Skip to main content
Log in

A possible physiological role for cerebral tetrahydroisoquinolines

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Tetrahydroisoquinolines present in the mammalian brain, 1,2,3,4-tetrahydroisoquinoline (TIQ) and salsolinol, suspected to cause neurodegeneration leading to Parkinson's disease, were investigated to find their possible physiological role. To this aim their behavioral and receptor effects induced after a single dose were tested in mice and rats. Both compounds do not affect significantly the basal locomotor activity, very effectively block hyperactivity induced by apomorphine (rats) and amphetamine (mice), only partially block hyperactivity induced by scopolamine, do not affect locomotor stimulation induced by cocaine, and strongly augment the running fit induced by morphine (mice). They do not produce extrapyramidal symptoms and do not potentiate haloperidol-induced catalepsy (rats). TIQ and salsolinol do not displace antagonists of several receptors (including D1 and D2) from their binding sites, but displace the agonists of α2-adrenoreceptors, [3H] clonidine and of dopamine receptors, [3H] apomorphine. The results indicate that salsolinol and TIQ act as specific antagonists of agonistic conformation of dopamine receptors, and owing to that may play a role of endogenous feed-back regulators of the dopaminergic system. Those properties make tetrahydroisoquinolines potential antidopaminergic drugs devoid of extrapyramidal effects, with possible application in substance addiction disorder as anti-craving agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antkiewicz-Michaluk L, A Szczudlik, A Krygowska-Wajs, I Romañska and J Vetulani (1997) Increase in salsolinol level in the cerebrospinal fluid of parkinsonian patients is related to dementia: advantage of a new high-performance liquid chromatography methodology.Biol. Psychiatry 42, 514–518.

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, J Michaluk, I Romanska, I Papla and J Vetulani (2000a) Antidopaminergic effects of 1,2,3,4-tetrahydroisoquinoline and salsolinol.J. Neural Transm. 107, 1009–1019.

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, I Romanska, I Papla, J Michaluk, M Bakalarz, J Vetulani, A Krygowska-Wajs and A Szczudlik (2000b) Neurochemical changes induced by acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline and salsolinol in dopaminergic structures of rat brain.Neuroscience 96, 59–64.

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, J Michaluk, M Mokrosz, I Romanska, E Lorenc-Koci, S Ohta and J Vetulani (2001) Different action on dopamine catabolic pathways of two endogenous 1,2,3,4-tetrahydroisoquinolines with similar antidopaminergic properties.J. Neurochem. 78, 100–108.

    Article  PubMed  CAS  Google Scholar 

  • Bednarczyk B and J Vetulani (1977) Stimulatory and inhibitory action of clonidine on the locomotor activity in the rat.Pol J. Pharmacol. Pharm. 29, 219–229.

    PubMed  CAS  Google Scholar 

  • Cohen G (1976) Alkaloid products in the metabolism of alcohol and biogenic amines.Biochem. Pharmacol. 25, 1123–1128.

    Article  PubMed  CAS  Google Scholar 

  • Deitrich R and V Erwin (1980) Biogenic amine-aldehyde condensation products: tetrahydroisoquinolines and tryptolines (beta-carbolines).Ann. Rev. Pharmacol. Toxicol. 20, 55–80.

    Article  CAS  Google Scholar 

  • Delini-Stula A and C Morpurgo (1968) Influence of amphetamine and scopolamine on the catalepsy induced by diencephalic lesions in rats.Int. J. Neuropharmacol. 7, 391–394.

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, W Maruyama, M Kawai, P Dostert, H Yamamura, T Takahashi and M Naoi (1997) Assay for the (R)- and (S)-enantiomers of salsolinols in biological samples and foods with ion-pair high-performance liquid chromatography using beta-cyclodextrin as a chiral mobile phase additive.J. Chromatogr. B Biomed. Sci. Appl. 689, 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Duncan MW and GA Smythe (1982) Salsolinol and dopamine in alcoholic beverages.Lancet 1, 904–905.

    Article  PubMed  CAS  Google Scholar 

  • Ginos JZ and D Doroski (1979) Dopaminergic antagonists: effects of 1,2,3,4-tetrahydroisoquinoline and itsN-methyl andN-propyl homologs on apomorphine- and L-dopa-induced behavioral effects in rodents.J. Pharmacol. Exp. Ther. 209, 79–86.

    PubMed  CAS  Google Scholar 

  • Goeders N and J Smith (1983) Cortical dopaminergic involvement in cocaine reinforcement.Science 221, 773–775.

    Article  PubMed  CAS  Google Scholar 

  • Goeders NE and J Smith (1986) Reinforcing properties of cocaine in the medial prefrontal cortex: primary action on presynaptic dopaminergic terminals.Pharmacol. Biochem. Behav. 25, 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Goeders NE, SI Dworkin and JE Smith (1986) Neuropharmacological assessment of cocaine self-administration into the medial prefrontal cortex.Pharmacol. Biochem. Behav. 24, 1429–1440.

    Article  PubMed  CAS  Google Scholar 

  • Hoebel B, A Monaco, L Hernandez, E Aulisi, B Stanley and L Lenard (1983) Self-injection of amphetamine directly into the brain.Psychopharmacology 81, 158–163.

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ (1987) Toxins and Parkinson's disease: MPTP parkinsonism in humans and animals.Adv. Neurol. 45, 137–144.

    PubMed  CAS  Google Scholar 

  • Lorenc-Koci E, M Smialowska, L Antkiewicz-Michaluk, K Golembiowska, M Bajkowska and S Wolfarth (2000) Effect of acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline on muscle tone, metabolism of dopamine in the striatum and tyrosine hydroxylase immunocytochemistry in the substantia nigra, in rats.Neuroscience 95, 1049–1059.

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, NJ Rosebrough, AL Farr and RJ Randall (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Maruyama W, G Sobue, K Matsubara, Y Hashizume, P Dostert and M Naoi (1997) A dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,N-methyl(R)salsolinol, and its oxidation product, 1,2(N)-dimethyl-6,7-dihydroxy-soquinolinium ion, accumulate in the nigro-striatal system of the human brain.Neurosci. Lett. 223, 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Moser A and D Kompf (1992) Presence of methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines, derivatives of the neurotoxin isoquinoline, in parkinsonian lumbar CSF.Life Sci. 50, 1885–1891.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson's disease.Neurosci. Res. 29, 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, W Maruyama, T Kasamatsu and P Dostert (1998) Oxidation ofN-methyl(R)salsolinol involvement to neurotoxicity and neuroprotection by endogenous catechol isoquinolines.J. Neural Transm. (Suppl.) 52, 125–138.

    CAS  Google Scholar 

  • Niwa T, N Takeda, N Kaneda, Y Hashizume and T Nagatsu (1987) Presence of tetrahydroisoquinoline and 2-methyl-tetrahydroquinoline in Parkinsonian and normal human brain.Biochem. Biophys. Res. Commun. 144, 1084–1089.

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, H Yoshizumi, A Tatematsu, S Matsuura and T Nagatsu (1989) Presence of tetrahydroisoquinoline, a parkinsonism-related compound, in foods.J. Chromatogr. 493, 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, N Takeda, H Yoshizumi, A Tatematsu, M Yoshida, P Dostert, M Naoi and T Nagatsu (1991) Presence of 2-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline and 1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, novel endogenous amines, in parkinsonian and normal human brains.Biochem. Biophys. Res. Commun. 177, 603–609

    Article  PubMed  CAS  Google Scholar 

  • Phillips GD, TW Robbins and BJ Everitt (1994) Bilateral intraaccumbens self-administration ofd-amphetamine: antagonism with intra-accumbens SCH-23390 and sulpiride.Psychopharmacology 114, 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Riggin RM, MJ McCarthy and PT Kissinger (1976) Identification of salsolinol as a major dopamine metabolite in the banana.J. Agric. Food Chem. 24, 189–191.

    Article  PubMed  CAS  Google Scholar 

  • Sandler M, S Carter, KR Hunter and GM Stern (1973) Tetrahydroisoquinoline alkaloids:in vivo metabolites of L-dopa in man.Nature 241, 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Sjoquist B, HA Johnson and S Borg (1985) The influence of acute ethanol on the catecholamine system in man as reflected in cerebrospinal fluid and urine. A new condensation product, 1-carboxysalsolinol.Drug Alcohol Depend. 16, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Strolin Benedetti M, V Bellotti, E Pianezzola, E Moro, P Carminati and P Dostert (1989) Ratio of theR andS enantiomers of salsolinol in food and human urine.J. Neural Transm. 77, 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Tasaki Y, Y Makino, S Ohta and M Hirobe (1993) Biosynthesis of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), a possible antiparkinsonism agent.Adv. Neurol. 60, 231–233.

    PubMed  CAS  Google Scholar 

  • Vetulani J (1973) The action of neuroleptics in rats with altered catecholamine metabolism. Part I. The influence of MAO inhibitors on the behavioral actions of chlorpromazine, haloperidol and thioridazine.Pol. J. Pharmacol. Pharm. 25, 41–52.

    PubMed  CAS  Google Scholar 

  • Vetulani J (2001) Drug addiction. Part II. Neurobiology of addiction.Pol J. Pharmacol. 53, 303–317.

    PubMed  CAS  Google Scholar 

  • Vetulani J, I Nalepa, L Antkiewicz-Michaluk and M Sansone (2001) Opposite effect of simple tetrahydroisoquinolines on amphetamine-and morphine-stimulated locomotor activity in mice.J. Neural Transm. 108, 513–526.

    Article  PubMed  CAS  Google Scholar 

  • Weiner H (1981) Possible steady-state concentrations of tetrahydroisoquinolines in brain after the consumption of ethanol.Fed. Proc. 40, 2082–2085.

    PubMed  CAS  Google Scholar 

  • Yamakawa T, Y Kotake, M Fujitani, H Shintani, Y Makino and S Ohta (1999) Regional distribution of parkinsonism-preventing endogenous tetrahydroisoquinoline derivatives and an endogenous parkinsonism-preventing substance-synthesizing enzyme in monkey brain.Neurosci. Lett. 276, 68–70.

    Article  PubMed  CAS  Google Scholar 

  • Zarranz de Ysern ME and LA Ordonez (1981) Tetrahydroisoquinolines: a review.Progr. Neuropsychopharmacol. 5, 343–355.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Vetulani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetulani, J., Antkiewicz-Michaluk, L., Nalepa, I. et al. A possible physiological role for cerebral tetrahydroisoquinolines. neurotox res 5, 147–155 (2003). https://doi.org/10.1007/BF03033379

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033379

Keywords

Navigation