Skip to main content

Achromatium oxaliferum Understanding the Unmistakable

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 16))

Abstract

Given that the genus Achromatium was first described over a century ago and is probably the largest free-living single-celled prokaryote (individual cells can be greater than 100 µm in length), microbiologists have made remarkably little progress toward its characterization. There is limited understanding of its function in the natural environment and its physiology, and to date it has proven impossible to develop techniques to cultivate this extraordinarily distinct bacterium. Consequently, our knowledge of most spheres of its activity is rudimentary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angert E. R., Clements K. D., and Pace, N. R., 1993, The largest bacterium, Nature 362:239–241

    Article  Google Scholar 

  • Babenzien, H-D., 1991, Achromatium oxaliferum and its ecological niche, Zentralbl. Mikrobiol. 146:41–49.

    Google Scholar 

  • Babenzien, H-D., 1992, Colonization of the sediment-water interface by Achromatium oxaliferum, Abstracts of the Sixth International Symposium on Microbial Ecology, Barcelona, 6-11 September 1992, p. 247.

    Google Scholar 

  • Babenzien, H-D., and Sass, H., 1996, The sediment-water interface—Habitat of the unusual bacterium Achromatium oxaliferum, Arch. Hydrobiol. Spec. Issues Adv. Limnol. 48:247–2

    Google Scholar 

  • Bak F., and Pfennig, N., 1991, Microbial sulfate reduction in littoral sediments of Lake Constance, FEMS Microbiol Ecol 85:31–42.

    Article  Google Scholar 

  • Bak, R, Scheff G., and Jansen, K. H., 1991, A rapid and sensitive ion chromatographic technique for the determination of sulfate and sulfate reduction rates in freshwater lake sediments, FEMS Microbiol. Ecol. 85:23–30.

    Article  Google Scholar 

  • Balows A., Trüper, H. G., Dworkin M., Harder W., and Schleifer., K-H., 1992, The Prokaryotes, 2nd ed., Springer-Verlag, New York.

    Google Scholar 

  • Bavendamm, W., 1924, Die farblosen und roten Schwefelbakterien des Suss und Salzwassers, Pflanzenforschung 2:7–156.

    Google Scholar 

  • Begon M., Harper J. L., and Townsend, C. R., 1996, Ecology: Individuals, Populations and Communities, Blackwell Science, Oxford, England.

    Google Scholar 

  • Bersa, E., 1920, über das Vorkommen Von kohlensaurem Kalk in einer Gruppe Von Schwefelbakterien, Akad. Wiss. Wien. Math. Nat. Klasse, Abt. I. 129:231–259.

    Google Scholar 

  • Borowitzka, M. A., 1982, Mechanisms in algal calcification, Prog. Phycol Res. 1:137–177

    Google Scholar 

  • Borowitzka, M. A., 1987, Calcification in algae: Mechanisms and the role of metabolism, CRC Crit. Rev. Plant Sci. 6:1–45.

    Article  Google Scholar 

  • Carafoli, E., 1991, The calcium pumping ATPase of the plasma membrane, Annu. Rev. Physiol. 53:531–547.

    Article  Google Scholar 

  • Croome R. L., and Tyler, P. A., 1984, Microbial microstratification and crepuscular photosynthesis in meromictic Tasmanian lakes, Verh. Int. Verein. Limnol. 22:1216–1223.

    Google Scholar 

  • de Boer W. E., La Rivière, J. W. M., and Schmidt, K., 1971, Some properties of Achromatium oxaliferum, Antonie Van Leeuwenhoek 37:553–563.

    Article  Google Scholar 

  • Dong L. F., Nimer M. A., Okus E., and Merrett, M. J., 1993, Dissolved inorganic carbon utilization in relation to calcite production in Emiliania huxleyi (Lohmann) Kamptner, New Phytol. 123:679–684.

    Article  Google Scholar 

  • Ellis, D., 1932, Sulphur Bacteria: A Monograph, Longmans, Green and Co., London.

    Book  Google Scholar 

  • Fjerdingstad, E., 1979, Sulfur Bacteria, Vol. 650, ASTM Special Publication, American Society for Testing and Materials, Philadelphia.

    Book  Google Scholar 

  • Fossing H., Gallardo V. A., Jørgensen B. B., Hüttel M., Nielsen, L. P., Schulz, H., Canfield D. E., Forster, S., Glud R. N., Gunderson J. K., Küver J., Ramsing N. B., Teske A., Thamdrup B., and Ulloa, O., 1995, Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca, Nature 374:713–714.

    Article  Google Scholar 

  • Fox G. E., Wisotzky J. D., and Jurtshuk Jr., P., 1992, How close is close? 16S rRNA sequence identity may not be sufficient to guarantee species identity, Int. J. System. Bacteriol. 42:166–170

    Article  Google Scholar 

  • Frenzel, J., 1897, Neue oder wenig bekannte Süß wasserprotisten. I. Modderula hartwigi n.g. n.sp., Bi-ologisches Centralblatt 17:801–808.

    Google Scholar 

  • Furrer G., and Wehrli, B., 1996, Microbial reactions, chemical speciation, and multicomponent diffusion in porewaters of a eutrophic lake, Geochim. Cosmochim. Acta 60:2333–2346.

    Article  Google Scholar 

  • Gicklhorn, J., 1920, über neue farblose Schwefelbakterien, Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. 50:415–427

    Google Scholar 

  • Glöckner F. O., Babenzien, H.-D., Wulf, J. and Amann, R., 1999, Phylogeny and diversity of Achromatium oxaliferum. Syst. Appl. Microbiol. 22:28–38.

    Article  Google Scholar 

  • Gray N. D., and Head, I. M., 1999, New insights on old bacteria: Diversity and function of morphologically conspicuous sulfur bacteria in aquatic systems, Hydrobiologia, 401:97–112.

    Article  Google Scholar 

  • Gray N. D., Pickup R. W., Jones J. G., and Head I. M., 1997, Ecophysiological evidence that Achro-matium oxaliferum is responsible for the oxidation of reduced sulfur species to sulfate in a freshwater sediment, Appl. Environ. Microbiol. 63: 1905–1910.

    Google Scholar 

  • Gray N. D., Howarth R., Head I. M., Pickup R. W., and Jones, J. G., 1998, Population structure in Achromatium oxaliferum, in: Abstracts of the Eighth International Symposium on Microbial Ecology, Atlantic Canada Society for Microbial Ecology, Halifax, Nova Scotia, p. 166.

    Google Scholar 

  • Gray N. D., Howarth R., Rowan A., Pickup R. W., Jones, J. G. and Head, I. M., 1999a, Natural communities of Achromatium oxaliferum comprise genetically, morphologically and ecologically distinct sub-populations. Appl. Environ. Microbial 65:11, 5089–5099.

    Google Scholar 

  • Gray N. D., Howarth R., Pickup R. W., Jones, J. G. and Head, I. M., 1999b, Substrate uptake by uncultured bacteria from the genus Achromatium determined by microautoradiography. Appl. Environ. Microbiol. 65:11, 5100–5106.

    Google Scholar 

  • Hagen K. D., and Nelson, D. C, 1996, Organic carbon utilisation by obligate and facultative autotrophic Beggiatoa strains in homogeneous and gradient cultures, Appl. Environ. Microbiol. 62: 947–953.

    Google Scholar 

  • Hagen K. D., and Nelson, D. C, 1997, Use of reduced sulfur species by Beggiatoa spp.: Enzymology and physiology of marine and freshwater strains in homogeneous and gradient cultures, Appl. Environ. Microbiol. 63: 3957–3964.

    Google Scholar 

  • Hannevart, G., 1920, Sur la presence de thiosulphate de calcium dans Achromatium oxaliferum Schew. Bull. Acad. Belg. CI. Set 6(5): 600–605.

    Google Scholar 

  • Hasselbach, W., 1966, Structural and enzymatic properties of the calcium transporting membranes of the sarcoplasmic reticulum, Ann. NY Acad. Sci. 137:1041–1048.

    Article  Google Scholar 

  • Head I. M., Gray N. D., Pickup, R. W. and Jones, J. G., 1995, C. Dorronsoro, eds.), Spain, AIGOA, Donostia-San Sebastián, pp. 895–89

    Google Scholar 

  • Head I. M., Gray N. D., Clarke K. J., Pickup R. W., and Jones, J. G., 1996, The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum, Microbiology 142:2341–2354.

    Google Scholar 

  • Hibberd, D. J., 1976, Intracellular calcification in the class Prymnesiophyceae, Bot. J. Linn. Soc. 72:55–80.

    Article  Google Scholar 

  • Hinze, G., 1903, Thiophysa volutans, ein neues Schwefelbakterium, Berichte der Deutschen Botanischen Gesellschaft 21:309–316.

    Google Scholar 

  • Hipp W. M., Pott A. S., Thum-Schmitz N., Faath, L, Dahl, C. and Trüper, H. G., 1997, Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes, Microbiology 143: 2891–2902.

    Google Scholar 

  • Holt J. G., Krieg, N. R., Sneath, P. H. A., Staley J. T., and Williams, S. T., 1994, Bergey’s Manual of Determinative Bacteriology, 9th ed., Williams and Wilkins, Baltimore.

    Google Scholar 

  • Hoppe, H.-G., 1976, Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of microautoradiography, Marine Biol. 36:291–302.

    Article  Google Scholar 

  • Howarth, R., 1995, An investigation into the biogeochemistry of Achromatium oxaliferum, M.Sc. Thesis, University of Newcastle, Newcastle, England

    Google Scholar 

  • Howarth R., Gray N. D., Pickup, R. W, Jones J. G., and Head, I. M., 1998, Metabolic activities of the uncultured bacterium Achromatium oxaliferum, in: Abstracts of the Eighth International Symposium on Microbial Ecology, Atlantic Canada Society for Microbial Ecology, Halifax, Nova Scotia, p. 181.

    Google Scholar 

  • Huettel M., Forster S., Klöser S., and Fossing, H., 1996, Vertical migration in sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations, Appl. Environ. Microbiol. 62:1863–1872.

    Google Scholar 

  • Jørgensen, B. B., 1988, Ecology of the sulfur cycle: Oxidative pathways in sediments, Symp. Soc. Gen. Microbiol. 42:31–63.

    Google Scholar 

  • Jukes, T. H. and Cantor, C. R., 1969, Evolution of protein molecules, in: Mammalian Protein Metabolism (H. N. Munro, ed.), Academic Press, New York, pp. 21–132.

    Google Scholar 

  • Kolkwitz, R., 1918, über die Schwefelbakterienflora des Solgrabens Von Arten, Berichte Deutsch. Botanischen Gesellsch. 36:218–224.

    Google Scholar 

  • Kwon, D.-K., and Gonzalez, E. L., 1994, Localization of Ca2+-stimulated ATPase in the coccolith producing compartment of cells of Pleurochrysis sp. (Prymnesìophyceae), J. Phycol. 30:689–695.

    Article  Google Scholar 

  • La Rivière, J. W. M., and Schmidt, K., 1989, The genus Achromatium, in: Bergey’s Manual of Systematic Bacteriology, 1st ed. (J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp. 2131–2133.

    Google Scholar 

  • La Rivière, J. W M., and Schmidt, K., 1992, Morphologically conspicuous sulfur-oxidising Eubacte-ria, in: The Prokaryotes (A. Balows, H. G. Trüper, M. Dworkin, W Harder, and K. H. Schleifer, eds.), Springer-Verlag, New York, pp. 3934–3947.

    Google Scholar 

  • Lackey J. B., and Lackey, E. W., 1961, The habitat and description of a new genus of sulfur bacterium, J. Gen. Microbiol. 26:29–39.

    Article  Google Scholar 

  • Lauterborn, H., 1915, Die sapropelische Lebewelt. Ein Beitrag zur Biologie des Faulschlamms natürlicher Gewässer, Verhandl. Naturhistor. Mediz. Ver. Heidelberg 13:395–481.

    Google Scholar 

  • Lee N., Nielsen P. H., Andreasen K. H., Juretschko S., Nielsen J. L., Schleifer, K.-H. and Wagner, M., 1999, Combination of in situ hybridization and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65:1289–1297.

    Google Scholar 

  • Maier S., and Gallardo, V. A., 1984, Nutritional characteristics of two marine thioplocas determined by autoradiography, Arch. Microbiol. 139:218–220.

    Article  Google Scholar 

  • Massart, J., 1901, Recherches sur les organismes inférieurs. Sur le protoplasme des Schizophytes. Section C. Schizomycètes, b. Thiobactéries, Recueil de l’Inst. Botanique Univ. Bruxelles 5:259–260.

    Google Scholar 

  • Meyer-Reil, L. A., 1978, Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters, Appl. Environ. Microbiol 36:506–512.

    Google Scholar 

  • Murray, R. G. E., and Schleifer, K.-H., 1994, Taxonomic note: A proposal for recording the properties of putative taxa of procaryotes, Int. J. Syst. Bacteriol. 44:174–176.

    Article  Google Scholar 

  • Murray, R. G. E., and Stackebrandt, E., 1995, Taxonomic note: Implementation of the provisional status Candidatus for incompletely described procaryotes, Int. J. Syst. Bacteriol 45:186–187.

    Article  Google Scholar 

  • Nadson, G. A., 1913, über die Schwefelmikroorganismen des Haspaler Meerbusens, Bull. Jard. Imp. Bot. St-Petersbourg. T 13:106–112.

    Google Scholar 

  • Nadson, G. A., 1914, über die Schwefelbakterien: Thiophysa und Thiosphaerella, Z. Mikrobiol. (St. Petersbourg)1:52–72.

    Google Scholar 

  • Nadson G. A., and Visloukh, S. M., 1923, La structure et la vie de la bactérie géante Achromatium oxaliferum, Schew. Bull. Jard. Imp. Bot. (St. Petersbourg) Suppl. 1 22:1–37.

    Google Scholar 

  • Nelson, D. C, 1992, The genus Beggiatoa, in: The Prokaryotes (A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer, eds.), Springer-Verlag, New York, pp. 3171–3180.

    Google Scholar 

  • Nelson D. C., and Castenholz, R. W., 1981a, The use of reduced sulfur compounds by Beggiatoa sp., J. Bacteriol 147:140–154.

    Google Scholar 

  • Nelson, D. C, and Castenholz, R. W., 1981b, Organic nutrition of Beggiatoa sp., J. Bacteriol. 147:236–247.

    Google Scholar 

  • Nelson, D. C, and Jannasch, H. W., 1983, Chemoautotrophic growth of a marine Beggiatoa in sulfide gradient cultures, Arch. Microbiol. 136:262–269.

    Article  Google Scholar 

  • Nelson, D. C, Williams C. A., Farah B. A., and Shively, J. M., 1989a, Occurrence and regulation of Calvin cycle enzymes in non-autotrophic Beggiatoa strains, Arch. Microbiol 151:15–19.

    Article  Google Scholar 

  • Nelson, D. C, Wirsen C. O., and Jannasch, H. W., 1989b, Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin, Appl. Environ. Microbiol 55:2909–2917.

    Google Scholar 

  • Nielsen P. H., and Andreasen, K., 1997, Application of microautoradiography to the study of substrate uptake by filamentous microorganisms in activated sludge, Appl Environ. Microbiol 63:3662–3668.

    Google Scholar 

  • Nimer N. A., and Merrett, M. J., 1993, Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and inorganic carbon availability, New Phytol 123:673–677.

    Article  Google Scholar 

  • Ouverney, C. C. and Fuhrman, J., 1999, Combined microautoradiography—16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol 65:1746–1752.

    Google Scholar 

  • Paasche, E., 1964, A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi, Physiologia Plantarum (Suppl.) vn3:1–82.

    Google Scholar 

  • Rivadeneyra M. A., Delgado R., del Moral A., Ferrer M. R., and Ramos-Cormenzana, A., 1994, Precipitation of calcium carbonate by Vibrio spp. From an inland saltern, FEMS Microbiol. Ecol 13:197–204.

    Article  Google Scholar 

  • Robertson L. A., and Kuenen, J. G., 1992, The colorless sulfur bacteria, in: The Prokaryotes (A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer, eds.), Springer-Verlag, New York, pp. 385–413.

    Google Scholar 

  • Saitou N., and Nei, M., 1987, The neighbor joining method: A new method for constructing phylogenetic trees, Mol. Biol Evol 4:406–425.

    Google Scholar 

  • Sass H., Cypionka H., and Babenzien, H.-D., 1997, Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin, FEMS Microbiol. Ecol. 22:245–255.

    Article  Google Scholar 

  • Schewiakoff, W., 1893, über einen neuen bakterienähnlichen Organismus des Süß wassers, Habilitationsschrift, Heidelberg.

    Google Scholar 

  • Schlegel, H. G., 1969, Allgemeine Microbiologic, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Schmidt T. M., Arieli B., Cohen, Y, Padan E., and Strohl, W. R., 1987, Sulfur metabolism in Beggiatoa alba, J. Bacteriol. 169:5466–5472.

    Google Scholar 

  • Schulz H. N., Jørgensen B. B., Fossing H. A., and Ramsing, N. B., 1996, Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp. off the coast of Chile, Appl. Environ. Microbiol 62:1855–1862.

    Google Scholar 

  • Sikes C. S., and Wilbur, K. M., 1980, Calcification by coccolithophorids: Effects of pH and strontium, J. Phycol 16:433–436.

    Article  Google Scholar 

  • Sikes C. S., Roer R. D., and Wilbur, K. M., 1980, Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition, Limnol. Oceanogr. 25:248–261.

    Article  Google Scholar 

  • Skuja, H., 1948, Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden, in: Symbolae Botanicae Upsaliensis, BDIX:3, A.B. Lundequistska Bokhandeln,Uppsala, pp. 1–3

    Google Scholar 

  • Skuja, H., 1956, Taxonomische und biologische Studien über das Phytoplankton schwedischer Bin-nengewässer, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series IV 16:3 1–404.

    Google Scholar 

  • Skuja, H., 1964, Grundzüge der Algenflora und Algenvegetation der Fjeldgegenden um Abisco in Schwedisch-Lappland, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series IV 18:31–465.

    Google Scholar 

  • Sørensen J., and Jørgensen, B. B., 1987, Early diagenesis in sediments from Danish coastal waters: Microbial activity and Mn-Fe-S geochemistry, Geochim. Cosmochim. Acta 51:1583–1590.

    Article  Google Scholar 

  • Spring, S. Amann R., Ludwig, W, Schleifer, K.-H., van Gemerden H., and Petersen, N., 1993, Dominating role of an unusual magnetotactic bacterium in the microaerophilic zone of a freshwater sediment, Appl. Environ. Microbiol. 59:2397–2403.

    Google Scholar 

  • Stackebrandt E., and Goebel, B. M., 1994, Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology, Int. J. Syst. Bacteriol. 44:846–849.

    Article  Google Scholar 

  • Stanier R. Y., Ingraham J. L., Wheelis M. L., and Painter, P. R., 1987, General Microbiology, 5th ed., Macmillan, London.

    Google Scholar 

  • Starr M. P., and Skerman, V B. D., 1965, Bacterial diversity: The natural history of selected morphologically conspicuous bacteria, Annu. Rev. Microbiol. 19:407–454.

    Article  Google Scholar 

  • Strohl W. R., Cannon, G. C, Shively J. M., Güde H., Hook L. A., Lane C. M., and Larkin, J. M., 1981, Heterotrophic carbon metabolism by Beggiatoa alba, J. Bacteriol. 148:572–583.

    Google Scholar 

  • Teske A., Ramsing N. B., Küver J., and Fossing, H., 1995, Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria, Syst. Appl. Microbiol. 18:517–526.

    Article  Google Scholar 

  • Thamdrup B., and Canfield, D. E., 1996, Pathways of carbon oxidation in continental margin sediments off central Chile, Limnol. Oceanogr. 41:1629–1650.

    Article  Google Scholar 

  • Van de Peer Y., and De Wachter, R., 1994, TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Appl. Biosci. 10;569–570.

    Google Scholar 

  • Virieux, J., 1912, Sur VAchromatium oxaliferum, Schewiakoff, Comptes Rendus De L’Academie des Sciences, 154:716–719.

    Google Scholar 

  • Virieux J. 1913 Recherches sur 1’Achromatium oxaliferum Annates de Sciences Naturelles Ser. 9 265–288

    Google Scholar 

  • Warming, E., 1875, Om nogle ved Danmarks kyster levende bakterier, Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening; Khobenhaven 20-28:1–116.

    Google Scholar 

  • Weast, R. C, 1965, The Handbook of Chemistry and Physics, 46th ed., The Chemical Rubber Company, CRC Press, Cleveland.

    Google Scholar 

  • West, G. S. and Griffiths, B. M., 1909, Hillhousia mirabilis, a giant sulphur bacterium, Proc. Roy. Soc. Lond. B. 81:389–409.

    Google Scholar 

  • West G. S., and Griffiths, B. M., 1913, The lime-sulphur bacteria of the genus Hillhousia, Ann. Bot. 27:83–91.

    Google Scholar 

  • Westbroek P., deJong, E. W, Van der Wal P. I., Borman A. H., deVrind, J. P. M., Kok D., de Bruijn, W. C, and Parker, S. B., 1984, Mechanism of calcification in the marine alga Emiliania huxleyi, Phil Trans. R. Soc. Lond. Ser. B 304:435–444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Head, I.M., Gray, N.D., Howarth, R., Pickup, R.W., Clarke, K.J., Jones, J.G. (2000). Achromatium oxaliferum Understanding the Unmistakable. In: Schink, B. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4187-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4187-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6878-6

  • Online ISBN: 978-1-4615-4187-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics