Skip to main content

Epoxide Hydratase: Purification to Apparent Homogeneity as a Specific Probe for the Relative Importance of Epoxides among Other Reactive Metabolites

  • Chapter
Biological Reactive Intermediates

Abstract

Aromatic and olefinic compounds can be metabolized by microsomal monooxygenases to epoxides which chemically represent electrophilic species (for reviews, see refs. 1–5). Spontaneous binding of such epoxides to DNA, RNA, and protein has been observed (6–10). Accordingly, such metabolites have been suggested and, in some instances, shown to disturb the normal functions of cells, leading to such effects as mutagenesis (11–14), malignant transformation (15–19), or cell necrosis (20). However, aromatic and olefinic compounds are biotransformed to a vast array of metabolites (cf. refs. 21–27), possibly including a considerable number of reactive metabolites other than epoxides. The relative importance of epoxides among other reactive metabolites is at present unknown. With respect to the model compound used in this study, benzo[a]pyrene, our previous studies had shown that the 4,5- (K-region-) epoxide metabolite was a potent mutagen for the frameshift-sensitive Salmonella strains TA 1537 and TA 1538 (28), that the premutagenic hydrocarbon required a NADPH-supported microsomal monooxygenase system to become mutagenically active, and that the mutagenic response was potentiated by the presence of epoxide hydratase inhibitors at concentrations where no interference with other systems has been observed (28). Yet no conclusion could be reached whether the relative contribution of epoxide metabolites to the overall muta-genic effect of bioactivated benzo[a]pyrene was of any significance since the potentiation of the mutagenic effect by epoxide hydratase inhibitors could simply mean that blocking this pathway led to an accumulation of epoxides, making them important in this situation, while in absence of such inhibitors their contribution to the overall mutagenic effect may have been negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. W. Daly, D. M. Jerina, and B. Witkop, Arene oxides and the NIH shift: The metabolism, toxicity and carcinogenicity of aromatic compounds, Experientia 28, 1129–1264 (1972).

    Article  PubMed  CAS  Google Scholar 

  2. F. Oesch, Mammalian epoxide hydrases: Inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds, Xenobiotica 3, 305–340 (1973).

    Article  PubMed  CAS  Google Scholar 

  3. D. M. Jerina and J. W. Daly, Arene oxides: A new aspect of drug metabolism, Science 185, 573–582 (1974).

    Article  PubMed  CAS  Google Scholar 

  4. P. Sims and P. L. Grover, Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis, Adv. Cancer Res. 20, 165–274 (1974).

    Article  PubMed  CAS  Google Scholar 

  5. M. G. Horning, C. M. Butler, J. Nowlin, and R. M. Hill, Drug metabolism in the human neonate, Life Sci. 16, 651–672 (1975).

    Article  PubMed  CAS  Google Scholar 

  6. P. L. Grover and P. Sims, Interactions of the K-region epoxides of phenanthrene and dibenz[a,h] anthracene with nucleic acids and histone, Biochem. Pharmacol. 19, 2251–2259 (1970).

    Article  PubMed  CAS  Google Scholar 

  7. T. Kuroki, E. Huberman, H. Marquardt, J. K. Selkirk, C. Heidelberger, P. L. Grover, and P. Sims, Binding of K-region epoxides and other derivatives of benz[a] anthracene and dibenz [a,h] anthracene to DNA, RNA and proteins of transformable cells; Chem.-Biol. Interactions 4, 389–397 (1971/72).

    Google Scholar 

  8. P. D. Lawley and N. Jarman, Alkylation by propylene oxide of deoxyribonucleic acid, adenine, guanosine and deoxyguanylic acid, Biochem. J. 126, 893–900 (1972).

    PubMed  CAS  Google Scholar 

  9. I. Y. Wang, R. E. Rasmussen, and T. T. Crooker, Isolation and characterization of an active DNA-binding metabolite of benzo [a] pyrene from hamster liver incubation systems, Biochem. Biophys. Res. Commun. 49, 1142–1149 (1972).

    Article  PubMed  CAS  Google Scholar 

  10. P. L. Grover and P. Sims, K-region epoxides of polycyclic hydrocarbons: Reactions with nucleic acids and polyribonucleotides, Biochem. Pharmacol. 22, 661–666 (1973).

    Article  PubMed  CAS  Google Scholar 

  11. M. J. Cookson, P. Sims, and P. L. Grover, Mutagenicity of epoxides of polycyclic hydrocarbons correlates with carcinogenicity of parent hydrocarbons, Nature (London) New Biol. 234, 186–187 (1971).

    CAS  Google Scholar 

  12. E. L. Huberman, L. Aspiras, C. Heidelberger, P. L. Grover, and P. Sims, Mutagenicity to mammalian cells of epoxides and other derivatives of polycyclic hydrocarbons, Proc. Natl. Acad. Sci. USA 68, 3195–3199 (1971).

    Article  PubMed  CAS  Google Scholar 

  13. B. N. Ames, P. Sims. and P. L. Grover, Epoxides of carcinogenic polycyclic hydrocarbons are frameshift mutagens, Science 176, 47–49 (1972).

    Article  PubMed  CAS  Google Scholar 

  14. O. G. Fahmy and M. J. Fahmy, Oxidative activation of benz [a] anthracene and methylated derivatives in mutagenesis and carcinogenesis, Cancer Res. 33, 2354–2361 (1973).

    PubMed  CAS  Google Scholar 

  15. B. L. Van Duuren, L. Langseth, B. M. Goldschmidt, and L. Orris, Carcinogenicity of epoxides, lactones and peroxy compounds. VI. Structure and carcinogenic activity, J. Natl. Cancer Inst. 39, 1217–1228 (1967).

    PubMed  Google Scholar 

  16. P. L. Grover, P. Sims, E. Huberman, H. Marquardt, T. Kuroki, and C. Heidelberger, In vitro transformation of rodent cells by K-region derivatives of polycyclic hydrocarbons, Proc. Natl. Acad. Sci. USA 68, 1098–1101 (1971).

    Article  PubMed  CAS  Google Scholar 

  17. H. Marquardt, T. Kuroki, E. Huberman, J. K. Selkirk, C. Heidelberger, P. L. Grover, and P. Sims, Malignant transformation of cells derived from mouse prostate by epoxides and other derivatives of polycyclic hydrocarbons, Cancer Res. 32, 716–720 (1972).

    PubMed  CAS  Google Scholar 

  18. E. Huberman, T. Kuroki, H. Marquardt, J. K. Selkirk, C. Heidelberger, P. L. Grover, and P. Sims, Transformation of hamster embryo cells by epoxides and other derivatives of polycyclic hydrocarbons, Cancer Res. 32, 1391–1396 (1972).

    PubMed  CAS  Google Scholar 

  19. K. Bürki, T. A. Stoming, and E. Bresnick, Effects of an epoxide hydrase inhibitor on in vitro binding of polycyclic hydrocarbons to DNA and on skin carcinogenesis, J. Natl. Cancer Inst. 52, 785–788 (1974).

    PubMed  Google Scholar 

  20. B. B. Brodie, W. D. Reid, A. K. Cho, G. Sipes, G. Krishna, and J. R. Gillette, Possible mechanism of liver necrosis caused by aromatic organic compounds, Proc. Natl. Acad. Sci. USA 68, 160–164 (1971).

    Article  PubMed  CAS  Google Scholar 

  21. H. L. Falk, P. Kotin, S. S. Lee, and A. Nathan, Intermediary metabolism of benzo[a]pyrene in the rat, J. Natl. Cancer Inst. 28, 699–724 (1962).

    CAS  Google Scholar 

  22. Ch. Nagata, M. Kodama, and Y. Tagashira, Electron spin resonance study on the interaction between chemical carcinogens and tissue components. II. Free radical produced by stirring aromatic hydrocarbons with tissue components such as skin homogenates or proteins, GANN 58, 493–504 (1967).

    PubMed  CAS  Google Scholar 

  23. A. Dipple, P. D. Lawley, and P. Brookes, Theory of tumour initiation by chemical carcinogens: Dependence of activity on structure of ultimate carcinogen, J. Cancer 4, 493–505 (1968).

    CAS  Google Scholar 

  24. P. L. Grover, A. Hewer, and P. Sims, Metabolism of polycyclic hydrocarbons by rat-lung preparations, Biochem. Pharmacol. 23, 323–332 (1974).

    Article  PubMed  CAS  Google Scholar 

  25. G. Holder, H. Yagi, P. Dansette, D. M. Jerina, W. Levin, A. Y. H. Lu, and A. H. Conney, Effects of inducers and epoxide hydrase on the metabolism of benzo[a] pyrene by liver microsomes and a reconstituted system: Analysis by high pressure liquid chromatography, Proc. Natl. Acad. Sci. USA 71, 4356–4360 (1974).

    Article  PubMed  CAS  Google Scholar 

  26. R. E. Rasmussen and I. Y. Wang, Dependence of specific metabolism of benzo[a]pyrene on the inducer of hydroxylase activity, Cancer Res. 34, 2290–2295 (1974).

    PubMed  CAS  Google Scholar 

  27. J. K. Selkirk, R. G. Croy, P. P. Roller, and H. V. Gelboin, High-pressure liquid chromatographic analysis of benzo[a] pyrene metabolism and covalent binding and the mechanism of action of 7,8-benzoflavone and 1,2.epoxy-3,3,3-trichloropropane, Cancer Res. 34, 3474–3480 (1974).

    PubMed  CAS  Google Scholar 

  28. F. Oesch and H. R. Glatt, in: Screening Tests in Chemical Carcinogenesis ( R. Montesano, H. Bartsch, and L. Tomatis, eds.), pp. 255–295, International Agency for Research on Cancer, Lyon (1976).

    Google Scholar 

  29. F. Oesch and J. Daly, Solubilization, purification and properties of a hepatic epoxide hydrase, Biochim. Biophys. Acta 227, 692–697 (1971).

    PubMed  CAS  Google Scholar 

  30. F. Oesch, Purification and specificity of a human microsomal epoxide hydratase, Biochem. J. 139, 77–88 (1974).

    PubMed  CAS  Google Scholar 

  31. A. Erel, Y. Zaidenzaig, and S. Shaltiel, Hydrocarbon coated Sepharoses: Use in the purification of glycogen phosphorylase, Biochem. Biophys. Res. Commun. 49, 383–390 (1972).

    Article  CAS  Google Scholar 

  32. K. Weber and M. Osborn, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 244, 4406–4412 (1969).

    PubMed  CAS  Google Scholar 

  33. R. A. Capaldi and G. Vanderkooi, The low polarity of many membrane proteins, Proc. Natl. Acad. Sci. USA 69, 930–932 (1972).

    Article  PubMed  CAS  Google Scholar 

  34. P. Bentley, F. Oesch, and A. Tsugita, Properties and amino acid composition of pure epoxide hydratase, FEBS Lett. 59, 296–299 (1975).

    Article  PubMed  CAS  Google Scholar 

  35. B. N. Ames, F. D. Lee, and W. E. Durston, An improved bacterial test system for the detection and classification of mutagens and carcinogens, Proc. Natl. Acad. Sci. USA 70, 782–786 (1973).

    Article  PubMed  CAS  Google Scholar 

  36. T. Chang, A. Savory, and A. J. Glazko, A new metabolite of 5,5-diphenylhydantoin (Dilantin), Biochem. Biophys. Res. Commun. 33, 444–449 (1970).

    Article  Google Scholar 

  37. J. T. Matschiner, R. G. Bell, J. M. Amelotti, and T. E. Knauer, Isolation and characterization of a new metabolite of phylloquinone in the rat, Biochim. Biophys. Acta 201, 309–315 (1970).

    PubMed  CAS  Google Scholar 

  38. S. F. Sisenwine, C. O. Tio, S. R. Shrader, and H. Ruelius, The biotransformation of protriptyline in man, pig and dog, J. Pharmacol. Exp. Ther. 175, 51–59 (1970).

    PubMed  CAS  Google Scholar 

  39. A. Frigerio, R. Fanelli, P. Biandrate, G. Passerini, P. L. Morselli, and S. Garattini, Mass spectrometric characterization of carbamazepine-10,11-epoxide, a carbamazepine metabolite isolated from human urine, J. Pharm. Sci. 61, 1144–1147 (1972).

    Article  PubMed  CAS  Google Scholar 

  40. D. J. Harvey, L. Glazener, C. Stratton, D. B. Johnson, R. M. Hill, E. C. Horning, and M. G. Horning, Detection of epoxides of allylsubstituted barbiturates in rat urine, Res. Commun. Chem. Pathol. Pharmacol. 4, 247–260 (1972).

    PubMed  CAS  Google Scholar 

  41. D. J. Harvey, L. Glazener, C. Stratton, J. Nowlin, R. M. Hill, and M. G. Horning, Detection of a 5-(2,4-dihydroxy-1,5-cyclohexadien-1-y1) metabolite of Phenobarbital and mephobarbital in rat, guinea pig and human, Res. Commun. Chem. Pathol. Pharmacol. 3, 557–565 (1972).

    PubMed  CAS  Google Scholar 

  42. M. G. Horning, D. J. Harvey, J. Nowlin, W. G. Stillwell, and R. M. Hill, The use of gas chromatography mass spectrometry methods in perinatal pharmacology, Adv. Biochem. Psychopharmacol. 7, 113–124 (1973).

    PubMed  CAS  Google Scholar 

  43. A. Frigerio, N. Sossi, G. Belvedere, C. Pantarotto, and S. Garattini, Identification of desmethylcyproheptadine-10–11-epoxide and other cyproheptadine metabolites isolated from rat uterine, J. Pharm. Sci, 63, 1536–1539 (1974).

    Article  PubMed  CAS  Google Scholar 

  44. P. H. Grantham, L. C. Mohan, E. K. Weisburger, H. M. Fales, E. A. Sokoloski, and J. H. Weisburger, Identification of new water-soluble metabolites of acetanilide, Xenobiotica 4, 69–76 (1974).

    Article  PubMed  CAS  Google Scholar 

  45. H. B. Hucker, A. J. Balletto, S. C. Stauffer, A. G. Zacchei, and B. H. Arison, Physiological disposition and urinary metabolites of cyproheptadine in the dog, rat, and cat, Drug Metal). Dispos. 2, 406–415 (1974).

    CAS  Google Scholar 

  46. H. B. Hucker, A. J. Balletto, J. Demetriades, B. H. Arison, and A. G. Zacchei, Epoxide metabolites of protriptyline in rat urine, Drug. Metab. Dispos. 3, 80–84 (1975).

    PubMed  CAS  Google Scholar 

  47. H. Kappus and H. Remmer, Irreversible protein binding of C-imipramine with rat and human liver microsomes, Biochem. Pharmacol. 24, 1079–1084 (1975).

    Article  PubMed  CAS  Google Scholar 

  48. D. M. Jerina, H. Yagi, and J. W. Daly, Arene oxides-oxepins, Heterocycles 1, 267–299 (1973).

    Article  CAS  Google Scholar 

  49. P. L. Morselli, P. Biandrate, A. Frigerio, M. Gerna, and G. Tognoni, in: Gas Chromatographic Determination of Carbamazepine and Carbamazepine-10,11-Epoxide in Human Body Fluids ( J. W. A. Meijer, H. Mienardi, C. Gardner-Thorpe, and E. van der Kleijn, eds.), pp. 169–175, Excerpta Medica, Amsterdam (1973).

    Google Scholar 

  50. M. Eichelbaum and L. Bertilsson, Determination of carbamazepine and its epoxide metabolite in plasma by high-speed liquid chromatography, J. Chromatogr. 103, 135–140 (1975).

    Article  PubMed  CAS  Google Scholar 

  51. J. McCann, N. E. Spingarn, J. Kobori, and B. N. Ames, Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids, Proc. Natl. Acad. Sci. USA 72, 979–983 (1975).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Oesch, F., Bentley, P., Glatt, H.R. (1977). Epoxide Hydratase: Purification to Apparent Homogeneity as a Specific Probe for the Relative Importance of Epoxides among Other Reactive Metabolites. In: Jollow, D.J., et al. Biological Reactive Intermediates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4124-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4124-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4126-0

  • Online ISBN: 978-1-4613-4124-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics