Skip to main content

Fifty Years of Cytochrome P450 Research: Examples of What We Know and Do Not Know

  • Chapter
  • First Online:
Fifty Years of Cytochrome P450 Research
  • 1698 Accesses

Abstract

The discovery of a new hemoprotein from rabbit liver in 1962 is one of the key moments in biology. Today, cytochrome P450 enzymes constitute a protein superfamily found in all domains of life and have even been described in some viruses. Herein, we describe some of the early experimental groundwork including P450 multiplicity and activity, electron transfer , and cellular localization that led to our early understanding of the molecular properties of P450 enzymes. Subsequently, following the advent of recombinant DNA technology and the development of heterologous expression systems and genomic sequencing, the traditional understanding of what actually defined a P450 was challenged: these included P450s with unusual molecular properties such as differences in electron partner proteins, fusion proteins, posttranslational modification(s) and unique catalytic activities. Selected examples from our own research findings are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anandatheerthavarada HK, Biswas G, Mullick J, Sepuri NB, Otvos L, Pain D, Avadhani NG (1999) Dual targeting of cytochrome P4502B1 to endoplasmic reticulum and mitochondria involves a novel signal activation by cyclic AMP-dependent phosphorylation at ser128. EMBO J 18:5494–5504

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aoyama Y, Yoshida Y (1978) The 14-alpha-demethylation of lanosterol by a reconstituted cytochrome P-450 system from yeast microsomes. Biochem Biophys Res Commun 85:28–34

    CAS  PubMed  Google Scholar 

  • Aoyama T, Yamano S, Guzelian PS, Gelboin HV, Gonzalez FJ (1990) Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B1. Proc Natl Acad Sci USA 87:4790–4793

    PubMed Central  CAS  PubMed  Google Scholar 

  • Appleby CA (1967) A soluble hemoprotein P450 from nitrogen-fixing Rhizobium bacteroids. Biochim Biophys Acta 147:399–402

    CAS  PubMed  Google Scholar 

  • Asseffa A, Smith SJ, Nagata K, Gillette J, Gelboin HV, Gonzalez FJ (1989) Novel exogenous heme-dependent expression of mammalian cytochrome P450 using baculovirus. Arch Biochem Biophys 274:481–490

    CAS  PubMed  Google Scholar 

  • Atkins WM, Sligar SG (1988) The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis. J Biol Chem 263:18842–18849

    CAS  PubMed  Google Scholar 

  • Avadhani NG, Sangar MC, Bansal S, Bajpai P (2011) Bimodal targeting of cytochrome P450s to endoplasmic reticulum and mitochondria: the concept of chimeric signals. FEBS J 278:4218–4229

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bajpai P, Sangar MC, Singh S, Tang W, Bansal S, Chowdhury G, Cheng Q, Fang JK, Martin MV, Guengerich FP, Avadhani NG (2013) Metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by mitochondrion-targeted cytochrome P450 2D6: implications in Parkinson disease. J Biol Chem 288:4436–4451

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bansal S, Liu CP, Sepuri NB, Anandatheerthavarada HK, Selvaraj V, Hoek J, Milne GL, Guengerich FP, Avadhani NG (2010) Mitochondria-targeted cytochrome P450 2E1 induces oxidative damage and augments alcohol-mediated oxidative stress. J Biol Chem 285:24609–24619

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bansal S, Anandatheerthavarada HK, Prabu GK, Milne GL, Martin MV, Guengerich FP, Avadhani NG (2013) Human cytochrome P450 2E1 mutations that alter mitochondrial targeting efficiency and susceptibility to ethanol-induced toxicity in cellular models. J Biol Chem 288:12627–12644

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barnes HJ, Arlotto MP, Waterman MR (1991) Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proc Natl Acad Sci USA 88:5597–5601

    PubMed Central  CAS  PubMed  Google Scholar 

  • Battula N (1989) Transduction of cytochrome P3-450 by retroviruses: constitutive expression of enzymatically active microsomal hemoprotein in animal cells. J Biol Chem 264:2991–2996

    CAS  PubMed  Google Scholar 

  • Belin P, Le Du MH, Fielding A, Lequin O, Jacquet M, Charbonnier JB, Lecoq A, Thai R, Courçon M, Masson C, Dugave C, Genet R, Pernodet JL, Gondry M (2009) Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 106:7426–7431

    PubMed Central  PubMed  Google Scholar 

  • Briza P, Eckerstorfer M, Breitenbach M (1994) The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. Proc Natl Acad Sci USA 91:4524–4528

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng Q, Lamb DC, Kelly SL, Lei L, Guengerich FP (2010) Cyclization of a cellular dipentaenone by Streptomyces coelicolor cytochrome P450 154A1 without oxidation/reduction. J Am Chem Soc 132:15173–15175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Conney AH (2003) Induction of drug-metabolizing enzymes: a path to the discovery of multiple cytochromes P450. Annu Rev Pharmacol Toxicol 43:1–30

    CAS  PubMed  Google Scholar 

  • Coon MJ (2005) Cytochrome P450: nature’s most versatile biological catalyst. Annu Rev Pharmacol Toxicol 45:1–25

    CAS  PubMed  Google Scholar 

  • Cooper DY, Levin SS, Narasimhulu S, Rosenthal O, Estabrook RW (1965) Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems. Science 147:400–402

    CAS  PubMed  Google Scholar 

  • Crespi CL, Steimel DT, Aoyama T, Gelboin HV, Gonzalez FJ (1990) Stable expression of human cytochrome P450IA2 cDNA in a human lymphoblastoid cell line: role of the enzyme in the metabolic activation of aflatoxin B1. Mol Carcinog 3:5–8

    CAS  PubMed  Google Scholar 

  • De Mot R, Parret AHA (2002) A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes. Trends Microbiol 10:502–508

    PubMed  Google Scholar 

  • DeWitt DJ, Smith WL (1983) Purification of prostacyclin synthase from bovine aorta by immunoaffinity chromatography. Evidence that the enzyme is hemoprotein. J Biol Chem 258:3285–3293

    CAS  PubMed  Google Scholar 

  • Distlerath LM, Reilly PE, Martin MV, Davis GG, Wilkinson GR, Guengerich FP (1985) Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J Biol Chem 260:9057–9067

    CAS  PubMed  Google Scholar 

  • Doehmer J, Oesch F (1991) V79 Chinese hamster cells genetically engineered for stable expression of cytochromes P450. Methods Enzymol 206:117–123

    CAS  PubMed  Google Scholar 

  • el-Masry S e-D, Cohen GM, Mannering GJ (1974) Sex-dependent differences in drug metabolism in the rat. I. Temporal changes in microsomal drug-metabolizing system of the liver during sexual maturation. Drug Metab Dispos 2:267–278

    CAS  Google Scholar 

  • Estabrook RW (2003) A passion for P450s (remembrances of the early history of research on cytochrome P450). Drug Metab Dispos 31:1461–1473

    CAS  PubMed  Google Scholar 

  • Estabrook RW, Cooper DY, Rosenthal O (1963) The light reversible carbon monoxide inhibition of the steroid C21-hydroxylase system of the adrenal cortex. Biochem Z 338:741–755

    CAS  PubMed  Google Scholar 

  • Ferris JP, Fasco MJ, Stylianopoulou FL, Jerina DM, Daly JW, Jeffrey AM (1973) Monooxygenase activity in Cunninghamella bainieri: evidence for a fungal system similar to liver microsomes. Arch Biochem Biophys 156:97–103

    CAS  PubMed  Google Scholar 

  • Fonvielle M, Le Du MH, Lequin O, Lecoq A, Jacquet M, Thai R, Dubois S, Grach G, Gondry M, Belin P (2013) Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121: insights from biochemical studies and crystal structures. J Biol Chem 288:17347–17359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fujii-Kuriyama Y, Mizukami Y, Kawajiri K, Sogawa K, Muramatsu M (1982) Primary structure of a cytochrome P-450: coding nucleotide sequence of phenobarbital-inducible cytochrome P-450 cDNA from rat liver. Proc Natl Acad Sci USA 79:2793–2797

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghisla S, Thorpe C (2004) Acyl-CoA dehydrogenases. A mechanistic overview. Eur J Biochem 271:494–508

    CAS  PubMed  Google Scholar 

  • Gillette JR (1967) Comments on comparative patterns of drug metabolism. Fed Proc 26:1040–1043

    CAS  PubMed  Google Scholar 

  • Guengerich FP (2005) Human cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism and biochemistry, 3rd edn. Kluwer Academic/Plenum Press, New York, pp 377–530

    Google Scholar 

  • Guengerich FP, Martin MV, Beaune PH, Kremers P, Wolff T, Waxman DJ (1986) Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J Biol Chem 261:5051–5060

    CAS  PubMed  Google Scholar 

  • Gustafsson MC, Roitel O, Marshall KR, Noble MA, Chapman SK, Pessegueiro A, Fulco AJ, Cheesman MR, von Wachenfeldt C, Munro AW (2004) Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Biochemistry 43:5474–5487

    CAS  PubMed  Google Scholar 

  • Haniu M, Armes LG, Tanaka M, Yasunobu KT, Shastry BS, Wagner GC, Gunsalus IC (1982) The primary structure of the monooxygenase cytochrome P450CAM. Biochem Biophys Res Commun 105:889–894

    CAS  PubMed  Google Scholar 

  • Harding BW, Wong SH, Nelson DH (1964) Carbon monoxide-binding substances in rat adrenal. Biochim Biophys Acta 92:415–417

    CAS  PubMed  Google Scholar 

  • Hashimoto Y, Yamano T, Mason HS (1962) An electron spin resonance study of microsomal Fex. J Biol Chem 237:3843–3844

    CAS  PubMed  Google Scholar 

  • Hata S, Nishino T, Komori M (1981) Involvement of cytochrome P450 in Δ22-desaturation in ergosterol biosynthesis of yeast. Biochem Biophys Res Commun 103:272–277

    CAS  PubMed  Google Scholar 

  • Haugen DA, Coon MJ (1976) Properties of electrophoretically homogeneous phenobarbital-inducible and β-naphthoflavone-inducible forms of liver microsomal cytochrome P-450. J Biol Chem 251:7929–7939

    CAS  PubMed  Google Scholar 

  • Haugen DA, van der Hoeven TA, Coon MJ (1975) Purified liver microsomal cytochrome P-450. Separation and characterization of multiple forms. J Biol Chem 250:3567–3570

    CAS  PubMed  Google Scholar 

  • Haurand M, Ullrich V (1985) Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P-450 enzyme. J Biol Chem 260:15059–15067

    CAS  PubMed  Google Scholar 

  • Hawkes DB, Adams GW, Burlingame AL, Ortiz de Montellano PR, De Voss JJ (2002) Cytochrome P450(cin) (CYP176A), isolation, expression, and characterization. J Biol Chem 277:27725–27732

    CAS  PubMed  Google Scholar 

  • Heinz E, Tulloch AP, Spencer JFT (1970) Hydroxylation of oleic acid by cell free extracts of a species of Torulopsis. Biochim Biophys Acta 202:49–55

    CAS  PubMed  Google Scholar 

  • Hudnik-Plevnik T, Breskvar K (1991) Cytochrome P450 from Rhizopus niger. In: Ruckpaul K, Rein H (eds) Microbial and plant cytochromes P450: biochemical characteristics, genetic engineering and practical implications. Akadenic Verlag, Berlin, pp 149–168

    Google Scholar 

  • Hunter DJ, Roberts GA, Ost TW, White JH, Muller S, Turner NJ, Flitsch SL, Chapman SK (2005) Analysis of the domain properties of the novel cytochrome P450 RhF. FEBS Lett 579:2215–2220

    CAS  PubMed  Google Scholar 

  • Ichikawa Y, Yamano T (1967) Reconversion of detergent- and sulfhydryl reagent-produced P-420 to P-450 by polyols and glutathione. Biochim Biophys Acta 131:490–497

    CAS  PubMed  Google Scholar 

  • Imai Y, Sato R (1966) Evidence for two forms of P-450 hemoprotein in microsomal membranes. Biochem Biophys Res Commun 23:5–11

    CAS  PubMed  Google Scholar 

  • Jackson CJ, Lamb DC, Marczylo TH, Warrilow AG, Manning NJ, Lowe DJ, Kelly DE, Kelly SL (2002) A novel sterol 14alpha-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily. J Biol Chem 277:46959–46965

    CAS  PubMed  Google Scholar 

  • Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci USA 104:16822–16827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jenkins CM, Waterman MR (1994) Flavodoxin and NADPH-flavodoxin reductase from Escherichia coli support bovine cytochrome P450c17 hydroxylase activities. J Biol Chem 269:27401–27408

    CAS  PubMed  Google Scholar 

  • Jo Corbin C, Mapes SM, Lee YM, Conley AJ (2003) Structural and functional differences among purified recombinant mammalian aromatases: glycosylation, N-terminal sequence and kinetic analysis of human, bovine and the porcine placental and gonadal isozymes. Mol Cell Endocrinol 206:147–157

    CAS  PubMed  Google Scholar 

  • Johnson EF, Stout CD (2013) Structural diversity of eukaryotic membrane cytochrome p450s. J Biol Chem 288:17082–17090

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kalb VF, Woods CW, Turi TG, Dey CR, Sutter TR, Loper JC (1987) Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6:529–537

    CAS  PubMed  Google Scholar 

  • Katagiri M, Ganguli BN, Gunsalus IC (1968) A soluble cytochrome P-450 functional in methylene hydroxylation. J Biol Chem 243:3543–3546

    CAS  PubMed  Google Scholar 

  • Katagiri M, Kagawa N, Waterman MR (1995) The role of cytochrome b(5) in the biosynthesis of androgens by human P450c 17. Arch Biochem Biophys 317:343–347

    CAS  PubMed  Google Scholar 

  • Kato R (1977) Drug metabolism under pathological and abnormal physiological states in animals and man. Xenobiotica 7:25–92

    CAS  PubMed  Google Scholar 

  • Kelly SL, Lamb DC, Baldwin BC, Kelly DE (1993) Benzo(a)pyrene hydroxylase activity in yeast is mediated by P450 other than sterol 14 alpha-demethylase. Biochem Biophys Res Commun 197:428–432

    CAS  PubMed  Google Scholar 

  • Kelly SL, Lamb DC, Baldwin BC, Corran AJ, Kelly DE (1997) Characterization of Saccharomyces cerevisiae CYP61, sterol delta22-desaturase, and inhibition by azole antifungal agents. J Biol Chem 272:9986–9988

    CAS  PubMed  Google Scholar 

  • Koga H, Rauchfuss B, Gunsalus IC (1985) P450cam gene cloning and expression in Pseudomonas putida and Escherichia coli. Biochem Biophys Res Commun 130:412–417

    CAS  PubMed  Google Scholar 

  • Lamb DC, Waterman MR (2013) Unusual properties of the cytochrome P450 superfamily. Philos Trans R Soc Lond B Biol Sci 368:20120434

    PubMed Central  PubMed  Google Scholar 

  • Lamb DC, Skaug T, Song HL, Jackson CJ, Podust LM, Waterman MR, Kell DB, Kelly DE, Kelly SL (2002) The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3(2). J Biol Chem 277:24000–24005

    CAS  PubMed  Google Scholar 

  • Lamb DC, Lei L, Warrilow AG, Lepesheva GI, Mullins JG, Waterman MR, Kelly SL (2009) The first virally encoded cytochrome P450. J Virol 83:8266–8269

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lamb DC, Lei L, Zhao B, Yuan H, Jackson CJ, Warrilow AGS, Skaug T, Dyson PJ, Dawson ES, Kelly SL, Hachey DL, Waterman MR (2010) Streptomyces coelicolor A3(2) CYP102 protein, a novel fatty acid hydroxylase encoded as a heme domain without an N-terminal redox partner. Appl Environ Microbiol 76:1975–1980

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larson JR, Coon MJ, Porter TD (1991a) Alcohol-inducible cytochrome P-450IIE1 lacking the hydrophobic NH2-terminal segment retains catalytic activity and is membrane-bound when expressed in Escherichia coli. J Biol Chem 266:7321–7324

    CAS  PubMed  Google Scholar 

  • Larson JR, Coon MJ, Porter TD (1991b) Purification and properties of a shortened form of cytochrome P-450 2E1: deletion of the NH2-terminal membrane-insertion signal peptide does not alter the catalytic activities. Proc Natl Acad Sci USA 88:9141–9145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leys D, Mowat CG, McLean KJ, Richmond A, Chapman SK, Walkinshaw MD, Munro AW (2003) Atomic structure of Mycobacterium tuberculosis CYP121 to 1.06 Ǻ reveals novel features of cytochrome P450. J Biol Chem 278:5141–5147

    CAS  PubMed  Google Scholar 

  • Li HY, Darwish K, Poulos TL (1991) Characterization of recombinant Bacillus megaterium cytochrome P-450 BM-3 and its two functional domains. J Biol Chem 266:11909–11914

    CAS  PubMed  Google Scholar 

  • Lindenmayer A, Smith L (1964) Cytochromes and other pigments of baker’s yeast grown aerobically and anaerobically. Biochim Biophys Acta 93:445–461

    CAS  PubMed  Google Scholar 

  • Looman AC, Bodlaender J, Comstock LJ, Eaton D, Jhurani P, de Boer HA, van Knippenberg PH (1987) Influence of the codon following the AUG initiation codon on the expression of a modified lacZ gene in Escherichia coli. EMBO J 6:2489–2492

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu AYH, Coon MJ (1968) Role of hemoprotein P450 in fatty acid ω-hydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem 243:1331–1332

    CAS  PubMed  Google Scholar 

  • Lu AYH, Junk KW, Coon MJ (1969) Resolution of the cytochrome P-450-containing omega-hydroxylation system of liver microsomes into three components. J Biol Chem 244:3714–3721

    CAS  PubMed  Google Scholar 

  • Matsunaga I, Yamada A, Lee DS, Obayashi E, Fujiwara N, Kobayashi K, Ogura H, Shiro Y (2002) Enzymatic reaction of hydrogen peroxide-dependent peroxygenase cytochrome P450s: kinetic deuterium isotope effects and analyses by resonance Raman spectroscopy. Biochemistry 41:1886–1892

    CAS  PubMed  Google Scholar 

  • Miles JS, Munro AW, Rospendowski BN, Smith WE, McKnight J, Thomson AJ (1992) Domains of the catalytically self-sufficient cytochrome P450BM-3. Genetic construction, overexpression, purification and spectroscopic characterization. Biochem J 288:503–509

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller TW, Shin I, Kagawa N, Evans DB, Waterman MR, Arteaga CL (2008) Aromatase is phosphorylated in situ at serine-118. J Steroid Biochem Mol Biol 112:95–101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Müller HG, Schunck WH, Kärgel E (1991) Cytochromes P450 in alkane assimilating yeasts. In: Ruckpaul K, Rein H (eds) Microbial and plant cytochromes P450: biochemical characteristics, genetic engineering and practical implications. Akadenic Verlag, Berlin, pp 87–126

    Google Scholar 

  • Murakami H, Yabusaki Y, Sakaki T, Shibata M, Ohkawa H (1987) A genetically engineered P450 monooxygenase: construction of the functional fused enzyme between rat cytochrome P450c and NADPH-cytochrome P450 reductase. DNA 6:189–197

    CAS  PubMed  Google Scholar 

  • Nagano S, Cupp-Vickery JR, Poulos TL (2005) Crystal structures of the ferrous dioxygen complex of wild-type cytochrome P450eryF and its mutants, A245S and A245T: investigation of the proton transfer system in P450eryF. J Biol Chem 280:22101–22107

    Google Scholar 

  • Nakahara K, Tanimoto T, Hatano K, Usuda K, Shoun H (1993) Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J Biol Chem 268:8350–8355

    CAS  PubMed  Google Scholar 

  • Nakayama N, Takemae A, Shoun H (1996) Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem 119:435–440

    CAS  PubMed  Google Scholar 

  • Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    CAS  PubMed  Google Scholar 

  • Narhi LO, Wen LP, Fulco AJ (1988) Characterization of the protein expressed in Escherichia coli by a recombinant plasmid containing the Bacillus megaterium cytochrome P-450BM-3 gene. Mol Cell Biochem 79:63–71

    CAS  PubMed  Google Scholar 

  • Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, Gunsaius IC, Johnson EF, Kemper B, Levin W, Phillips IR, Sato R, Waterman MR (1987) The P450 gene superfamily: recommended nomenclature. DNA 6:1–11

    CAS  PubMed  Google Scholar 

  • Nelson DR (2009) The cytochrome P450 homepage. Hum Genomics 4:59–65

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oeda K, Sakaki T, Ohkawa H (1985) Expression of rat liver cytochrome P-450MC cDNA in Saccharomyces cerevisiae. DNA 4:203–210

    CAS  PubMed  Google Scholar 

  • Oesch-Bartlomowicz B, Oesch F (2003) Cytochrome-P450 phosphorylation as a functional switch. Arch Biochem Biophys 409:228–234

    CAS  PubMed  Google Scholar 

  • Omura T (2010) Structural diversity of cytochrome P450 enzyme system. J Biochem (Tokyo) 147:297–306

    CAS  Google Scholar 

  • Omura T (2011) Recollection of the early years of the research on cytochrome P450. Proc Jpn Acad Series B 87:617–640

    CAS  Google Scholar 

  • Omura T, Sato R (1962) A new cytochrome in liver microsomes. J Biol Chem 237:1375–1376

    CAS  PubMed  Google Scholar 

  • Omura T, Sato R, Cooper DY, Rosenthal O, Estabrook RW (1965) Function of cytochrome P-450 of microsomes. Fed Proc 24:1181–1189

    CAS  PubMed  Google Scholar 

  • Omura T, Sanders E, Estabrook RW, Cooper DY, Rosenthal O (1966) Isolation from adrenal cortex of a non-heme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P450 reductase. Arch Biochem Biophys 117:660–673

    CAS  Google Scholar 

  • Ortiz de Montellano PR (ed) (2005) Cytochrome P450: structure, mechanism and biochemistry, 3rd edn. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  • Oster T, Boddupalli SS, Peterson JA (1991) Expression, purification, and properties of the flavoprotein domain of cytochrome P-450BM-3. Evidence for the importance of the amino-terminal region for FMN binding. J Biol Chem 266:22718–22725

    CAS  PubMed  Google Scholar 

  • Podust LM, Kim Y, Arase M, Neely BA, Beck BJ, Bach H, Sherman DH, Lamb DC, Kelly SL, Waterman MR (2003) The 1.92-Ǻ structure of Streptomyces coelicolor A3(2) CYP154C1. A new monooxygenase that functionalizes macrolide ring systems. J Biol Chem 278:12214–12221

    CAS  PubMed  Google Scholar 

  • Podust LM, Bach H, Kim Y, Lamb DC, Arase M, Sherman DH, Kelly SL, Waterman MR (2004) Comparison of the 1.85 Ǻ structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Protein Sci 13:255–268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6 Å crystal structure of Pseudomonas putida cytochrome P450. J Biol Chem 260:16122–16130

    CAS  PubMed  Google Scholar 

  • Raag R, Martinis SA, Sligar SG, Poulos TL (1991) Crystal structure of cytochrome P450CAM active site mutant Thr252Ala. Biochemistry 20:9252–9253

    Google Scholar 

  • Roberts GA, Celik A, Hunter DJ, Ost TW, White JH, Chapman SK, Turner NJ, Flitsch SL (2003) A self-sufficient cytochrome p450 with a primary structural organization that includes a flavin domain and a [2Fe-2S] redox center. J Biol Chem 278:48914–48920

    CAS  PubMed  Google Scholar 

  • Robin MA, Anandatheerthavarada HK, Biswas G, Sepuri NB, Gordon DM, Pain D, Avadhani NG (2002) Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J Biol Chem 277:40583–40593

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rupasinghe S, Schuler MA, Kagawa N, Yuan H, Lei L, Zhao B, Kelly SL, Waterman MR, Lamb DC (2006) The cytochrome P450 gene family CYP157 does not contain EXXR in the K-helix reducing the absolute conserved P450 residues to a single cysteine. FEBS Lett 580:6338–6342

    CAS  PubMed  Google Scholar 

  • Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HM, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    CAS  PubMed  Google Scholar 

  • Rylott EL, Budarina MV, Barker A, Lorenz A, Strand SE, Bruce NC (2011) Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT. New Phytol 192:405–413

    CAS  PubMed  Google Scholar 

  • Sabbadin F, Jackson R, Haider K, Tampi G, Turkenburg JP, Hart S, Bruce NC, Grogan G (2009) The 1.5-Ǻ structure of XplA-heme, an unusual cytochrome P450 heme domain that catalyzes reductive biotransformation of royal demolition explosive. J Biol Chem 284:28467–28475

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakaguchi M, Mihara K, Sato R (1984) Signal recognition particle is required for co-translational insertion of cytochrome P450 into microsomal membranes. Proc Natl Acad Sci USA 81:3361–3364

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanglard D, Fiechter A (1989) Heterogeneity within the alkane-inducible cytochrome P450 gene family of the yeast Candida tropicalis. FEBS Lett 256:128–134

    CAS  PubMed  Google Scholar 

  • Schunck WH, Kärgel E, Gross B, Wiedmann B, Mauersberger S, Köpke K, Kiessling U, Strauss M, Gaestel M, Müller HG (1989) Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem Biophys Res Commun 161:843–850

    CAS  PubMed  Google Scholar 

  • Seo JA, Proctor RH, Plattner RD (2001) Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 34:155–165

    CAS  PubMed  Google Scholar 

  • Shimada T, Misono KS, Guengerich FP (1986) Human liver microsomal cytochrome P-450 mephenytoin 4-hydroxylase, a prototype of genetic polymorphism in oxidative drug metabolism. Purification and characterization of two similar forms involved in the reaction. J Biol Chem 261:909–921

    CAS  PubMed  Google Scholar 

  • Shimozawa O, Sakaguchi M, Ogawa H, Harada N, Mihara K, Omura T (1993) Core glycosylation of cytochrome P-450(arom). Evidence for localization of N terminus of microsomal cytochrome P-450 in the lumen. J Biol Chem 268:21399–21402

    CAS  PubMed  Google Scholar 

  • Shyadehi AZ, Lamb DC, Kelly SL, Kelly DE, Schunck WH, Wright JN, Corina D, Akhtar M (1996) The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha-demethylase of Candida albicans (other names are lanosterol 14 alpha-demethylase, P-45014DM, and CYP51). J Biol Chem 271:12445–12450

    CAS  PubMed  Google Scholar 

  • Sladek NE, Mannering GJ (1966) Evidence for a new P-450 hemoprotein in hepatic microsomes from methylcholanthrene treated rats. Biochem Biophys Res Commun 24:668–674

    CAS  PubMed  Google Scholar 

  • Song WC, Brash AR (1991) Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science 253:781–783

    CAS  PubMed  Google Scholar 

  • Stern JO, Peisach J (1974) A model compound study of the CO-adduct of cytochrome P-450. J Biol Chem 249:7495–7498

    CAS  PubMed  Google Scholar 

  • Stiles AR, McDonald JG, Bauman DR, Russell DW (2009) CYP7B1: one cytochrome P450, two human genetic diseases and multiple physiological functions. J Biol Chem 284:28485–28489

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki K, Kimura T (1965) An iron protein as a component of steroid 11β-hydroxylase complex. Biochem Biophys Res Commun 19:340–345

    CAS  PubMed  Google Scholar 

  • Vanden Bossche H, Koymans L (1998) Cytochromes P450 in fungi. Mycoses 41:32–38

    CAS  PubMed  Google Scholar 

  • Vilgrain I, Defaye G, Chambaz EM (1984) Adrenocortical cytochrome P-450 responsible for cholesterol side chain cleavage (P-450scc) is phosphorylated by the calcium-activated, phospholipid-sensitive protein kinase (protein kinase C). Biochem Biophys Res Commun 125:554–561

    CAS  PubMed  Google Scholar 

  • Waterman MR, Mason HS (1970) The redox potential of liver cytochrome P-450. Biochem Biophys Res Commun 39:450–454

    CAS  PubMed  Google Scholar 

  • Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131

    CAS  PubMed  Google Scholar 

  • Zhang LH, Rodriguez H, Ohno S, Miller WL (1995) Serine phosphorylation of human P450c17 increases 17,20-lyase activity: implications for adrenarche and the polycystic ovary syndrome. Proc Natl Acad Sci USA 92:10619–10623

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Takaya N, Kitazume T, Kondo T, Shoun H (2001) Purification and cDNA cloning of nitric oxide reductase cytochrome P450nor (CYP55A4) from Trichosporon cutaneum. Eur J Biochem 268:3198–3204

    CAS  PubMed  Google Scholar 

  • Zhao B, Waterman MR (2011) Moonlighting cytochrome P450 monooxygenases. IUBMB Life 63:473–477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao B, Guengerich FP, Bellamine A, Lamb DC, Izumikawa M, Funa N, Lei L, Podust LM, Sundamoorthy M, Reddy LM, Kelly SL, Moore BS, Stec D, Voehler M, Falck JR, Shimada T, Waterman MR (2005a) Bindings of two flaviolin substrate molecules, oxidative coupling, and crystal structure of Streptomyces coelicolor A3(2) cytochrome P450 158A2. J Biol Chem 280:11599–11607

    CAS  PubMed  Google Scholar 

  • Zhao B, Guengerich FP, Voehler M, Waterman MR (2005b) Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2. A new mechanism of proton transfer. J Biol Chem 280:42188–42197

    CAS  PubMed  Google Scholar 

  • Zhao B, Lamb DC, Lei L, Kelly SL, Yuan H, Hachey DL, Waterman MR (2007) Different binding modes of two flaviolin substrate molecules in cytochrome P450 158A1 (CYP158A1) compared to CYP158A2. Biochemistry 46:8725–8733

    CAS  PubMed  Google Scholar 

  • Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE (2008) Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem 283:8183–8189

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao B, Lei L, Vassylyev DG, Lin X, Cane DE, Kelly SL, Yuan H, Lamb DC, Waterman MR (2009) Crystal structure of albaflavenone monooxygenase containing a moonlighting terpene synthase active site. J Biol Chem 284:36711–36719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zuber MX, Simpson ER, Waterman MR (1986) Expression of bovine 17 alpha-hydroxylase cytochrome P-450 cDNA in nonsteroidogenic (COS 1) cells. Science 234:1258–1261

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Waterman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Lamb, D.C., Waterman, M.R. (2014). Fifty Years of Cytochrome P450 Research: Examples of What We Know and Do Not Know. In: Yamazaki, H. (eds) Fifty Years of Cytochrome P450 Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54992-5_3

Download citation

Publish with us

Policies and ethics