Skip to main content

Left Ventricular Systolic Resistance and Its Role in Coupling the Ventricle to the Arterial Circulation

  • Chapter
Ventricular/Vascular Coupling

Abstract

The overall performance of the left ventricle coupled to the arterial circulation is dependent on the intrinsic mechanical properties of the individual subsystems and their mutual interaction. The myocardium of the left ventricle is a viscoelastic material whose mechanical properties are reflected in the behavior of the ventricular chamber (i.e., the relationships among chamber pressure, volume, and flow). The relationship between instantaneous ventricular pressure and volume, analogous to the force-length relation of the cardiac muscle, has been described in terms of a time-varying volume elastance (Sagawa 1978; Suga, Sagawa, and Shoukas 1973). The role of ventricular elastance in determining the overall performance (e.g., stroke volume) of the left ventricle has been clearly established (Sunagawa, Sagawa, and Maughan 1984) and is presented in Chapter 10. Further, it has recently been shown that the left ventricle exhibits a viscouslike behavior that can be described in terms of the ventricular pressure-flow relation and, phenomenologically, can be represented as ventricular resistance (Hunter et al. 1979; Hunter et al. 1983; Ringo et al. 1982; Shroff, Janicki, and Weber 1983, 1985; Suga, Sagawa, and Demar 1980; Vaartjes, van Alste, and Boom 1982). This chapter focuses on the description of ventricular resistance and examines its role in determining the overall performance of the left ventricle coupled to the arterial circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • Alpert, N. R., and Mulieri, L. 1982. Heat, mechanics and myosin ATPase in normal and hypertrophied heart muscle. Fed. Proc. 41:192–198.

    PubMed  CAS  Google Scholar 

  • Campbell, K. B., Ringo, J. A., Neti, C., and Alexander, J. E. 1984. Informational analysis of left ventricle/systemic arterial interaction. Ann. Biomed. Eng. 12:209–231.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, M., Noble, M. I. M., ter Keurs, H. E. D. J., andWohlfart, B. 1984. Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time. J. Physiol. 355:367–381.

    PubMed  CAS  Google Scholar 

  • Elzinga, G., and Westerhof, N. 1974. End-diastolic volume and source impedance of the heart. In Porter, R., and Fitzsimons, D. W., eds. The Physiologic Basis of Starling’s Law of the Heart. New York: Associated Science, Publishers, pp. 241–255.

    Google Scholar 

  • Elzinga, G., and Westerhof, N. 1978. The effect of an increase in inotropic state and end-diastolic volume on the pumping ability of th feline left ventricle. Circ. Res. 42:620–628.

    PubMed  CAS  Google Scholar 

  • Hunter, W. C., Janicki, J. S., Weber, K. T., and Noordergraaf, A. 1979. Flow pulse response: a new method for the characterization of ventricular mechanics. Am. J. Physiol. 237 (Heart Circ. Physiol. 6):H282–H292.

    PubMed  CAS  Google Scholar 

  • Hunter, W. C., Janicki, J. S., Weber, K. T., and Noordergraaf, A. 1983. Systolic mechanical properties of the left ventricle: effects of volume and contractile state. Circ. Res. 52:319–327.

    PubMed  CAS  Google Scholar 

  • Hunter, W. C., and Noordergraaf, A. 1976. Can impedance characterize the heart? J. Appl. Physiol. 40:250–252.

    PubMed  CAS  Google Scholar 

  • Janicki, J. S., Reeves, R. C., Weber, K. T., Donald, T. C., and Walker, A. A. 1974. Application of a pressure servo system developed to study ventricular dynamics. J. Appl. Physiol. 37:736–741.

    PubMed  CAS  Google Scholar 

  • Milnor, W. R., Bergel, D. H., and Bargainer, J. D. 1966. Hydraulic power associated with pulmonary blood flow and its relation to heart rate. Circ. Res. 19:467–480.

    PubMed  CAS  Google Scholar 

  • O’Rourke, M. F. 1967. Steady and pulsatile energy losses in the systemic circulation under normal conditions and in simulated arterial disease. Cardiovasc. Res. 1:313–326.

    Article  PubMed  Google Scholar 

  • Pagani, E. D., and Julian, F. J. 1984. Rabbit papillary muscle myosin isozymes and the velocity of muscle shortening. Circ. Res. 54:586–594.

    PubMed  CAS  Google Scholar 

  • Ringo, J. A., Campbell, K. B., Slinker, B. K., and Robinette, J. B. 1982. Internal series resistance: an important LV pump property. Proc. 35th ACEMB 24:64.

    Google Scholar 

  • Sagawa, K. 1978. The ventricular pressure-volume diagram revisited. Circ. Res. 43:677–687.

    PubMed  CAS  Google Scholar 

  • Sagawa, K., Suga, H., Shoukas, a. A., and Bakalar, K. M. 1977. End-systolic pressure-volume ratio: a new index of ventricular contractility. Am. J. Cardiol. 40:748–753.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, K., Lecarpentier, Y., Martin, J. L., Lompre, A. M., Mercadier, J. J., and Swynghedauw, B. 1981. Myosin isozymic distribution correlates with speed of myocardial contraction. J. Molec. Cell. Cardiol. 13:1071–1075.

    Article  CAS  Google Scholar 

  • Shroff, S. G., Janicki, J. S., and Weber, K. T. 1983. Left ventricular systolic dynamics in terms of its chamber mechanical properties. Am. J. Physiol. 245 (Heart Circ. Physiol. 14):H110–H124.

    PubMed  CAS  Google Scholar 

  • Shroff, S. G., Janicki, J. S., and Weber, K. T. 1985. Evidence and quantitation of left ventricular systolic resistance. Am. J. Physiol. 249 (Heart Circ. Physiol. 18):H358–370.

    PubMed  CAS  Google Scholar 

  • Shroff, S. G., Motz, W., Janicki, J. S., and Weber, K. T. 1985. Importance of quantifying left ventricular systolic resistance in hypertrophy due to systemic hypertension. J. Am. Coll. Cardiol. 5:487.

    Google Scholar 

  • Stull, J. T., and Mayer, S. E. 1979. Biochemical mechanisms of adrenergic and cholinergic regulation of myocardial contractility. In Berne, R. M., Sperelakis, N., and Gaiger, S. R., eds. Handbook of Physiology, Sec. 2, Vol. 1, Cardiovascular System, The Heart. Washington, DC: American Physiological Society, pp. 741–774.

    Google Scholar 

  • Suga, H., Sagawa, K., and Demar, L. 1980. Determination of instantaneous pressure in canine left ventricle: time and volume specification. Circ. Res. 46:256–263.

    PubMed  CAS  Google Scholar 

  • Suga, H., Sugawa, K., and Shoukas, A. A. 1973. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32:314–322.

    PubMed  CAS  Google Scholar 

  • Sunagawa, K., Sagawa, K., and Maughan, W. L. 1984. Ventricular interaction with the loading system. Ann. Biomed. Eng. 12:163–189.

    Article  PubMed  CAS  Google Scholar 

  • Tallarida, R. J., Ryssy, B. F., and Longname, M. H. 1970. Left ventricular wall acceleration and the law of Laplace. Cardiovasc. Res. 4:217–223.

    Article  PubMed  CAS  Google Scholar 

  • Vaartjes, S. R., van Alste, J. A., and Boom, H. B. K. 1982. Active resistance during left ventricular contraction. Proc. 35th ACEMB 24:142.

    Google Scholar 

  • Weber, K. T., Janicki, J. S., and Hefner, L. L. 1976. Left ventricular force-length relations of isovolumic and ejecting contractions. Am. J. Physiol. 231:337–343.

    PubMed  CAS  Google Scholar 

  • Westerhof, N., Elzinga, G., and Sipkema, P. 1971. An artificial arterial system for pumping hearts. J. Appl. Physiol. 31:776–781.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Shroff, S.G., Janicki, J.S., Weber, K.T. (1987). Left Ventricular Systolic Resistance and Its Role in Coupling the Ventricle to the Arterial Circulation. In: Yin, F.C.P. (eds) Ventricular/Vascular Coupling. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8634-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8634-6_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8636-0

  • Online ISBN: 978-1-4613-8634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics