Skip to main content

Anaerobic Biotransformations of Organic Matter

  • Chapter
Bacteria in Nature

Part of the book series: Bacteria in Nature ((BANA,volume 1))

Abstract

Transformations involve both matter and energy, energy being the capacity to do work, i.e., to exert force to cause motion. The kind and magnitude of the energy transformation depend on the materials moved. The six different categories of energy—nuclear, chemical, mechanical, radiant, electrical, and heat—are interconvertible, as shown in Figure 1, but whereas the first five forms of energy (“high” forms) can be converted completely to heat (random motion), the latter can be only partially converted to the others, the more completely the higher the temperature. Work can be defined also as the extent to which energy is converted to a high form. To the extent that high forms of energy are converted to heat, there is a degradation of energy; also, heat energy degrades as the difference diminishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akin, D. E., Amos, H. E., Barton, F. E., II, and Burdick, D., 1973, Rumen microbial degradation of grass tissue revealed by scanning electron microscopy, Agron. J. 65: 825–828.

    Google Scholar 

  • Akin, D. E., Burdick, D., and Amos, H. E., 1974, Comparative degradation of coastal bermu-dagrass, Coastcross-1 bermudagrass, and Pensacola bahiagrass by rumen microorganisms 0revealed by scanning electron microscopy, Crop Sci. 14: 537–541.

    Google Scholar 

  • Allison, M. J., 1965, Phenylalanine biosynthesis from phenylacetic acid by anaerobic bacteria from the rumen, Bioch. Biophys. Res. Comm. 18: 30–35.

    CAS  Google Scholar 

  • Allison, M. J., 1969, Biosynthesis of amino acids by ruminai micro-organisms, J. Anim. Sci. 29: 797–807.

    PubMed  CAS  Google Scholar 

  • Allison, M. J., 1978, Production of branched-chain volatile fatty acids by certain anaerobic bacteria, Appl. Environ. Microbiol. 35: 872–877.

    PubMed  CAS  Google Scholar 

  • Aranki, A., Syed, S. A., Kenney, E. B., and Fréter, R., 1969, Isolation of anaerobic bacteria from human gingiva and mouse caecum by means of a simplified glove box procedure, Appl. Microbiol. 17: 568–576.

    Google Scholar 

  • Balch, W. E., Schoberth, S., Tanner, R. S., and Wolfe, R. S., 1977, Acetobacterium a new species of hydrogen-oxidizing, carbon dioxide-reducing anaerobic bacteria, Intern. J. Syst. Bact. 27: 355–361.

    CAS  Google Scholar 

  • Baldwin, R. L., Koong, L. J., and Wyatt, M. J., 1977, A dynamic model of ruminant digestion for evaluation of factors affecting nutritive value, Agric. Systems 2: 255–288.

    Google Scholar 

  • Baresi, L., Mah, R. A., Ward, D. M., and Kaplan, I. R., 1978, Methanogenesis from acetate: enrichment studies, Appl. Environ. Microbiol. 36: 186–197.

    PubMed  CAS  Google Scholar 

  • Barker, H. A., 1936a, On the biochemistry of the methane fermentation, Arch. Mikrob. 7: 404–419.

    CAS  Google Scholar 

  • Barker, H. A., 1936b, Studies upon the methane-producing bacteria, Arch. Mikrob. 7: 420–438.

    CAS  Google Scholar 

  • Barker, H. A., 1940, Studies on the methane fermentation: IV. The isolation and culture of Methanobacterium omelianskii, Antonie van Leeuwenhoek 6: 201–220.

    Google Scholar 

  • Barker, H. A., 1961, Fermentations of nitrogenous organic compounds. Chap. 3, in The Bacteria, Vol. II. (I. C. Gunsalus and R. Y. Stanier, eds.), Academic Press, New York, pp. 151–207.

    Google Scholar 

  • Barker, H. A., Ruben, S., and Kamen, M. D., 1940, The reduction of radioactive carbon dioxide by methane-producing bacteria, Proc. Natl. Acad. Sci. 26: 426–430.

    PubMed  CAS  Google Scholar 

  • Barker, H. A., Kamen, M. D., and Haas, V., 1945, Carbon dioxide utilization in the synthesis of acetic and butyric acids by Butryribacterium rettgeri, Proc. Natl. Acad. Sci. 31: 355–360.

    PubMed  CAS  Google Scholar 

  • Bauchop, T., 1960, Studies on fermentative mechanisms in Zymosarcina ventriculi, Ph.D. Thesis, University of Glasgow.

    Google Scholar 

  • Bauchop, T., 1967, Inhibition of rumen methanogenesis by methane analogs, J. Bacteriol. 94: 171–175.

    PubMed  CAS  Google Scholar 

  • Bauchop, T., 1979, Rumen anaerobic fungi of cattle and sheep, Appl. Environ. Microbiol. 38: 148–158.

    PubMed  CAS  Google Scholar 

  • Bauchop, T., and Elsden, S. R., 1960, The growth of micro-organisms in relation to their energy supply, J. Gen. Microbiol. 23: 457–469.

    PubMed  CAS  Google Scholar 

  • Bauchop, T., and Martucci, R., 1968, Ruminant-like digestion in the langur monkey, Science 161: 698–699.

    PubMed  CAS  Google Scholar 

  • Blackburn, T. H., and Hungate, R. E., 1963, Succinic acid turnover and propionate production in the bovine rumen, Appl. Microbiol. 11: 132–135.

    PubMed  CAS  Google Scholar 

  • Boone, D. R., and Bryant, M. P., 1980. Propionate-degrading bacterium, Syntrophobacter wolinii (sp. nov., gen. nov.) from methanogenic ecosystems, Appl. Environ. Microbiol. 40: 626–632.

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., 1982, Intestinal microbiota of termites and other xylophagous insects, Ann. Rev. Microbiol. 36: 323–343.

    CAS  Google Scholar 

  • Bryant, M. P., 1956, The characteristics of strains of Selenomonas isolated from bovine rumen contents, J. Bacteriol. 72: 162–167.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., 1974, Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract, Am. J. Clin. Nutr. 27: 1313–1319.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., and Burkey, L. A., 1953, Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen, J. Dairy Sci. 36: 205–217.

    Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S., 1967, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Microbiol. 59: 20–31.

    CAS  Google Scholar 

  • Buchner, E., 1897, Alkoholische Gärung ohne Hefezellen, Ber. d. deutsch, chem. Ges. 30: 117–124, 1110-1113.

    CAS  Google Scholar 

  • Burri, R., 1902, Zur Isolierung der Anaëroben. Centralbl. Bakteriologie II 8: 533–537.

    Google Scholar 

  • Buswell, A. M., and Sollo, F. W., 1948, The mechanism of the methane fermentation, J. Am. Chem. Soc. 70: 1778–1780.

    PubMed  CAS  Google Scholar 

  • Cahen, F., 1887, Ueber das Reductionsvermögen der Bactérien, ZerUralbl. f. Hygiene 2: 386–396.

    Google Scholar 

  • Calloway, D. H., 1968, The use of expired air to measure intestinal gas formation, Ann. N. Y. Acad. Sci. 150: 82–95.

    PubMed  CAS  Google Scholar 

  • Chung, K.-T., and Hungate, R. E., 1976, Effect of alfalfa fiber substrate on culture counts of rumen bacteria, Appl. Environ. Microbiol. 32: 649–652.

    PubMed  CAS  Google Scholar 

  • Colvin, J. R., and Leppard, G. G., 1977, The biosynthesis of cellulose by Aceotobacter xylinum and Acetobacter acetigenum, Can. J. Microbiol. 23: 701–709.

    PubMed  CAS  Google Scholar 

  • Conrad, R., Aragno, M., and Seiler, W., 1983, Production and consumption of hydrogen in a eutrophic lake, Appl. Environ. Microbiol. 45: 502–510.

    PubMed  CAS  Google Scholar 

  • Counotte, G. H. M., 1981, Regulation of lactate metabolism in the rumen. Ph.D. Thesis, University of Utrecht.

    Google Scholar 

  • Counotte, G. H. M., and Prins, R. A., 1979, Regulation of rumen lactate metabolism and the role of lactic acid in nutritional disorders of ruminants, Veterin. Sci. Commun. 2: 277–303.

    CAS  Google Scholar 

  • Counotte, G. H. M., Prins, R. A., Janssen, R. H. A. M., and DeBie, M. J. A., 1981, Role of Megasphaera elsdenii in the fermentation of DL-[2-13C]lactate in the rumen of dairy cattle, Appl. Environ. Microbiol. 42: 649–655.

    PubMed  CAS  Google Scholar 

  • Dehority, B. A., 1973, Hemicellulose degradation by rumen bacteria, Fed. Proc. 32: 1819–1825.

    PubMed  CAS  Google Scholar 

  • Doddema, H. J., and Vogels, G. D., 1978, Improved identification of methanogenic bacteria by fluorescent microscopy, Appl. Environ. Microbiol. 36: 752–754.

    PubMed  CAS  Google Scholar 

  • Dunlop, R. H., 1972, Pathogenesis of ruminant lactic acidosis, Adv. Vet. Sci. Comp. Med. 16: 259–302.

    PubMed  CAS  Google Scholar 

  • Edwards, T., and McBride, B. C., 1975, New method for the isolation and identification of methanogenic bacteria, Appl. Microbiol. 29: 540–545.

    PubMed  CAS  Google Scholar 

  • El-Shazly, K., and Hungate, R. E., 1965, Fermentation capacity as a measure of net growth of rumen microorganisms, Appl. Microbiol. 13: 62–69.

    PubMed  CAS  Google Scholar 

  • Esmarch, E. von, 1886, Ueber einen Modifikation des Kochschen Plattenverfahrens zur Isolierung und zum quantitativen Nachweis von Mikroorganismen, Zeitschr. f. Hyg. I: 293–301.

    Google Scholar 

  • Fenchel, T. M., 1980, The protozoan fauna from the gut of the green turtle, Chelonia mydas with a description of Balantidium bacteriophorus, Arch. Protistenk. 123: 22–26.

    Google Scholar 

  • Fontaine, F. E., Peterson, W. H., McCoy, E., Johnson, M. J., and Ritter, G., 1942, A new type of glucose fermentation by Clostridium thermoaceticum n. sp., J. Bacteriol. 41: 701–715.

    Google Scholar 

  • Forsberg, C. W., Beveridge, T. J., and Hellstrom, A., 1981, Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment, Appl. Environ. Microbiol. 42: 886–896.

    PubMed  CAS  Google Scholar 

  • Fox, G. E., Stackebrant, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Mangrum, L. J., Zablen, L. B., Blackmore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R., 1980, The phylogeny of prokaryotes, Science 209: 457–463.

    PubMed  CAS  Google Scholar 

  • Fränkel, C., 1888, Ueber die Kultur anaërober Mikroorganismen, Centralbl. Bakteriologie Parasitenk 3: 735–740, 763-768.

    Google Scholar 

  • Gay-Lussac, J. L., 1810, Extrait d’un memoire sur la fermentation, Ann. Chim. 76: 245–259.

    Google Scholar 

  • Genthner, B. R. S., and Bryant, M. P., 1982, Growth of Eubacterium limosum with carbon monoxide as the energy source, Appl. Environ. Microbiol. 43: 70–74.

    PubMed  CAS  Google Scholar 

  • Godsy, E. M., 1980, Isolation of Methanobacterium bryantii from a deep aquifer by using a novel broth antibiotic disk method, Appl. Environ. Microbiol. 39: 1074–1075.

    PubMed  CAS  Google Scholar 

  • Gomez-Alarcon, R. A., Dowd, C. O., Leedle, J. A. Z., and Bryant, M. P., 1982, 1, 4 naphthoquinone and other nutrient requirements of Succinovibrio dextrinosolvens, Appl. Environ. Microbiol. 44: 346–350.

    PubMed  CAS  Google Scholar 

  • Gruby, D., and Delafond, O., 1843, Recherches sur des animalcules se développant en grande nombre dans l’estomac et dans les intestine, pendant la digestion des animaux herbivores et carnivores, C. rend Acad. Sci. 17: 1305–1308.

    Google Scholar 

  • Hackett, W. F., Connors, W. J., Kirk, T. K., and Zeikus, J. G., 1977, Microbial decomposition of synthetic 14C-labeled lignins in nature: lignin biodégradation in a variety of natural materials, Appl. Environ. Microbiol. 33: 43–51.

    PubMed  CAS  Google Scholar 

  • Harden, A., and Young, W. J., 1905, The alcoholic fermentation of yeast juice. J. Physiol. 32, Proc. 12 Nov., 1904, pp. i–ii.

    Google Scholar 

  • Healy, J. B., Jr., and Young, L. Y., 1979, Anaerobic biodégradation of eleven aromatic compounds to methane, Appl. Environ. Microbiol. 38: 84–89.

    PubMed  CAS  Google Scholar 

  • Herwig, R. P., Staley, J. T., Nerini, M. K., and Braham, H. W., 1984, Appl. Environ. Microbiol. 47: 421–423

    PubMed  CAS  Google Scholar 

  • Hippe, H., Casparic, D., Fiebig, K., and Gottschalk, G., 1979, Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri, Proc. Natl. Acad. Sci. USA 76: 494–4

    PubMed  CAS  Google Scholar 

  • Holmes, P., and Freischel, M. R., 1978, H2-producing bacteria in digesting sewage sludge isolated on simple, defined media, Appl. Environ. Microbiol. 36: 394–395.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., 1938, Studies of the nutrition of Zootermopsis. II. The relative importance of the termite and the protozoa in wood digestion. Ecology 19: 1–25.

    Google Scholar 

  • Hungate, R. E., 1939, Studies of the nutrition of Zootermopsis. III. The anaerobic carbohydrate dissimilation by the intestinal protozoa. Ecology 20: 230–245.

    CAS  Google Scholar 

  • Hungate, R. E., 1944, Studies on cellulose fermentation. I. The culture and physiology of an anaerobic cellulose-digesting bacterium, J. Bacteriol. 48: 499–513.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., 1944, Termite growth and nitrogen utilization in laboratory cultures, Proc. Texas Acad. Sci. 27: 91–98.

    CAS  Google Scholar 

  • Hungate, R. E., 1946, The symbiotic utilization of cellulose, J. Elisha Mitchell Scientific Society 62: 9–24.

    CAS  Google Scholar 

  • Hungate, R. E., 1947, Studies on cellulose fermentation. III. The culture and ioslation of cellulose-decomposing bacteria from the rumen of cattle, J. Bacteriol. 53: 631–645.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., 1955, Why carbohydrates? in: Biochemistry and Physiology of Protozoa, Volume II (S. Hutner and A. Lwoff, eds.), Academic Press, New York, pp. 195–197.

    Google Scholar 

  • Hungate, R. E., 1962, Ecology of bacteria, in: The Bacteria, Volume IV (I. C. Gunsalus and R. Y. Stanier, eds.), Academic Press, New York, pp. 95–119.

    Google Scholar 

  • Hungate, R. E., 1966, The Rumen and Its Microbes, Academic Press, New York.

    Google Scholar 

  • Hungate, R. E., 1967, Hydrogen as an intermediate in the rumen fermentation, Arch. Mikrobiol. 59: 158–164.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., 1976, Microbial activities related to mammalian digestion and absorption of food, in: Fiber in Human Nutrition (G. A. Spiller and R. J. Amen, eds.), Plenum Press, New York, pp. 131–149.

    Google Scholar 

  • Hungate, R. E., 1982, Methane formation and cellulose digestion—biochemical ecology of the rumen ecosystem, Experientia 38: 189–192.

    CAS  Google Scholar 

  • Hungate, R. E., and Stack, R. J., 1982, Phenylpropionic acid: a growth factor for Ruminococcus albus, Appl. Environ. Microbiol. 44: 79–83.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., 1984, Microbes of nutritional importance in the alimentary tract, Proceedings of the Nutritional Society 43: 1–11.

    CAS  Google Scholar 

  • Hungate, R. E., Dougherty, R. W., Bryant, M. P., and Cello, R. M., 1951, Microbiological and physiological changes associated with acute indigestion in sheep, Cornell Veterinarian 42: 423–449.

    Google Scholar 

  • Hungate, R. E., Phillips, G. D., MacGregor, A., Hungate, D. P., and Buechner, H. K., 1959, Microbial fermentation in certain mammals, Science 130: 1192–1194.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., Phillips, G. D., Hungate, D. P., and MacGregor, A., 1960, A comparison of the rumen fermentation in European and zebu cattle. J. Agric. Sci. 54: 196–201.

    Google Scholar 

  • Hungate, R. E., Mah, R. A., and Simesen, M., 1961, Rates of production of individual volatile fatty acids in the rumen of lactating cows, Appl. Microbiol. 9: 554–561.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., Smith, W., Bauchop, T., Yu, I., and Rabinowitz, J. C., 1970, Formate as an intermediate in the rumen fermentation, J. Bacteriol. 102: 389–397.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E., Reichl, J., and Prins, R., 1971, Parameters of rumen fermentation in a continuously fed sheep: Evidence of a microbial rumination pool, Appl. Microbiol. 22: 1104–1113.

    PubMed  CAS  Google Scholar 

  • Jayasuriya, G. C. N., and Hungate, R. E., 1959, Lactate conversions in the bovine rumen, Arch. Bioch. Biophys. 82: 274–287.

    CAS  Google Scholar 

  • Karrer, P., 1930, The enzymatic decomposition of native and reprecipitated cellulose, artificial silk, and chitin, Kolloid-Zeit. 52: 304–349.

    CAS  Google Scholar 

  • Kluyver, A. J., and Donker, H.J. L., 1926, Die Einheit in der Biochemie, Chem. d. Zelle u. Gewebe 13: 134–190.

    CAS  Google Scholar 

  • Kursteiner, J., 1907, Beiträge zur Untersuchungstechnik obligat anaèrober Bakterien, sourie zur Lehre von der Anaërobiose überhaupt, Centralbl. Bakteriologie 19: 1–26, 97-115, 202-220, 385-394.

    Google Scholar 

  • Lanigan, G. W., 1976, Peptococcus heliotrinreducans, sp. nov., a cytochrome-producing anaerobe which metabolizes pyrrolizidine alkaloids, J. Gen. Microbiol. 94: 1–10.

    PubMed  CAS  Google Scholar 

  • Latham, M. J., Brooker, B. E., Pettipher, G. L., and Harris, P. J., 1978a, Ruminococcus flavefaciens cell coat and adhesion to a cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne), Appl. Environ. Microbiol. 35: 156–165.

    PubMed  CAS  Google Scholar 

  • Latham, M. J., Brooker, B. E., Pettipher, G. I., and Harris, P. J., 1978b, Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne), Appl. Environ. Microbiol. 35: 1166–1173.

    PubMed  CAS  Google Scholar 

  • Lawton, E. J., Bellamy, W. D., Hungate, R. E., Bryant, M. P., and Hall, E., 1951, Some effects of high velocity electrons on wood. Science 113: 380–382.

    PubMed  CAS  Google Scholar 

  • Leedle, J. A. Z., Bryant, M. P., and Hespell, R. B., 1982, Diurnal variations in bacterial numbers and fluid parameters in ruminai contents of animals fed low-or high-forage diets, Appl. Environ. Microbiol. 44: 402–412.

    PubMed  CAS  Google Scholar 

  • Leigh, J. A., and Jones, W. J., 1983, A new extremely thermophilic methanogen from a hydrothermal vent, Abst. Ann. Meeting Amer. Soc. Microbiology, p. 142.

    Google Scholar 

  • Leng, R. A., and Leonard, G. J., 1965, Loss of methyl tritium from (3H) acetate in rumen fluid. Nature 207: 760–761.

    PubMed  CAS  Google Scholar 

  • Lev, M., 1959, The growth-promoting activity of compounds of the vitamin K group and analogues for a rumen strain of Fusiformis nigrescens. J. Gen. Microbiol. 20: 697–703.

    PubMed  CAS  Google Scholar 

  • Levitt, M. D., and Ingelfinger, F. J., 1968, Hydrogen and methane production in man, Ann. N. Y. Acad. Sci. 150: 75–81.

    PubMed  CAS  Google Scholar 

  • Liborius, P., 1886, Beiträge zur Kenntnis des Sauerstoffbedürfnisses der Bakterien. Zeitschr. f. Hygiene 1: 115–177.

    Google Scholar 

  • Lochhead, A. G., 1952, The nutritional classification of soil bacteria, Proc. Soc. Appl. Bact. 15: 15–20.

    Google Scholar 

  • Lovley, D. R., and Klug, M. J., 1983, Sulfate reducers can outcompete methanogens at freshwater-sulfate concentrations, Appl. Environ. Microbiol. 45: 187–192.

    PubMed  CAS  Google Scholar 

  • Lysons, R. J., Alexander, T.J. L., and Wellstead, P. D., 1977, Nutrition and growth of gnotobiotic lambs, J. Agric. Sci. Camb. 88: 597–604.

    Google Scholar 

  • McBee, R. H., 1977, Fermentation in the hindgut, in: Microbial Ecology of the Gut (R. T.J. Clarke and T. Bauchop, eds.), Academic Press, New York, pp. 185–217.

    Google Scholar 

  • Mclnerney, M. J., Mackie, R. L., and Bryant, M. P., 1981, Syntrophic assocation of a butryrate-degrading bacterium and Methanosarcina enriched from bovine rumen, Appl. Environ. Microbiol. 41: 826–828.

    Google Scholar 

  • Macy, J. M., Ljngdahl, L. G., and Gottschalk, G., 1978, Pathway of succinate and propionate formation in Bacteroides fragilis, J. Bacteriol. 134: 84–91.

    PubMed  CAS  Google Scholar 

  • Macy, J., Probst, I., and Gottschalk, G., 1975, Evidence for cytochrome involvement in fumarate reduction and adenosine-5′-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin, J. Bacteriol. 123: 436–442.

    PubMed  CAS  Google Scholar 

  • Magendie, F., 1816, Note sur les gaz intestinaux de l’homme sain, Ann. Chim. Physique Ser. 2, 2: 292–296.

    Google Scholar 

  • Mah, R. A., Smith, M. R., and Baresi, L., 1978, Studies on an acetate-fermenting strain of Methanosarcina, Appl Environ. Microbiol. 35: 1174–1184.

    PubMed  CAS  Google Scholar 

  • Margherita, S. S., and Hungate, R. E., 1963, Serological analysis of Butyrivibrio from the bovine rumen, J. Bacteriol. 86: 855–860.

    PubMed  CAS  Google Scholar 

  • Margherita, S. S., Hungate, R. E., and Storz, H., 1964, Variation in rumen Butyrivibrio strains, J. Bacteriol 87: 1304–1308.

    PubMed  CAS  Google Scholar 

  • Moomaw, C. R., and Hungate, R. E., 1963, Ethanol conversion in the bovine rumen, J. Bacteriol 85: 721–722.

    PubMed  CAS  Google Scholar 

  • Mountfort, D. O., and Bryant, M. P., 1982, Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge, Arch. Microbiol 133: 249–256.

    CAS  Google Scholar 

  • Muller, F. M., 1957, On methane fermentation of higher alkanes, Antonie van Leeuwenhoek 23: 369–384.

    PubMed  CAS  Google Scholar 

  • Mylroie, R. L., and Hungate, R. E., 1954, Experiments on the methane bacteria in sludge, Can. J. Microbiol. 1: 55–64.

    PubMed  CAS  Google Scholar 

  • Odelson, D. A., and Breznak, J. A., 1983, Volatile fatty acid production by the hindgut microbiota of xylophagous termites, Appl. Environ. Microbiol. 45: 1602–1613.

    PubMed  CAS  Google Scholar 

  • Omelianski, W., 1902, Ueber die Gärung der Cellulose, Centralbl. f. Bakteriologie II 8: 193–201, 225-231, 257-263, 289-294, 321-326, 353-361, 385-391.

    CAS  Google Scholar 

  • Orpin, C. G., 1977, On the induction of zoosporogenesis in the rumen phycomycetes Neocallimastix frontalis, Piromonas communis, and Sphaeromonas communis, J. Gen. Microbiol. 101: 181–19

    PubMed  CAS  Google Scholar 

  • Pasteur, L., 1858, Memoire sur la fermentation appelée lactique. Mémoires de la Société des sciences, de l’agriculture et des arts de Lille, 2nd ser., 5: 13–26.

    Google Scholar 

  • Paterek, R., and Smith, P. H., 1983, Isolation of halophilic methanogenic bacterium from the sediments of Great Salt Lake and a San Francisco Bay saltern, Abst. Ann. Meeting Amer. Soc. Microbiology, p. 140.

    Google Scholar 

  • Pfennig, N., and Biehl, H., 1976, Desulfovibrio acetoxidans gen. nov. and sp. nov., a new anaerobic sulfur-reducing, acetate-oxidizing bacterium, Arch. Microbiol. 110: 3–12.

    PubMed  CAS  Google Scholar 

  • Portugal, A. V., 1963, Some aspects of amino acid and protein metabolism in the rumen of the sheep. Ph.D. Thesis, Aberdeen University.

    Google Scholar 

  • Potrikus, C. J., and Breznak, J. A., 1980a, Uric acid-degrading bacteria in guts of termites [Reticulitermes flavipes (Kollar)], Appl. Environ. Microbiol. 40: 117–124.

    PubMed  CAS  Google Scholar 

  • Potrikus, C. J., and Breznak, J. A., 1980b, Anaerobic degradation of uric acid by gut bacteria of termites, Appl. Environ. Microbiol. 40: 125–132.

    PubMed  CAS  Google Scholar 

  • Prévot, A. R., 1966, Manual for the Classification and Determination of the Anaerobic Bacteria (V. Fredette, ed. and transi.), Lea and Febiger, Philadelphia, 402 pp.

    Google Scholar 

  • Prim, P., and Lawrence, J. M., 1975, Utilization of marine plants and their constituents by bacteria isolated from the gut of echinoids (Echinodermata), Marine Biol. 33: 167–173.

    Google Scholar 

  • Quortrup, E. R., and Holt, A. L., 1940, Detection of potential botulinus-toxin-producing areas in western duck marshes with suggestions for control, J. Bacteriol. 41: 363–372.

    Google Scholar 

  • Romesser, J. A., 1978, The activation and reduction of carbon dioxide to methane in Methano-bacterium thermoautotrophicum, Ph.D. thesis, University of Illinois, Urbana.

    Google Scholar 

  • Romesser, J. A., Wolfe, R. S., Mayer, F., Spies, E., and Walter-Mauruschaf, A., 1979, Methano-genium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov, Arch. Microbiol. 121: 147–153.

    CAS  Google Scholar 

  • Roux, E., 1887, Sur la culture des microbes anaerobies. Ann. Inst. Pasteur 1: 49–62.

    Google Scholar 

  • Russell, G. R., and Smith, R. M., 1968, Reduction of heliotrine by rumen microorganism, Austral. J. Biol. Sci. 21: 1277–1290.

    CAS  Google Scholar 

  • Russell, J. B., 1983, Fermentation of peptides by Bacteroides ruminicola B14, Appl. Environm. Microbiol. 45: 1566–1574.

    CAS  Google Scholar 

  • Russell, J. B., and Baldwin, R. L., 1978, Bacterial competition in the rumen, Fed. Proc. 37: 410.

    Google Scholar 

  • Russell, J. B., Cotta, M. A., and Dombrowski, D. B., 1981, Rumen bacterial competition in continuous culture: Streptococcus bovis versus Megasphaera elsdenii, Appl. Environ. Microbiol. 41: 1394–1399.

    PubMed  CAS  Google Scholar 

  • Salyers, A. A., 1979, Energy sources of major intestinal fermentative anaerobes, Am. J. Clin. Nutr. 32: 158–163.

    PubMed  CAS  Google Scholar 

  • Scheifinger, C. C., and Wolin, M. J., 1973, Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium, Appl. Microbiol. 26: 789–795.

    PubMed  CAS  Google Scholar 

  • Scheifinger, C. C., Latham, M. J., and Wolin, M. J., 1975, Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium, Appl. Microbiol. 30: 916–921.

    CAS  Google Scholar 

  • Schnellen, C. G. T. P., 1957, Onderzoekingen over de methaangistung, Dissertation, Delft.

    Google Scholar 

  • Scott, R. I., Williams, T. N., and Lloyd, D., 1983, Oxygen sensitivity of methanogenesis in rumen and anaerobic digester populations using mass spectrometry, Biotechnol. Letters 5: 375–380.

    CAS  Google Scholar 

  • Scranton, M. I., Novelli, P. C., and Loud, P. A., 1983, Concentration and variability of hydrogen gas in an anoxic salt pond, Abst. Ann. Meeting Amer. Soc. Microbiol., New Orleans, p. 275.

    Google Scholar 

  • Smith, P. H., and Hungate, R. E., 1958, Isolation and characterization of Methanobacterium rum-inantium, n. sp, J. Bacteriol. 75: 713–718.

    PubMed  CAS  Google Scholar 

  • Sprengel, C., 1832, Chemie für Landwirthe, Forstmänner und Cameralisten. II Theil. 1-699, Vandenhoeck and Ruprecht, Göttingen.

    Google Scholar 

  • Stack, R. J., and Hungate, R. E., 1984, Effect of 3-phenylpropanoic acid on capsule and cellulases of Ruminococcus albus 8, Appl. Environ. Microbiol. 48: 218–223.

    PubMed  CAS  Google Scholar 

  • Steuer, K. O., Thomm, M., Winger, J., Wildgruber, G., Huber, H., Zillig, W., Jane-Covic, D., Konig, H., Palm, P., and Wunderl, S., 1981, Methanothermus fervidus sp. nov. a novel extremely thermophilic methanogen isolated from an Icelandic hotspring, Centralbl. Bakteriologie I Abt. Orig. 2: 166–178.

    Google Scholar 

  • Stickland, L. H., 1935, Studies on the metabolism of the strict anaerobes. III. The oxidation of alanine by Cl. sporogenes. IV. The reduction of glycine by Cl. sporogenes, Biochem. J. 29: 889–898.

    PubMed  CAS  Google Scholar 

  • Taylor, E. C., 1982, Role of aerobic microbial populations in cellulose digestion by desert millipedes, Appl. Environ. Microbiol. 44: 281–291.

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conversion in chemotrophic anaerobic bacteria, Microbiol. Rev. 41: 100–180.

    CAS  Google Scholar 

  • Thunberg, T., 1930, The hydrogen activating enzymes of the cells, Quart. Rev. Biol. 5: 318–347.

    CAS  Google Scholar 

  • Thurston, J. P., Noirot-Timothée, C., and Arman, P., 1968, Fermentative digestion in the stomach of Hippopotamus amphibms (Artiodactyla: Suiformes) and associated ciliated protozoa, Nature 218: 882–883.

    Google Scholar 

  • Thurston, J. P., and Noirot-Timothee, C., 1973, Entodiniomorph ciliates from the stomach of Hippopotamus amphibius, with descriptions of two new genera and three new species, J. Protozool. 20: 562–565.

    Google Scholar 

  • van Niel, C. B., 1931, On the morphology and physiology of the purple and green sulphur bacteria, Arch. f. Mikrobiol. 3: 1–112.

    Google Scholar 

  • Veillon, A., 1983, Sur un microcoque strictement anaérobie trouvé dans les suppurations fétides, Compt. rendu. et Memoirs Soc. de biologie 45: 807–809.

    Google Scholar 

  • Volta, A., Lettres sur L’Air Inflammable des Marais auquel on a ajouté trois Lettres du neme Auteur tirees du Journal de Milan. Traduites de L’Italièn avec permission. Strasbourg, J. H. Hertz, Imprimeur de l’Université 1778. From the first letter to Father Campé, written from Come 14 Nov. 1767.

    Google Scholar 

  • Warburg, O., 1924, Über Eisen, den sauerstoffübertragenden Bestandteil des Atmungsferments, Biochem. Zeitschr. 152: 479–494.

    CAS  Google Scholar 

  • Waterbury, J. B., Calloway, C. B., and Turner, R. D., 1983, A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae), Science 221: 1401–1403.

    PubMed  CAS  Google Scholar 

  • Weiss, J. E., and Rettger, L. F., 1937, The gram negative Bacteroides of the intestine, J. Bacteriol. 33: 423–434.

    PubMed  CAS  Google Scholar 

  • Widdel, F., and Pfennig, N., 1981a, Studies in dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch. Microbiol. 129: 395–400.

    PubMed  CAS  Google Scholar 

  • Widdel, F., and Pfennig, N., 1981b, Sporulation and further nutritional characteristics of De-sulfotomaculum acetoxidans, Arch. Microbiol. 129: 401–402.

    PubMed  CAS  Google Scholar 

  • Wiegel, J., and Ljungdahl, L. G., 1981, Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new extreme thermophilic anaerobic bacterium, Arch. Microbiol. 128: 343–348.

    CAS  Google Scholar 

  • Wiegel, J., Brown, M., and Gottschalk, G., 1981, Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide, Curr. Microbiol. 5: 255–260.

    CAS  Google Scholar 

  • Wieland, H., 1913, Über den Mechanismus der Oxydationsvorgänge, Ber. Deutsch. chem. Ges. 46: 3327–3342.

    Google Scholar 

  • Wieringa, K. T., 1940, The formation of acetic acid from carbon dioxide and hydrogen by anaerobic sporeforming bacteria, Antonie van Leeuwenhoek 6: 251–262.

    Google Scholar 

  • Wimpenny, J. W. T., and Samah, O. A., 1978, Some effects of oxygen on the growth and physiology of Selenomonas ruminantium, J. Gen. Microbiol. 108: 329–332.

    CAS  Google Scholar 

  • Wood, W. A., 1961, Fermentation of carbohydrates and related compounds, in: The Bacteria Vol. II (I. C. Gunsalus and R. Y. Stanier, eds.), Academic Press, New York.

    Google Scholar 

  • Wright, D. E., 1967, Metabolism of peptides by rumen microorganisms, Appl. Microbiol. 15: 547–550.

    PubMed  CAS  Google Scholar 

  • Wright, J. H., 1900, A simple method for anaerobic cultivation in fluid media. Centralbl. Bakteriologie I 27: 74–75.

    Google Scholar 

  • Yamin, M. A., 1981, Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria, Science 211: 58–59.

    PubMed  CAS  Google Scholar 

  • Yarlett, N., Lloyd, D., and Williams, A. G., 1982, Respiration of the rumen ciliate Dasytricha ruminantium Schuberg, Biochem. J. 206: 259–266.

    PubMed  CAS  Google Scholar 

  • Zehnder, A.J. B., Huser, B. A., Brock, T. D., and Wuhrmann, K., 1980, Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium, Arch. Microbiol. 124: 1–11.

    PubMed  CAS  Google Scholar 

  • Zeikus, J. G., and Henning, D. L., 1975, Methanobacterium arboriphilicus sp. nov. an obligate anaerobe isolated from wetwood in trees, Antonie van Leeuwenhoek 41: 171–180.

    Google Scholar 

  • Zinder, S. H., and Brock, T. D., 1978, Methane, carbon dioxide and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments, Appl. Environ. Microbiol. 35: 344–352.

    PubMed  CAS  Google Scholar 

  • Zinder, S., and Koch, M., 1983, Acetate oxidation by a thermophilic methanogenic syntrophic coculture, Abst. Annual Meeting Amer. Soc. Microbiol, p. 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Hungate, R.E. (1985). Anaerobic Biotransformations of Organic Matter. In: Leadbetter, E.R., Poindexter, J.S. (eds) Bacteria in Nature. Bacteria in Nature, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6511-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6511-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6513-0

  • Online ISBN: 978-1-4615-6511-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics