Skip to main content

The Concept of Reactive Electrophilic Metabolites in Chemical Carcinogenesis: Recent Results with Aromatic Amines, Safrole, and Aflatoxin B1

  • Chapter
Biological Reactive Intermediates

Abstract

Chemical carcinogens appear to be the first class of foreign compounds demonstrated to be converted in vivo to reactive metabolites which bind covalently with tissue macromolecules (1,2), and a large literature now exists on this subject and its relevance to carcinogenesis by these agents (3–5). Considering the great structural heterogeneity of chemical carcinogens (5–8) and of drugs in general, it is not surprising that at high dosage levels a few drugs are known to be similarly activated in vivo to reactive metabolites which can exert acute toxic reactions through covalent binding with tissue components, especially proteins (9,10). Thus, although most drugs and their metabolites probably interact only noncovalently and thus reversibly with cellular molecules in their pharmacological actions, closer inspection of the metabolism of various drugs will doubtless reveal various degrees of covalent interactions in vivo. Such interactions may pose carcinogenic, mutagenic, teratogenic, allergenic, necrogenic, and possibly other hazards that must be weighed against the benefits provided by each drug in this category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. C. Miller and J. A. Miller, The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazobenzene, Cancer Res. 7, 468–480 (1947).

    CAS  Google Scholar 

  2. E. C. Miller, Studies on the formation of protein-bound derivatives of 3,4-benzpyrene in the epidermal fraction of mouse skin, Cancer Res. 11, 100–108 (1951).

    PubMed  CAS  Google Scholar 

  3. E. C. Miller and J. A. Miller, Mechanisms of chemical carcinogenesis: Nature of proximate carcinogens and interactions with macromolecules, Pharmacol. Rev. 18, 805–838 (1966).

    PubMed  CAS  Google Scholar 

  4. J. A. Miller, Carcinogenesis by chemicals: An overview-G. H. A. Clowes memorial lecture, Cancer Res. 30, 559–576 (1970).

    PubMed  CAS  Google Scholar 

  5. E. C. Miller and J. A. Miller, Biochemical mechanisms of chemical carcinogenesis, in: Molecular Biology of Cancer (H. Busch, ed.), pp. 377–402, Academic Press, New York (1974).

    Google Scholar 

  6. J. L. Hartwell, Survey of compounds which have been tested for carcinogenic activity, Public Health Service Publ. No. 149, 2nd ed., Washington, D.C. (1951).

    Google Scholar 

  7. P. Shubik and J. L. Hartwell, Survey of compounds which have been tested for carcinogenic activity, Public Health Service Publ. No. 149, SuppL 1 and 2, Washington, D.C. ( 1957, 1959 ).

    Google Scholar 

  8. J. I. Thompson and Co., Survey of compounds which have been tested for carcinogenic activity, Public Health Service Publication No. 149,1960–1967, 1968–1969, 19701971 vols., Washington, D.C.

    Google Scholar 

  9. J. R. Gillette, J. R. Mitchell, and B. B. Brodie, Biochemical mechanisms of drug toxicity, Annu. Rev. Pharmacol. 14, 271–288 (1974).

    Article  CAS  Google Scholar 

  10. J. R. Mitchell and D. J. Jollow, Metabolic activation of drugs to toxic substances, Gastroenterology 68, 392–410 (1975).

    PubMed  CAS  Google Scholar 

  11. J. A. Miller and E. C. Miller, The carcinogenic aminoazo dyes, Adv. Cancer Res. 1, 340–396 (1953).

    Google Scholar 

  12. G. P. Wheeler and H. E. Skipper, Studies with mustards. III. In vivo fixation of C14 from nitrogen mustard-C14 H, in nucleic acid fractions of animal tissues, Arch. Biochem. Biophys. 72, 465–475 (1957).

    Article  PubMed  CAS  Google Scholar 

  13. P. Brookes and P. D. Lawley, Reaction of some mutagenic and carcinogenic compounds with nucleic acids, J. Cell. Comp. Physiol. 64 (Suppl. 1), 111–120 (1964).

    Article  CAS  Google Scholar 

  14. C. Heidelberger, Studies on the molecular mechanism of hydrocarbon carcinogenesis, J. Cell. Comp. Physiol. 64 (Suppl. 1), 129–148 (1964).

    Article  Google Scholar 

  15. N. H. Colburn and R. K. Boutwell, The binding of p-propiolactone and some related alkylating agents to DNA, RNA and protein of mouse skin; relation between tumor-initiating power of alkylating agents and their binding to DNA, Cancer Res. 28, 65 3–660 (1968).

    Google Scholar 

  16. P. F. Swann and P. N. Magee, Nitrosamine-induced carcinogenesis: The alkylation of nucleic acids of the rat by N-methyl-N-nitrosourea, dimethylnitrosamine, dimethylsul-fate, and methyl methanesulfonate, Biochem. J. 110, 39–47 (1968).

    PubMed  CAS  Google Scholar 

  17. P. F. Swann and P. N. Magee, Nitrosamine-induced carcinogenesis. The alkylation of N-7 of guanine of nucleic acids of the rat by diethylnitrosamine, N-ethyl-N-nitrosourea, and ethyl methanesulfonate, Biochem. J. 125, 841–847 (1971).

    PubMed  CAS  Google Scholar 

  18. L. Den Engelse, A. J. Bentvelzen, and P. Emmelot, Studies on lung tumors: Methylation of deoxyribonucleic acid and tumor formation following administration of dimethylnitrosamine to mice, Chem.-BioL Interactions 1,359–406 (1969–1970).

    Google Scholar 

  19. W. Lijinsky, L. Keefer, J. Loo, and A. E. Ross, Studies of alkylation of nucleic acids in rats by cyclic nitrosamines, Cancer Res. 33, 1634–1641 (1973).

    PubMed  CAS  Google Scholar 

  20. A. M. Sarrif, J. S. Bertram, M. Karmarck, and C. Heidelberger, The isolation and characterization of polycyclic hydrocarbon binding proteins from mouse liver and skin cytosols, Cancer Res. 35, 816–824 (1975).

    PubMed  CAS  Google Scholar 

  21. J. A. Miller and E. C. Miller, Metabolic activation of carcinogenic aromatic amines and amides via N-hydroxylation and N-hydroxyesterification and its relationship to ultimate carcinogens as electrophilic reactants, in: The Jerusalem Symposia on Quantum Chemistry and Biochemistry: Physico-chemical Mechanisms of Carcinogenesis (E. D. Bergmann and B. Pullman, eds.), Vol. 1, pp. 237–261, Israel Academy of Sciences, Jerusalem (1969).

    Google Scholar 

  22. E. C. Miller and J. A. Miller, The mutagenicity of chemical carcinogens: Correlations, problems, and interpretations, in: Chemical Mutagens. Principles and Methods for Their Detection (A. Hollaender, ed.), Vol. 1, pp. 83–119, Plenum Press, New York (1971).

    Google Scholar 

  23. B. N. Ames, W. E. Durston, E. Yamasaki, and F. D. Lee, Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection, Proc. Natl. Acad. Sci. USA 70, 2281–2285 (1973).

    Article  PubMed  CAS  Google Scholar 

  24. P. D. Lawley, The action of alkylating mutagens and carcinogens on nucleic acids: N-methyl-N-nitroso compounds as methylating agents, in: Topics in Chemical Carcinogenesis (W. Nakahara, S. Takayama, T. Sugimura, and S. Odashima, eds.), pp. 237–258, University of Tokyo Press, Tokyo (1972).

    Google Scholar 

  25. P. D. Lawley, Carcinogenesis by alkylating agents, in: Chemical Carcinogenesis ( C. E. Searle, ed.), American Chemical Society Monograph, American Chemical Society, Washington, D.C. (1976).

