurg 67: 697–705

    PubMed  Google Scholar 

  34. Szymas J, Hossmann KA (1984) Immunofluorescent investigation of extravasated serum proteins in human brain tumour and adjacent structures. Acta Neurochir (Wien) 71: 229–241

    Google Scholar 

  35. Unterberg A, Baethmann A (1984) The kallikrein-kinin system as a mediator in vasogenic brain edema. Part 1: Cerebral exposure to bradykinin and plasma. J Neurosurg 61: 87–96

    PubMed  Google Scholar 

  36. Unterberg A, Wahl M, Baethmann A (1984) Effects of bradykinin on permeability and diameter of pial vessels in vivo. J Cerebral Blood Flow Metab 4: 574–585

    Google Scholar 

  37. Unterberg A, Dautermann C, Baethmann Aet al (1986) The kallikrein-kinin system as mediators in vasogenic brain edema; Part 3, Inhibition of kallikrein-kinin system in traumatic brain swelling. J Neurosurg 64: 269–276

    PubMed  Google Scholar 

  38. Wahl M, Young AR, Edvinsson Let al (1983) Effects of bradykinin on pial arteries and arterioles in vitro and in situ. J Cerebral Blood Flow Metab 3: 231–237

    Google Scholar 

  39. Wahl M, Lauritzen M, Schilling L (1987) Change of cerebrovascular reactivity after cortical spreading depression in cats and rats. Brain Res 411: 72–80

    PubMed  Google Scholar 

  40. Wahl M, Unterberg A, Baethmann A (1988) Mediators of blood brain barrier dysfunction and formation of vasogenic brain oedema. J Cerebral Blood Flow Metab 8: 621–634

    Google Scholar 

  41. Walstra G, Takagi H, Marmarou Aet al (1980) The time course of brain tissue compliance and resistance in a controlled model of brain edema. In: Shulman K, Marmarou A, Miller JD, Becker D, Hochwald G, Brock M (eds) Intracranial pressure IV. Springer, Berlin, Heidelberg New York pp 253–256

    Google Scholar 

  42. Watanabe M, Rosenblum WI (1987) In vivo studies of pial vascular permeability to sodium fluorescein; absence of alterations by bradykinin, histamine, serotonin or arachidonic acid. Stroke 18: 1157–1159

    PubMed  Google Scholar 

  43. Whittle IR, Piper IR, Miller JD (1991) The contribution of arachidonic acid to the etiology and pathophysiology of vasogenic brain oedema: Studies using an infusion model. Acta Neurochir (Wien) 113: 57–68

    Google Scholar 

  44. Whittle IR, Piper IR, Miller JD (1990) The contribution of secondary mediators to the etiology and pathophysiology of vasogenic brain oedema: Studies using an infusion model. Acta Neurochir [Suppl] (Wien) 51: 71–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittle, I.R., Piper, I.R. & Miller, J.D. The role of bradykinin in the etiology of vasogenic brain edema and perilesional brain dysfunction. Acta neurochir 115, 53–59 (1992). https://doi.org/10.1007/BF01400591

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01400591

Keywords

Navigation