Skip to main content

1-Methyl-1,2,3,4-Tetrahydroisoquinoline: A Potent Neuroprotecting Agent

  • Chapter
  • First Online:
Isoquinolines And Beta-Carbolines As Neurotoxins And Neuroprotectants

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 1))

Abstract

1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), unlike several other tetrahydroisoquinolines, displays neuroprotective properties. To elucidate this action we compared the effects of 1MeTIQ with 1,2,3,4-tetrahydroisoquinoline (TIQ), a compound sharing many activities with 1MeTIQ (e.g., reducing free radicals formed during dopamine catabolism) but offering no clear neuroprotection. We found that the compounds similarly inhibit free radical generation in an abiotic system, as well as indices of neurotoxicity, caspase-3 activity, and lactate dehydrogenase release induced by glutamate in mouse embryonic primary cell cultures. 1MeTIQ also prevents the glutamate-induced cell death and 45Ca2+ influx, whereas TIQ did not. In vivo microdialysis study has shown that 1MeTIQ prevents kainate-induced release of excitatory amino acids from the rat frontal cortex. Additionally, 1MeTIQ protects against rotenone-induced mortality, oxidative stress as well as dopaminergic neurodegeneration in the extrapyramidal structures produced by intracerebral injection of rotenone. The results suggest that 1MeTIQ offers a unique and complex mechanism of neuroprotection in which free radicals scavenging properties and inhibition of glutamate-induced excitotoxicity may play a very important role, and indicates the potential of 1MeTIQ as a therapeutic agent in various neurodegenerative illnesses of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Taguchi K, Wasai T, Ren J, Utsunomiya I, Shinohara T, Miyatake T, Sano T (2001) Stereoselective effect of (R)- and (S)-1-methyl-1,2,3,4-tetrahydroisoquinolines on a mouse model of Parkinson’s disease. Brain Res Bull 56:55–60

    Article  PubMed  CAS  Google Scholar 

  • Absi E, Parrado J, Ayala A, Machado A (2002) Decrease of 1-methyl-1,2,3,4-tetrahydroisoquinoline synthesizing enzyme activity in the brain areas of aged rat. Brain Res 955:161–163

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Michaluk J, Romanska I, Papla I, Vetulani J (2000) Antidopaminergic effects of 1,2,3,4-tetrahydroisoquinoline and salsolinol. J Neural Transm 107:1009–1019

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Michaluk J, Mokrosz M, Romanska I, Lorenc-Koci E, Ohta S, Vetulani J (2001) Different action on dopamine catabolic pathways of two endogenous 1,2,3,4-tetrahydroisoquinolines with similar antidopaminergic properties. J Neurochem 78:100–108

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Karolewicz B, Romanska I, Michaluk J, Bojarski A, Vetulani J (2003) 1-Methyl-1,2,3,4-tetrahydroisoquinoline protects against rotenone-induced mortality and biochemical changes in rat brain. Eur J Pharmacol 466:263–269

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Wardas J, Michaluk J, Romanska I, Bojarski A, Vetulani J (2004) Protective effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline against dopaminergic neurodegeneration in the extrapyramidal structures produced by intracerebral injection of rotenone. Int J Neuropsychopharmacol 7:155–163

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Lazarewicz JW, Patsenka A, Kajta M, Zieminska E, Salinska E, Wasik A, Golembiowska K, Vetulani J (2006) The mechanism of 1,2,3,4-tetrahydroisoquinolines neuroprotection: the importance of free radicals scavenging properties and inhibition of glutamate-induced excitotoxicity. J Neurochem 97:846–856

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Wasik A, Romanska I, Bojarski A, Michaluk J (2011) Both stereoselective (R)- and (S)-1-methyl-1,2,3,4-tetrahydroisoquinoline enantiomers protect striatal terminals against rotenone-induced suppression of dopamine release. Neurotox Res 20:134–149

    Article  PubMed  CAS  Google Scholar 

  • Ayala A, Parrado J, Cano J, Machado A (1994) Reduction of 1-methyl-1,2,3,4-tetrahydroisoquinoline level in substantia nigra of the aged rat. Brain Res 638:334–336

    Article  PubMed  CAS  Google Scholar 

  • Bembenek ME, Abell CW, Chrisey LA, Rozwadowska MD, Gessner W, Brossi A (1990) Inhibition of monoamine oxidases A and B by simple isoquinoline alkaloids: racemic and optically active 1,2,3,4-tetrahydro-,3,4-dihydro-, and fully aromatic isoquinolines. J Med Chem 33:147–152

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Maruyama W, Kawai M, Dostert P, Yamamura H, Takahashi T, Naoi M (1997) Assay for the (R)- and (S)-enantiomers of salsolinols in biological samples and foods with ion-pair high-performance liquid chromatography using beta-cyclodextrin as a chiral mobile phase additive. J Chromatogr B Biomed Sci Appl 689:313–320

    Article  PubMed  CAS  Google Scholar 

  • Duncan MW, Smythe GA (1982) Salsolinol and dopamine in alcoholic beverages. Lancet 1:904–905

    Article  PubMed  CAS  Google Scholar 

  • Dykens JA (1999) Free radicals and mitochondria dysfunction in excitotoxicity and neurodegenerative disease. In: Koliatsos VE, Ratan RR (eds) Death and diseases of the nervous system. Humana Press, Totowa

    Google Scholar 

  • Ferreri G, Chimirri A, Russo E, Gitto R, Gareri P, De Sarro A, De Sarro G (2004) Comparative anticonvulsant activity of N-acetyl-1-aryl-6-7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives in rodents. Pharmacol Biochem Behav 77:85–94

    Article  PubMed  CAS  Google Scholar 

  • Filip M, Antkiewicz-Michaluk L, Zaniewska M, Frankowska M, Gołda A, Vetulani J, Przegalinski E (2007) Effects of 1-methyl-1,2,3,4-tetrahydroisoquinoline on the behavioral effects of cocaine in rats. J Physiol Pharmacol 58:625–639

    PubMed  CAS  Google Scholar 

  • Ginos JZ, Doroski D (1979) Dopaminergic antagonists: effects of 1,2,3,4-tetrahydroisoquinoline and its N-methyl and N-propyl homologs on apomorphine- and L-dopa-induced behavioral effects in rodents. J Pharmacol Exp Ther 209:79–86

    PubMed  CAS  Google Scholar 

  • Gitto R, Barreca ML, De Luca L, De Sarro G, Ferreri G, Quartarone S, Russo E, Constanti A, Chimirri A (2003) Discovery of a novel and highly potent noncompetitive AMPA receptor antagonist. J Med Chem 46:197–200

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Betarbet R, Sherer T, Panov A (2001) Parkinson’s disease, pesticides and mitochondrial dysfunction. Trends Neurosci 24:247

    Article  CAS  Google Scholar 

  • Gutman M, Singer TP, Beinert H, Casida JE (1970) Reaction sites of rotenone, piericidin A, and amytal in relation to the nonheme iron components of NADH dehydrogenase. Proc Natl Acad Sci USA 65:763–770

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci Lett 62:389–394

    Article  PubMed  CAS  Google Scholar 

  • Horgan DJ, Singer TP, Casida JE (1968) Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. 13. Binding sites of rotenone, piericidin A, and amytal in the respiratory chain. J Biol Chem 243:834–843

    PubMed  CAS  Google Scholar 

  • Igarashi K, Sugiyama Y, Kasuya F, Saiki K, Yamakawa T, Ohata S (1999) Determination of 1-methyl-1,2,3,4-tetrahydroisoquinoline in mouse brain after treatment with haloperidol by gas chromatography-selected ion monitoring. J Chromatogr B Biomed Sci Appl 731:53–58

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Matsubara D, Tsuruta Y (2008) Simultaneous analysis of 1,2,3,4-tetrahydroisoquinolines by high-performance liquid chromatography using 4-(5,6-dimethoxy-2-phthalimidinyl)-2-methoxyphenylsulfonyl chloride as a fluorescent labeling reagent. J Chromatogr B Analyt Technol Biomed Life Sci 867:32–36

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Koyanagi Y, Saitoh T, Taguchi K, Toda J, Sano T, Senda M (2001) Effects of single and repeated administration of 1,2,3,4-terahydroisoquinoline analogs on the binding of (11C)raclopride to dopamine D2 receptors in the mouse brain. J Neural Transm 108:1111–1125

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (2001) Parkinson’s disease, pesticides and mitochondrial dysfunction. Trends Neurosci 24:245–247

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Marsden CD (1986) The actions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in animals as a model of Parkinson’s disease. J Neural Transm Suppl 20:11–39

    PubMed  CAS  Google Scholar 

  • Kikuchi K, Nagatsu Y, Makino Y, Mashino T, Ohta S, Hirobe M (1991) Metabolism and penetration through blood-brain barrier of parkinsonism-related compounds. 1,2,3,4-Tetrahydroisoquinoline and 1-methyl-1,2,3,4-tetrahydroisoquinoline. Drug Metab Dispos 19:257–262

    PubMed  CAS  Google Scholar 

  • Kohno M, Ohta S, Hirobe M (1986) Tetrahydroisoquinoline and 1-methyltetrahydroisoquinoline are present as novel endogenous amines in rat brain. Biochem Biophys Res Commun 140:448–454

    Article  PubMed  CAS  Google Scholar 

  • Kotake Y, Tasaki Y, Makino Y, Ohta S, Hirobe M (1995) 1-Benzyl-1,2,3,4-tetrahydroisoquinoline as parkinsonism-inducing agent: a novel endogenous amine in mouse brain and parkinsonian CSF. J Neurochem 65:2633–2638

    Article  PubMed  CAS  Google Scholar 

  • Kotake Y, Taguchi R, Okuda K, Sekiya Y, Tasaki Y, Hirobe M, Ohta S (2005) Neuroprotective effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline on cultured rat mesencephalic neurons in the presence or absence of various neurotoxins. Brain Res 1033:143–150

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    Article  PubMed  CAS  Google Scholar 

  • Lorenc-Koci E, Gołembiowska K, Pietraszek M, Wardas J (2009) Treatment with 1,2,3,4-tetrahydroisoquinoline affects glutamate release in the striatum but not the binding of [3H]MK-801 to NMDA receptors in the dopaminergic structures of the rat brain. Pharmacol Rep 61:798–806

    PubMed  CAS  Google Scholar 

  • Ludwig M, Hoesl CE, Hofner G, Wanner KT (2006) Affinity of 1-aryl-1,2,3,4-tetrahydroisoquinoline derivatives to the ion channel binding site of the NMDA receptor complex. Eur J Med Chem 41:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Antkiewicz-Michaluk L, Czuczwar SJ (2006) 1-Methyl-1,2,3,4-tetrahydroisoquinoline enhances the anticonvulsant action of carbamazepine and valproate in the mouse maximal electroshock seizure model. Neuropharmacology 50:133–142

    Article  PubMed  CAS  Google Scholar 

  • Makino Y, Ohta S, Tachikawa O, Hirobe M (1988) Presence of tetrahydroisoquinoline and 1-methyl-tetrahydro-isoquinoline in foods: compounds related to Parkinson’s disease. Life Sci 43:373–378

    Article  PubMed  CAS  Google Scholar 

  • Makino Y, Tasaki Y, Ohta S, Hirobe M (1990) Confirmation of the enantiomers of 1-methyl-1,2,3,4-tetrahydroisoquinoline in the mouse brain and foods applying gas chromatography/mass spectrometry with negative ion chemical ionization. Biomed Environ Mass Spectrom 19:415–419

    Article  PubMed  CAS  Google Scholar 

  • Marey-Semper I, Gelman M, Levi-Strauss M (1993) The high sensitivity to rotenone of striatal dopamine uptake suggests the existence of a constitutive metabolic deficiency in dopaminergic neurons from the substantia nigra. Eur J Neurosci 5:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Nakahara D, Dostert P, Takahashi A, Naoi M (1993) Naturally-occurring isoquinolines perturb monamine metabolism in the brain: studied by in vivo microdialysis. J Neural Transm Gen Sect 94:91–102

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Dostert P, Naoi M (1995) Dopamine-derived 1-methyl-6,7-dihydroxyisoquinolines as hydroxyl radical promoters and scavengers in the rat brain: in vivo and in vitro studies. J Neurochem 64:2635–2643

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 29:99–111

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W (1993) Type B monoamine oxidase and neurotoxins. Eur Neurol 33:31–37

    Article  PubMed  Google Scholar 

  • Nicholson KL, Balster RL (2003) Evaluation of the phencyclidine-like discriminative stimulus effects of novel NMDA channel blockers in rats. Psychopharmacology 170:215–224

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, Takeda N, Kaneda N, Hashizume Y, Nagatsu T (1987) Presence of tetrahydroisoquinoline and 2-methyl-tetrahydroquinoline in parkinsonian and normal human brains. Biochem Biophys Res Commun 144:1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, Yoshizumi H, Tatematsu A, Matsuura S, Nagatsu T (1989) Presence of tetrahydroisoquinoline, a parkinsonism-related compound, in foods. J Chromatogr 493:347–352

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, Yoshizumi H, Tatematsu A, Matsuura S, Yoshida M, Kawachi M, Naoi M, Nagatsu T (1990) Endogenous synthesis of N-methyl-1,2,3,4-tetrahydroisoquinoline, a precursor of N-methylisoquinolinium ion, in the brains of primates with parkinsinism after systemic administration of 1,2,3,4-tetrahydroisoquinoline. J Chromatogr 533:145–151

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo M, Kuno A, Katsuta K, Ueda Y, Shirakawa K, Nakanishi H, Nakanishi I, Kinoshita T, Takasugi H (1996) Studies on cerebral protective agents. IX. Synthesis of novel 1,2,3,4-tetrahydroisoquinolines as N-methyl-D-aspartate antagonists. Chem Pharm Bull 44:95–102

    PubMed  CAS  Google Scholar 

  • Ohta S, Kohno M, Makino Y, Tachikawa O, Hirobe M (1987) Tetrahydroisoquinoline and 1-methyltetrahydroisoquinoline are present in the human brain: relation to Parkinson’s disease. Biomed Res 8:453–456

    Google Scholar 

  • Ortwine DF, Malone TC, Bigge CF, Drummond JT, Humblet C, Johnson G, Pinter GW (1992) Generation of N-methyl-D-aspartate agonist and competitive antagonist pharmacophore models. Design and synthesis of phosphonoalkyl-substituted tetrahydroisoquinolines as novel antagonists. J Med Chem 35:1345–1370

    Article  PubMed  CAS  Google Scholar 

  • Patsenka A, Antkiewicz-Michaluk L (2004) Inhibition of rodent brain monoamine oxidase and tyrosine hydroxylase by endogenous compounds – 1,2,3,4-tetrahydro-isoquinoline alkaloids. Pol J Pharmacol 56:727–734

    PubMed  CAS  Google Scholar 

  • Perry TL, Jones K, Hansen S (1988) Tetrahydroisoquinoline lacks dopaminergic nigrostriatal neurotoxicity in mice. Neurosci Lett 85:101–104

    Article  PubMed  CAS  Google Scholar 

  • Rogawski MA, Thurkauf A, Yamaguchi S, Rice KC, Jacobson AE, Mattson MV (1989) Anticonvulsant activities of 1-phenylcyclohexylamine and its conformationally restricted analog 1,1-pentamethylenetetrahydroisoquinoline. J Pharmacol Exp Ther 249:708–712

    PubMed  CAS  Google Scholar 

  • Santiago M, Granero L, Machado A, Cano J (1995) Complex I inhibitor effect on the nigral and striatal release of dopamine in the presence and absence of nomifensine. Eur J Pharmacol 280:251–256

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    Article  PubMed  Google Scholar 

  • Seneca N, Finnema SJ, Farde L, Gulyas B, Wikstrom HV, Halldin C, Innis RB (2006) Effect of amphetamine on dopamine D2 receptor binding in nonhuman primate brain: a comparison of the agonist radioligand [11C]MNPA and antagonist [11C]raclopride. Synapse 59:260–269

    Article  PubMed  CAS  Google Scholar 

  • Singer TP, Ramsay RR (1995) Flavoprotein structure and mechanism 2. Monoamine oxidases: old friends hold many surprises. FASEB J 9:605–610

    PubMed  CAS  Google Scholar 

  • Suzuki K, Mizuno Y, Yoshida M (1990) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like compounds on mitochondrial respiration. Adv Neurol 53:215–218

    PubMed  CAS  Google Scholar 

  • Tasaki Y, Makino Y, Ohta S, Hirobe M (1991) 1-Methyl-1,2,3,4-tetrahydroisoquinoline, decreasing in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse, prevents parkinsonism-like behavior abnormalities. J Neurochem 57:1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Tasaki Y, Makino Y, Ohta S, Hirobe M (1993) Biosynthesis of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MeTIQ), a possible antiparkinsonism agent. Adv Neurol 60:231–233

    PubMed  CAS  Google Scholar 

  • Thiffault C, Langston JW, Di Monte DA (2000) Increased striatal dopamine turnover following acute administration of rotenone to mice. Brain Res 885:283–288

    Article  PubMed  CAS  Google Scholar 

  • Thull U, Kneubühler S, Gaillard P, Carrupt PA, Testa B, Altomare C, Carotti A, Jenner P, McNaught KS (1995) Inhibition of monoamine oxidase by isoquinoline derivatives. Qualitative and 3D-quantitative structure-activity relationships. Biochem Pharmacol 50:869–877

    Article  PubMed  CAS  Google Scholar 

  • Ueda Y, Nakanishi H, Yoshida K (1999) Neurotrophic effect of isoquinoline derivatives in primary cortical culture. Life Sci 65:1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J, Nalepa I, Antkiewicz-Michaluk L, Sansone M (2001) Opposite effect of simple tetrahydroisoquinolines on amphetamine- and morphine-stimulated locomotor activity in mice. J Neural Transm 108:513–526

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J, Antkiewicz-Michaluk L, Nalepa I, Sansone M (2003a) A possible physiological role for cerebral tetrahydroisoquinolines. Neurotox Res 5:147–155

    Article  PubMed  Google Scholar 

  • Vetulani J, Pavone F, Przewlocka B, Borghi V, Nalepa I (2003b) The interaction of tetrahydroisoquinoline derivatives with antinociceptive action of morphine and oxotremorine in mice. J Neural Transm 110:1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Wasik A, Romanska I, Antkiewicz-Michaluk L (2007) The effect of an endogenous compound 1-methyl-1,2,3,4-tetrahydroisoquinoline on morphine-induced analgesia, dependence and neurochemical changes in dopamine metabolism in rat brain structures. J Physiol Pharmacol 58:235–252

    PubMed  CAS  Google Scholar 

  • Wasik A, Romanska I, Antkiewicz-Michaluk L (2010) Important role of 3-methoxytyramine in the inhibition of cocaine sensitization by 1-methyl-1,2,3,4-tetrahydroisoquinoline: an in vivo microdialysis study. Pharmacol Rep 62:983–997

    PubMed  CAS  Google Scholar 

  • Weiner H (1981) Possible steady-state concentrations of tetrahydroisoquinolines in brain after the consumption of ethanol. Fed Proc 40:2082–2085

    PubMed  CAS  Google Scholar 

  • Yamakawa T, Ohta S (1997) Isolation of 1-methyl-1,2,3,4-tetrahydroisoquinoline-synthesizing enzyme from rat brain: a possible Parkinson’s disease-preventing enzyme. Biochem Biophys Res Commun 236:676–681

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa T, Ohta S (1999) Biosynthesis of a parkinsonism-preventing substance, 1-methyl-1,2,3,4-tetrahydroisoquinoline, is inhibited by parkinsonism-inducing compounds in rat brain mitochondrial fraction. Neurosci Lett 259:157–160

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa T, Kotake Y, Fujitani M, Shintani H, Makino Y, Ohta S (1999) Regional distribution of parkinsonism-preventing endogenous tetrahydroisoquinoline derivatives and an endogenous parkinsonism-preventing substance-synthesizing enzyme in monkey brain. Neurosci Lett 276:68–70

    Article  PubMed  CAS  Google Scholar 

  • Zarranz de Ysern ME, Ordonez LA (1981) Tetrahydroisoquinolines: a review. Prog Neuropsychopharmacol 5:343–355

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Polish Committee of Scientific Research (project N N401 004836) and the statutory funds of the Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Vetulani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vetulani, J., Antkiewicz-Michaluk, L. (2012). 1-Methyl-1,2,3,4-Tetrahydroisoquinoline: A Potent Neuroprotecting Agent. In: Antkiewicz-Michaluk, L., Rommelspacher, H. (eds) Isoquinolines And Beta-Carbolines As Neurotoxins And Neuroprotectants. Current Topics in Neurotoxicity, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1542-8_3

Download citation

Publish with us

Policies and ethics