    Google Scholar 

  26. A. Loveless, Possible relevance of 0–6 alkylation of deoxyguanosine to mutagenicity and carcinogenicity of nitrosamines and nitrosamides, Nature (London) 223, 206–207 (1969).

    Article  CAS  Google Scholar 

  27. L. L. Gerchman, and D. B. Ludlum, The properties of 0–6-methylguanine in templates for RNA polymerase, Biochim. Biophys. Acta 308, 310–316 (1973).

    PubMed  CAS  Google Scholar 

  28. R. Goth and M. F. Rajewsky, Persistence of 0–6-ethylguanine in rat brain DNA: Correlation with nervous system specific carcinogenesis by ethylnitrosourea, Proc. Natl. Acad. Sci. USA 71, 639–643 (1974).

    Article  PubMed  CAS  Google Scholar 

  29. J. W. Nicoll, P. F. Swann, and A. E. Pegg, Effect of dimethylnitrosamine on persistence of methylated guanines in rat liver and kidney DNA, Nature (London) 254, 261–262 (1975).

    Article  CAS  Google Scholar 

  30. E. Kriek, Carcinogenesis by aromatic amines, Biochim. Biophys. Acta 355, 177–203 (1974).

    PubMed  CAS  Google Scholar 

  31. J.-K. Lin, J. A. Miller, and E. C. Miller, On the structures of hepatic nucleic acid bound dyes in rats given the carcinogen N-methyl-4-aminoazobenzene, Cancer Res. 35, 844–850 (1975).

    Google Scholar 

  32. C. Price, G. M. Gaucher, P. Koneru, R. Shibakawa, J. R. Sowa, and M. Yamaguchi, Relative reactivities for monofunctional nitrogen mustard alkylation of nucleic acid components, Biochim. Biophys. Acta 166, 327–359 (1968).

    PubMed  CAS  Google Scholar 

  33. P. Bannon and W. G. Verly, Alkylation of phosphates and stability of phosphate triesters in DNA, Eur. J. Biochem. 31, 103–111 (1972).

    Article  PubMed  CAS  Google Scholar 

  34. P. D. Lawley, Reaction of N-methyl-N-nitrosourea (MNUA) with 32P-labelled DNA: Evidence for formation of phosphotriesters, Chem.-Biol. Interactions 7, 127–130 (1973).

    Article  CAS  Google Scholar 

  35. B. Singer and H. Fraenkel-Conrat, Reactions of oncogenic alkylating agents with nucleic acids, Proc. Am. Assoc. Cancer Res. 16, 81 (1975).

    Google Scholar 

  36. C. M. King, M. A. Shayman, and M. R. Thissen, Reaction of arylhydroxylamines with phosphate of RNA: Cleavage of the nucleic acid chain, Proc. Am. Assoc. Cancer Res. 16, 119 (1975).

    Google Scholar 

  37. P. V. O’Connor, G. P. Margison, and A. W. Craig, Phosphotriesters in rat liver deoxy-ribonucleic acid after the administration of the carcinogen N,N-dimethylnitrosamine in vivo, Biochem. J. 145, 475–482 (1975).

    PubMed  Google Scholar 

  38. L. A. Poirier, J. A. Miller, E. C. Miller, and K. Sato, N-Benzoyloxy N-methyl-4aminoazobenzene: Its carcinogenic activity in the rat and its reactions with proteins and nucleic acids and their constituents in vitro, Cancer Res. 27, 1600–1613 (1967).

    PubMed  CAS  Google Scholar 

  39. B. Ketterer and L. Christodoulides, Two specific azo dye binding proteins of the rat liver: The identity of amino acid residues which bind the dye, Chem.-Biol. Interactions 1, 173–183 (1969).

    Article  CAS  Google Scholar 

  40. E. J. Barry, D. Malejka-Giganti, and H. R. Gutmann, Interaction of aromatic amines with rat liver proteins in vivo. III. On the mechanism of binding of the carcinogens, N-2-fluorenylacetamide and N-hydroxy-2-fluorenylacetamide, to the soluble proteins, Chem.-Biol. Interactions 1, 139–155 (1969/1970).

    Google Scholar 

  41. J.-K. Lin, J. A. Miller, and E. C. Miller, Studies on structures of polar dyes derived from the liver proteins of rats fed N-methyl-4-aminoazobenzene. H. Identity of synthetic 3-(homocystein-S-y1)-N-methyl 4-aminoazobenzene with the major polar dye P2b, Biochemistry 7, 1889–1895 (1968).

    Article  PubMed  CAS  Google Scholar 

  42. J. K. Lin, J. A. Miller, and E. C. Miller, Studies on structures of polar dyes derived from the liver proteins of rats fed N-methyl-4-aminoazobenzene. III. Tyrosine and homocysteine sulfoxide polar dyes, Biochemistry 8, 1573–1582 (1969).

    Article  PubMed  CAS  Google Scholar 

  43. J. R. DeBaun, E. C. Miller, and J. A. Miller, N-Hydroxy-2-acetylaminofluorene sulfotransferase: Its possible role in carcinogenesis and protein-(methion-S-yl)-binding in rat liver, Cancer Res. 30, 577–595 (1970).

    PubMed  CAS  Google Scholar 

  44. C. B. Kasper, Biochemical distinction between the nuclear and microsomal membranes from rat hepatocytes: The effect of phenobarbital administration, J. Biol. Chem. 246, 577–581 (1971).

    PubMed  CAS  Google Scholar 

  45. A. S. Khandwala and C. B. Kasper, Preferential induction of aryl hydrocarbon hydroxylase activity in rat liver nuclear envelope by 3-methylcholanthrene, Biochem, Biophys. Res. Commun. 54, 1241–1246 (1973).

    Article  CAS  Google Scholar 

  46. E. G. Rogan and E. Cavalieri, Comparison of cyto chrome P-450 and aryl hydrocarbon hydroxylase levels with binding of aromatic hydrocarbons to DNA in uninduced and induced rat liver nuclei, Proc. Am. Assoc. Cancer Res. 16, 60 (1975).

    Google Scholar 

  47. J. R. DeBaun, J. Y. R. Smith, E. C. Miller, and J. A. Miller, Reactivity in vivo of the carcinogen N-hydroxy-2-acetylaminofluorene: Increase by sulfate ion, Science 167, 184–186 (1970).

    Article  PubMed  CAS  Google Scholar 

  48. J. H. Weisburger, R. S. Yamamoto, G. H. Williams, P. H. Grantham, T. Matsushima, and E. K. Weisburger, On the sulfate ester of N-hydroxy-2-fluorenylacetamide as a key ultimate hepatocarcinogen in the rat, Cancer Res. 32, 491–500 (1972).

    PubMed  CAS  Google Scholar 

  49. H. R. Gutmann, D. Malejka-Giganti, E. J. Barry, and R. E. Rydell, On the correlation between the hepatocarcinogenicity of the carcinogen N-2-fluorenylacetamide and its metabolic activation by the rat, Cancer Res 32, 1554–1561 (1972).

    PubMed  CAS  Google Scholar 

  50. V. M. Maher, E. C. Miller, J. A. Miller, and W. Szybalski, Mutation and decreases in density of transforming DNA produced by derivatives of the carcinogens 2-acetylaminofluorene and N-methyl-4-aminoazobenzene, Mol. Pharmacol. 4, 411–426 (1968).

    PubMed  CAS  Google Scholar 

  51. H. Bartsch, M. Dworkin, J. A. Miller, and E. C. Miller, Electrophilic N-acetoxyaminoarenes derived from carcinogenic N-hydroxy-N-acetylaminoarenes by enzymatic deacetylation and transacetylation in liver, Biochim. Biophys. Acta 286, 272–298 (1972).

    PubMed  CAS  Google Scholar 

  52. H. Bartsch, C. Dworkin, E. C. Miller, and J. A. Miller, Formation of electrophilic N-acetoxyaminoarenes in cytosols from rat mammary gland and other tissues by transacetylation from the carcinogen N-hydroxy-4-acetylaminobiphenyl, Biochim. Biophys. Acta 304, 42–55 (1973).

    PubMed  CAS  Google Scholar 

  53. C. M. King, Mechanism of reaction, tissue distribution, and inhibition of arylhydroxamic acid acyltransferase, Cancer Res. 34, 1503–1516 (1974).

    PubMed  CAS  Google Scholar 

  54. C. M. King and C. W. Olive, Comparative effects of strain, species, and sex on the acyltransferase-and sulfotransferase-catalyzed activations of N-hydroxy-N-2-fluorenylacetamide, Cancer Res. 35, 906–912 (1975).

    PubMed  CAS  Google Scholar 

  55. H. Bartsch and E. Hecker, On the metabolic activation of the carcinogen N-hydroxy-N2-acetylaminofluorene. III. Oxidation with horseradish peroxidase to yield 2-nitrosofluorene and N-acetoxy N-2-acetylaminofluorene, Biochim. Biophys. Acta 237, 567–578 (1971).

    Google Scholar 

  56. H. Bartsch, M. Traut, and E. Hecker, On the metabolic activation of N-hydroxy-N2-acetylaminofluorene. II. Simultaneous formation of 2-nitrosofluorene and N-acetoxyN-2-acetylaminofluorene from N-hydroxy-N-2-acetylaminofluorene via a free radical intermediate, Biochim. Biophys. Acta 237, 556–566 (1971).

    PubMed  CAS  Google Scholar 

  57. H. Bartsch, J. A. Miller, and E. C. Miller, N-Acetoxy-N-acetylaminoarenes and nitrosoarenes: One-electron non-enzymatic and enzymatic products of various carcinogenic aromatic acethydroxamic acids, Biochim. Biophys. Acta 273, 40–51 (1972).

    PubMed  CAS  Google Scholar 

  58. C. M. King, T. W. Bednar, and E. M. Linsmaier-Bednar, Activation of the carcinogen N-hydroxy-2-fluorenylacetamide: Insensitivity to cyanide and sulfide of the peroxidase-H202 induced formation of nucleic acid adducts, Chem.-Biol. Interactions 7, 185–188 (1973).

    Article  CAS  Google Scholar 

  59. J. A. Miller, C. S. Wyatt, E. C. Miller, and H. A. Hartmann, The N-hydroxylation of 4-acetylaminobiphenyl by the rat and dog and the strong carcinogenicity of N-hydroxy4-acetylaminobiphenyl in the rat, Cancer Res. 21, 1465–1473 (1961).

    CAS  Google Scholar 

  60. A. R. Forrester, M. M. Ogilvy, and R. H. Thompson, Mode of action of carcinogenic amines. Part I. Oxidation of N-arylhydroxyamic acids, J. Chem. Soc. 1081–1083 (1970).

    Google Scholar 

  61. E. Kriek, On the mechanism of action of carcinogenic aromatic amines. II. Binding of N-hydroxy-N-acetylaminobiphenyl to rat-liver nucleic acids in vivo, Chem.-Biol. Interactions 3, 19–28 (1971).

    Article  CAS  Google Scholar 

  62. J. D. Scribner, J. A. Miller, and E. C. Miller, 3-Methylmercapto N-methyl-4-aminoazobenzene: An alkaline-degradation product of a labile protein-bound dye in the livers of rats fed N,N-dimethyl-4-aminoazobenzene, Biochem. Biophys. Res. Commun. 20, 560–565 (1965).

    Article  PubMed  CAS  Google Scholar 

  63. Kadlubar, F. F., J. A. Miller, and E. C. Miller, Microsomal N-oxidation of the hepatocarcinogen N-methyl-4-aminoazobenzene and the reactivity of N-hydroxy N-methyl-4aminoazobenzene, Cancer Res. 36, 1196–1206 (1976).

    PubMed  CAS  Google Scholar 

  64. Kadlubar, F. F., J. A. Miller, and E. C. Miller, Hepatic metabolism of N-hydroxy-Nmethyl-4-aminoazobenzene and other N-hydroxy arylamines to reactive sulfuric acid esters, Cancer Res. 36, 2350–2359 (1976).

    PubMed  CAS  Google Scholar 

  65. Y. Hashimoto and M. Degawa, Synthesis of N-hydroxy-4-(methylamino)-azobenzene and its acetate, and their reactivity to amino acids, Gann 66, 215–216 (1975).

    PubMed  CAS  Google Scholar 

  66. G. C. Mueller and J. A. Miller, The metabolism of methylated aminoazo dyes. II. Oxidative demethylation by rat liver homogenates. J. Biol. Chem. 202, 579–587 (1953).

    PubMed  CAS  Google Scholar 

  67. K. Sato, L. A. Poirier, J. A. Miller, and E. C. Miller, Studies on the N-hydroxylation and carcinogenicity of 4-aminoazobenzene and related compounds, Cancer Res. 26, 1678–1687 (1966).

    PubMed  CAS  Google Scholar 

  68. D. M. Ziegler and C. H. Mitchell, Microsomal oxidase. N. Properties of a mixed-function amine oxidase isolated from pig liver microsomes, Arch. Biochem. Biophys. 150, 116–125 (1972).

    Article  PubMed  CAS  Google Scholar 

  69. J. M. Blunck and C. E. Crowther, Enhancement of azo dye carcinogenesis by dietary sodium sulphate, Eur. J. Cancer 11, 23–32 (1975).

    Article  PubMed  CAS  Google Scholar 

  70. P. Borchert, P. G. Wislocki, J. A. Miller, and E. C. Miller, The metabolism of the naturally-occurring hepatocarcinogen safrole to l’-hydroxysafrole and the electrophilic reactivity of l’-acetoxysafrole, Cancer Res. 33, 575–589 (1973).

    PubMed  CAS  Google Scholar 

  71. P. Borchert, J. A. Miller, E. C. Miller, and T. K. Shires, l’-Hydroxysafrole: A proximate carcinogenic metabolite of safrole in the rat and mouse, Cancer Res. 33, 590–600 (1973).

    PubMed  CAS  Google Scholar 

  72. P. G. Wislocki, P. Borchert, J. A. Miller, and E. C. Miller, The metabolic activation of the carcinogen l’-hydroxysafrole in vivo and in vitro and the electrophilic reactivities of possible ultimate carcinogens, Cancer Res. 36, 1686–1695 (1976).

    PubMed  CAS  Google Scholar 

  73. P. G. Wislocki, On the proximate and ultimate carcinogenic metabolites of precarcinogens: Safrole and certain N-alkylaminoazo dyes, Ph.D. thesis, University of Wisconsin, Madison, Wis. (1974).

    Google Scholar 

  74. E. O. Oswald, L. Fishbein, B. J. Corbett, and M. P. Walker, Identification of tertiary aminomethylenedioxypropiophenones as urinary metabolites of safrole in the rat and guinea pig, Biochim. Biophys. Acta 230, 237–247 (1971).

    PubMed  CAS  Google Scholar 

  75. W. G. Stillwell, M. J. Carman, L. Bell, and M. G. Horning, The metabolism of safrole and 2’,3’-epoxysafrole in the rat and guinea pig, Drug Metab. Dispos. 2, 489–498 (1974).

    PubMed  CAS  Google Scholar 

  76. G. N. Wogan, S. Paglialunga, and P. M. Newberne, Carcinogenic effects of low dietary levels of aflatoxin B, in rats, Food Cosmet. Toxicol. 12, 681–685 (1974).

    Article  PubMed  CAS  Google Scholar 

  77. J. E. Halver, Aflatoxicosis and trout hepatoma, in: Aflatoxin: Scientific Background, Control, and Implications (L. A. Goldblatt, ed.), pp. 265–306, Academic Press, New York (1969).

    Google Scholar 

  78. R. C. Garner, E. C. Miller, and J. A. Miller, Liver microsomal metabolism of aflatoxin B, to a reactive derivative toxic to Salmonella typhimurium TA 1530, Cancer Res. 32, 2058–2066 (1972).

    PubMed  CAS  Google Scholar 

  79. R. C. Garner, Chemical evidence for the formation of a reactive aflatoxin B, metabolite by hamster liver microsomes, FEBS Lett. 36, 261–264 (1973).

    Article  PubMed  CAS  Google Scholar 

  80. D. H. Swenson, J. A. Miller, and E. C. Miller, 2,3-Dihydro-2,3-dihydroxyaflatoxin B1: An acid hydrolysis product of an RNA-aflatoxin B, adduct formed by hamster and rat liver microsomes in vitro, Biochem. Biophys. Res. Commun. 53, 1260–1267 (1973).

    Article  PubMed  CAS  Google Scholar 

  81. D. H. Swenson, E. C. Miller, and J. A. Miller, Aflatoxin B, -2,3-oxide: Evidence for its formation in rat liver in vivo and by human liver microsomes in vitro, Biochem. Biophys. Res. Commun. 60, 1036–1043 (1974).

    Article  PubMed  CAS  Google Scholar 

  82. W. Lijinsky, K. Y. Lee, and C. H. Gallagher, Interaction of aflatoxin B, and G, with tissues of the rat, Cancer Res. 30, 2280–2283 (1970).

    PubMed  CAS  Google Scholar 

  83. R. C. Garner and C. M. Wright, Induction of mutations in DNA-repair deficient bacteria by a liver microsomal metabolite of aflatoxin B1, Br. J. Cancer 28, 544–551 (1973).

    Article  PubMed  CAS  Google Scholar 

  84. J. McCann, N. E. Spingarn, J. Kobori, and B. N. Ames, Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids, Proc. Natl. Acad. Sci. USA 72, 979–983 (1975).

    Article  PubMed  CAS  Google Scholar 

  85. R. C. Garner, Microsome-dependent binding of aflatoxin B, to DNA, RNA, polynucleotides and protein in vivo, Chem.-Biol. Interactions 6, 125–129 (1973).

    Article  CAS  Google Scholar 

  86. H. L. Gurtoo and T. C. Campbell, Metabolism of aflatoxin B, and its metabolism-dependent and independent binding to rat hepatic microsomes, Mol. Pharmacol. 10, 776–789 (1974).

    CAS  Google Scholar 

  87. G. N. Wogan, G. S. Edwards, and P. N. Newberne, Structure-activity relationships in toxicity and carcinogenicity of aflatoxins and analogs, Cancer Res. 31, 1936–1942 (1971).

    PubMed  CAS  Google Scholar 

  88. D. H. Swenson, J. A. Miller, and E. C. Miller, The reactivity and carcinogenicity of aflatoxin B, -2,3-dichloride, a model for the putative 2,3-oxide metabolite of aflatoxin B1, Cancer Res. 35, 3811–3823 (1975).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Miller, J.A., Miller, E.C. (1977). The Concept of Reactive Electrophilic Metabolites in Chemical Carcinogenesis: Recent Results with Aromatic Amines, Safrole, and Aflatoxin B1 . In: Jollow, D.J., et al. Biological Reactive Intermediates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4124-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4124-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4126-0

  • Online ISBN: 978-1-4613-4124-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics