Skip to main content

Plant-Growth-Promoting Rhizobacteria: Potential Candidates for Gibberellins Production and Crop Growth Promotion

  • Chapter
  • First Online:
Use of Microbes for the Alleviation of Soil Stresses, Volume 1

Abstract

Plant-growth-promoting rhizobacteria (PGPR) are important microorganisms which are now known for their potent role in plant growth and development. In last decade or so, various PGPR species belonging to a number of genera have been reported to improve crop growth which is often compromised by biotic and abiotic stresses. PGPR directly or indirectly influence plant life by providing access to essential nutrients and secreting bioactive secondary metabolites. These PGPR have the potential to produce bioactive chemical constituents; however, they are little known for their abilities to secrete gibberellins (GAs). Application of such PGPR with exogenous supply of GAs can further enhance crop plant growth even during abiotic stress, while these can act as alternative to eco-friendly fertilizer to enhance crop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  PubMed  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbial Res 163(Suppl 2):173–181

    Article  CAS  Google Scholar 

  • Anderson AJ, Guerra D (1985) Responses of bean to root colonization with Pseudomonas putida in a hydroponic system. Phytopathology 75:992–995

    Article  Google Scholar 

  • Anna LB, Alessandra S, Claudia E, Paola C, Maddalena DG (2013) In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum. New Biotechnol (in press). http://dx.doi.org/10.1016/j.nbt.2013.01.001

  • Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S (2012) Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Ann Biol Res 3(2):1054–1062

    CAS  Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Arvin P, Vafabakhsh J, Mazaheri D, Noormohamadi G, Azizi M (2012) Study of drought stress and plant growth promoting rhizobacteria (PGPR) on yield, yield components and seed oil content of different cultivars and species of Brassica Oilseed Rape. Ann Biol Res 3(9):4444–4451

    Google Scholar 

  • Atzhorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  Google Scholar 

  • Baca BE, Elmerich C (2003) Microbial production of plant hormones. In: Elmerich C, Newton WE (eds) Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2007) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Google Scholar 

  • Barea JM, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Microbiol 40(2):129–134

    Google Scholar 

  • Bastian F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul 24:7–11

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Google Scholar 

  • Benhamou N, Gagné S, Quéré DL, Dehbi L (2000) Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Biochem Cell Biol 90(1):45–56

    CAS  Google Scholar 

  • Bernardo de AH, José RVJ, Reginaldo da SR, Harllen SAS, Maria CBP (2006) Induction of systemic resistance in tomato by the autochthonous phylloplane resident Bacillus cereus. Pesq Agropec Bras 41(8):1247–1252

    Google Scholar 

  • Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46:229–236

    PubMed  CAS  Google Scholar 

  • Bomke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

    Article  PubMed  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of Gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    Article  PubMed  CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  PubMed  CAS  Google Scholar 

  • Brencic A, Winans C (2005) Detection of and response to signals involved in host-micobe interactions by plant-associated bacteria. Microbiol Mol Biol R 69:155–194

    CAS  Google Scholar 

  • Brimecombe MJ, De Leij FAAM, Lynch JM (2007) Rhizodeposition and microbial populations. In: Pinton R, Veranini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface. Taylor & Francis Group, New York

    Google Scholar 

  • Carrillo G, Troch PA, Sivapalan M, Wagener T, Harman C, Sawicz K (2011) Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient. Hydrol Earth Syst Sci 15:3411–3430

    Article  Google Scholar 

  • Cassán F, Bottini R, Schneider G, Piccoli P (2001) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol 125:2053–2058

    Google Scholar 

  • Chen C, Bélanger RR, Benhamou N, Paulitz T (2000) Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23

    Article  CAS  Google Scholar 

  • Christensen JH, Hewitson B et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Crozier A, Durley RC (1983) Modem methods of analysis of gibberellins. In: Crozier A (ed) The biochemistry and physiology of Gibberellins, vol I. Praeger Scientific, New York, pp 485–560

    Google Scholar 

  • De Meyer G, Capieau K, Audenaert K, Buchala A, Métraux JP, Höfte M (1999) Nanogram amounts of salicylic produced by Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microbe Interact 12:450–458

    Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Domenech J, Ramos SB, Probanza A, Lucas GJA, Gutierrez MFJ (2007) Elicitation of systemic resistance and growth promotion of Arabidopsis thaliana by PGPRs from Nicotiana glauca: a study of the putative induction pathway. Plant Soil 290:43–50

    Article  CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Google Scholar 

  • Gaskin P, MacMillan J (1991) GC-MS of Gibberellins and related compounds: methodology and a Library of Spectra. Cantock’s Enterprises, Bristol

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soilborne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Hedden P (1986) Gas Chromatography/Mass spectrometry. In: Linskens HF, Jackson HF (eds) Modern methods of plant analysis, New series, vol 3. Springer, Berlin, pp 1–22

    Google Scholar 

  • Hedden P (1997) The oxidases of gibberellin biosynthesis: their function and mechanism. Physiol Plant 101:709–719

    Article  CAS  Google Scholar 

  • Hedden P, Kamiya Y (1997) Gibberellin biosynthesis: enzymes, genes, and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48:431–460

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  PubMed  CAS  Google Scholar 

  • Heftmann E, Saunders GA, Haddon WF (1978) Argentation high performance liquid chromatography and mass spectrometry of gibberelline esters. J Chromatogr 156:71–77

    Article  CAS  Google Scholar 

  • Heidarvand L, Amiri RM (2010) What happens in plant molecular responses to cold stress? Acta Physiol Plant 32:419–431

    Article  CAS  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736

    Article  PubMed  CAS  Google Scholar 

  • Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press Inc., New York

    Google Scholar 

  • Hrynkiewicz K, Baum C (2012) The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In: Malik A, Grohmann E (eds) Environmental protection strategies for sustainable development. Springer, Berlin, pp 35–64

    Chapter  Google Scholar 

  • Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, Saleh BK, Gopal GR (2008) Recent advances in salt stress biology–a review. Biotechnol Mol Biol Rev 3:8–13

    Google Scholar 

  • Hwang J, Chilton WS, Benson DM (2002) Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol Control 25:56–63

    Article  CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Google Scholar 

  • Janzen R, Rood S, Dormar J, McGill W (1992) Azospirillum brasilense produces gibberellins in pure culture and chemically-medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064

    Article  CAS  Google Scholar 

  • Jay PV, Janardan Y, Kavindra NT, Ashok K (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus Bacillus macroides and Bacillus pumilus. Biotechnol Lett 26:487–491

    Article  PubMed  CAS  Google Scholar 

  • Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    PubMed  CAS  Google Scholar 

  • Joo GJ, Kang SM, Hamayun M, Kim SK, Na CI, Shin DH, Lee IJ (2009) Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J Microbiol 47:167–171

    Article  PubMed  CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, Hong JK, Lee IJ (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    Google Scholar 

  • Kang SM, Hamayun M, Joo GJ, Khan AL, Kim YH, Kim SK, Jeong HJ, Lee IJ (2010) Effect of Burkholderia sp. KCTC 11096BP on some physiochemical attributes of cucumber. Eur J Soil Biol 46:264–268

    Article  CAS  Google Scholar 

  • Kang SM, Khan AL, Muhammad H, Zabta KS, Kim YH, Joo GJ, Lee IJ (2012a) Acinetobacter calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemical. Pak J Bot 44(1):365–372

    CAS  Google Scholar 

  • Kang SM, Khan AL, Hamayun M, Hussain J, Joo GJ, You YH, Kim JG, Lee IJ (2012b) Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol 50(6):902–909

    Article  PubMed  CAS  Google Scholar 

  • Karako S, Aksoz N (2006) Some optimal cultural parameters for gibberellic acid biosynthesis by Pseudomonas sp. Turk J Biol 30:81–85

    Google Scholar 

  • Khan AL, Hamayun M, Ahmad N, Hussain J, Kang SM, Kim YH, Adnan M, Tang DH, Waqas M, Radhakrishnan R, Park ES, Lee IJ (2011) Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max. L. J Microbiol Biotechnol 21(9):893–902

    Article  PubMed  CAS  Google Scholar 

  • Kovats E (1958) Gas-chromatographische charakterisierung organischer Verbindungen. Teil 1: retentionsindices aliphatischer halogenide, alkohole aldehyde und ketone. Helv Chim Acta 41:1915–1932

    Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldŕn A (2008) Plant-growth-promoting rhizobacteria and abuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Lee IJ, Foster K, Morga PW (1998) Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol 116:1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Lisar YS, Motafakkerazad R, Hossain MM, Rahman IMM (2012) Water stress in plants: causes, effects and responses. In: Rahman IMM (ed) Water stress. ISBN:978-953-307-963-9. InTech, Available from: http://www.intechopen.com/books/water-stress/water-stress-inplants-causes-effects-andresponses

  • Lucangeli C, Bottini R (1997) Effects of Azospirillum spp. On endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63–72

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2006) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  Google Scholar 

  • Mansour FA, Aldesuquy HS, Hamedo HA (1994) Studies on plant growth regulators and enzymes production by some bacteria. Qatar UnivSci J 14(2):281–288

    CAS  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick B (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    Article  PubMed  CAS  Google Scholar 

  • Morris RO, Zaerr JB (1978) 4-bromophenacyl ester of gibberellins, useful derivatives for high performance liquid chromatography. Anal Lett A 11:73–83

    Google Scholar 

  • Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ (2009) Gibberellin biosynthesis in bacteria: separate ent-copalyldiphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583:475–480

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15(2):327–337

    Google Scholar 

  • Noorieh B, Arzanesh MH, Mahlegha G, Maryam S (2013) The effect of plant growth promoting rhizobacteria on growth parameters, antioxidant enzymes and microelements of canola under salt stress. J Appl Environ Biol Sci 3(1):17–27

    Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174

    Google Scholar 

  • Piccoli P, Lucangeli D, Schneider G, Bottini R (1997) Hydrolysis of [17,17-2H2]Gibberellin A20-Glucoside and [17,17-2H2]Gibberellin A20-glucosylester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul 23:179–182

    Article  CAS  Google Scholar 

  • Piccoli P, Masciarelli O, Bottini R (1999) Gibberellin production by Azospirillum lipoferum cultured in chemically-defined medium as affected by oxygen availability and water status. Symbiosis 27:135–146

    CAS  Google Scholar 

  • Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 6(6):1659–1670

    Article  Google Scholar 

  • Qudsia B, Noshinil Y, Asghari B, Nadia Z, Abida A, Fayazul H (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45(S1):13–20

    Google Scholar 

  • Raaijmakers JM (2001) Rhizosphere and rhizosphere competence. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. Wiley, New York, pp 859–860

    Google Scholar 

  • Rakshapal S, Sumit KS, Rajendra PP, Alok K (2013) Technology for improving essential oil yield of Ocimum basilicum L. (sweet basil) by application of bioinoculant colonized seeds under organic field conditions. Ind Crop Prod 45:335–342

    Article  Google Scholar 

  • Reeve DR, Crozier A (1978) Quantitative analysis of plant hormones. In: Hillman JR (ed) Isolation of plant growth substances. Cambridge University Press, London, pp 17–41

    Google Scholar 

  • RodrÍgueza H, Fragaa R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17(4–5):319–339

    Google Scholar 

  • Rovira AD (1991) Rhizosphere research, 85 years of progress and frustration. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, The Netherlands, pp 3–13

    Chapter  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting Rhizobacteria: a critical review. Life Sci Med Res (LSMR-21)

    Google Scholar 

  • Schöffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Co., Austin, pp 81–98

    Google Scholar 

  • Shah F, Huang J, Cui K, Nie L, Shah T, Chen C, Wang K (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agri Sci 1–12

    Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  PubMed  CAS  Google Scholar 

  • Smertenko A, Draber P, Viklicky V, Opatrny Z (1997) Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant, Cell Environ 20:1534–1542

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23

    Article  CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Tarkka M, Schrey S, Hampp R (2008) Plant associated micro-organisms. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, New York, pp 3–51

    Chapter  Google Scholar 

  • Thimmaraju R, Kirk JC, Paul WP, Harsh PB (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Micro 42:117–126

    Article  CAS  Google Scholar 

  • Türkan T, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  Google Scholar 

  • Urbanova T, Tarkowska D, Strnad M, Hedden P (2011) Gibberellins–terpenoid plant hormones: biological importance and chemical analysis. Collect Czech Chem Commun 76(12):1669–1686

    Article  CAS  Google Scholar 

  • Wafae A, Christophe S, Jean LM, Ali B (2013) Effect of nickel-resistant rhizosphere bacteria on the uptake of nickel by the hyperaccumulator Noccaea caerulescens under controlled conditions. J Soils Sediments 13:501–507

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang MC, Bohmann D, Jasper H (2003) JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5:811–816

    Article  PubMed  CAS  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    Google Scholar 

  • Zarrin K, Sharon LD (2010) Characterization of bacterial endophytes of sweet potato plants. Plant Soil. doi:10.1007/s11104-009-9908-1

  • Zhu JK (2007) Plant salt stress. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This work is supported by Korean Ministry of Environment through “The Eco-Innovation Project” and Basic Science Research Program through the National Research Foundation of Korea (NRF) founded by the Ministry of Education, Science and Technology (2012-0008183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kang, SM., Waqas, M., Khan, A.L., Lee, IJ. (2014). Plant-Growth-Promoting Rhizobacteria: Potential Candidates for Gibberellins Production and Crop Growth Promotion. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9466-9_1

Download citation

Publish with us

Policies and ethics