Skip to main content

Local-Density Functional Electronic Structure of Helical Chain Polymers

  • Chapter
Density Functional Methods in Chemistry

Abstract

Polymers represent an area of chemistry intermediate between molecular chemistry and solid-state physics. The one-dimensional periodicity leads to delocalization of electron states analogous to that in crystals, but the finiteness in other dimensions requires the use of localized wavefunctions as in molecular approaches. Although ab initio methods have been used to calculate both total energies and electronic structures of chain polymers for several decades (Del Re, et al., 1967; André, 1969), the ability to calculate accurate total energies for polymers (or even large molecular clusters) within a local-density functional (LDF) approach has come about principally within the last decade. Our group at the Naval Research Laboratory has had great success in recent years in applying local-density functional methods to this area of chemistry, in particular to polyacetylene (Mintmire and White, 1983abcd, 1987ab) and polysilane systems (Mintmire, 1989ab), using methods developed for polymer chains with translational symmetry, as well as the calculation of electronic properties on molecular species (Kutzler, et al., 1986; White, et al., 1986; Mintmire, et al., 1987). The techniques for polymers are based on one-electron wavefunctions constructed from linear combinations of Gaussian-type orbitale (LCGTO), using algorithms equivalent to an infinite chain limit of the molecular scheme introduced by Dunlap, et al. (1979ab).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abramowitz, M., and Stegun, I. A., 1972, Handbook of Mathematical Functions, pp. 804–819. Dover, New York..

    Google Scholar 

  • AndrĂ©, J. M., 1969, J. Chem. Phys. 50:1536–1542.

    Article  Google Scholar 

  • AndrĂ©, J. M., Vercauteren, D. P., Bodart, J. P., and Fripiat, J. G., 1984, J. Comp. Chem. 5:536–547.

    Google Scholar 

  • Becke, A. D., 1988, J. Chem. Phys. 88:2547–2553.

    Article  CAS  Google Scholar 

  • Blumen, A., and Merkel, C., 1977, Phys. Stat Sol. B 83:425–431.

    Article  CAS  Google Scholar 

  • Connolly, J. W. D., 1976, Modern Theoretical Chemistry, (Edited by Segal, G. A.) pp. 105–132. Plenum Press, New York..

    Google Scholar 

  • Delhalle, J., Piela, L., BrĂ©das, J.-L., and AndrĂ©, J. M., 1980, Phys. Rev. B 22:6254–6266.

    Article  CAS  Google Scholar 

  • Del Re, G., Ladik, J., and BiczĂ³, G., 1967, Phys. Rev. 155:997–1003.

    Article  Google Scholar 

  • Dunlap, B. I., Connolly, J. W. D, and Sabin, J. R, 1979a, J. Chem. Phys. 71:3396–3402.

    Article  CAS  Google Scholar 

  • Dunlap, B. I., Connolly, J. W. D, and Sabin, J. R, 1979b, J. Chem. Phys. 71:4993–4999.

    Article  CAS  Google Scholar 

  • Dunlap, B. I., 1986, J. Phys. Chem. 90:5524–5529.

    Article  CAS  Google Scholar 

  • Dunlap, B. I., and Cook, M., 1986, Int. J. Quantum Chem. 29:767–777.

    Article  CAS  Google Scholar 

  • Fujita, H., and Imamura, A., 1970, J. Chem. Phys. 53:4555–4566.

    Article  Google Scholar 

  • Gradshteyn, I. S., and Ryzhik, I. M., 1965, Tables of Integrals, Series, and Products, (Translation Edited by Jeffrey, A.), p. 38. Academic Press, New York..

    Google Scholar 

  • Herman, F., and Skillman, S., 1973, Atomic Structure Calculations, Prentice-Hall, Englewood Cliffs, NJ..

    Google Scholar 

  • Imamura, A., 1970, J. Chem. Phys. 52:3168–3175.

    Article  CAS  Google Scholar 

  • Jones, R. S., Mintmire, J. W., and Dunlap, B. I., 1988, Int. J. Quantum Chem. Symp. 22:77–84.

    Article  CAS  Google Scholar 

  • Karpfen, A., and Beyer, A., 1984, J. Comp. Chem. 5:11–18.

    Article  CAS  Google Scholar 

  • Kutzler, F. W., White, C. T., and Mintmire, J. W., 1986, Int. J. Quantum Chem. 29:793–797.

    Article  CAS  Google Scholar 

  • Mintmire, J. W., and Dunlap, B. I., 1982, Phys. Rev. A 25:88–95.

    Article  CAS  Google Scholar 

  • Mintmire, J. W., Sabin, J. R., and Trickey, S. B., 1982, Phys. Rev. B 26:1743–1753.

    Article  CAS  Google Scholar 

  • Mintmire, J. W., and White, C. T., 1983a, Phys. Rev. Lett. 50:101–105.

    Article  CAS  Google Scholar 

  • Mintmire, J. W., and White, C. T., 1983b, Phys. Rev. B 27:1447–1449.

    Article  CAS  Google Scholar 

  • Mintmire, J. W., and White, C. T., 1983c, Phys. Rev. B 28:3283–3290.

    Article  CAS  Google Scholar 

  • Mintmire, J. W., and White, C. T., 1983d, Int. J. Quantum Chem. Symp. 17:609–612.

    CAS  Google Scholar 

  • Mintmire, J. W., and White, C. T., 1987a, Phys. Rev. B 35:4180–4183.

    Article  CAS  Google Scholar 

  • Mintmire, J. W., and White, C. T., 1987b, Int. J. Quantum Chem Symp. 21:131–136.

    Article  CAS  Google Scholar 

  • Mintmire, J. W., Kutzler, F. W., and White, C. T., 1987, Phys. Rev. B 36:3312–3318.

    Article  Google Scholar 

  • Mintmire, J. W., 1989a, Phys. Rev. B 39:13350–13357.

    Article  CAS  Google Scholar 

  • Mintmire, J. W., 1989b, Mat. Res. Soc. Symp. Proc. 141:235–239.

    Article  CAS  Google Scholar 

  • Mintmire, J. W., 1990, Int. J. Quantum Chem. Symp. 24:in press.

    Google Scholar 

  • Piela, L., and Delhalle, J., 1978, Int. J. Quantum Chem. 13:605–617.

    Article  CAS  Google Scholar 

  • Piela, L., AndrĂ©, J. M., BrĂ©das, J.-L., and Delhalle, J., 1980, Int. J. Quantum Chem. Symp. 14:405–418.

    CAS  Google Scholar 

  • Sambe, H., and Felton, R., 1974, J. Chem. Phys. 61:3862–3863.

    Article  CAS  Google Scholar 

  • Sambe, H., and Felton, R., 1975, J. Chem. Phys. 62:1122–1126.

    Article  CAS  Google Scholar 

  • Slater, J. C., 1974, Quantum Theory of Molecules and Solids, Vol. 4. McGraw-Hill, New York.

    Google Scholar 

  • Springborg, M., and Lev, M., 1989, Phys. Rev. B 40:3333–3339.

    Article  CAS  Google Scholar 

  • Steinborn, E. O., and Ruedenberg, K., 1973, Adv. Quantum Chem. 7:1–80.

    Article  CAS  Google Scholar 

  • Teramae, H., and Takeda, K., 1989, J. Am. Chem. Soc. 111:1281–1285.

    Article  CAS  Google Scholar 

  • van Duijneveldt, F. B., 1974, IBM Report RJ945.

    Google Scholar 

  • Weniger, E. J., and Steinborn, E. O., 1985, J. Math. Phys. 26:664–670.

    Article  Google Scholar 

  • White, C. T., Kutzler, F. W., and Cook., M., 1986, Phys. Rev. Lett. 56:252–255.

    Article  CAS  Google Scholar 

  • Wolfram, S., 1988, Mathematica, Addison-Wesley, Redwood City, CA..

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Mintmire, J.W. (1991). Local-Density Functional Electronic Structure of Helical Chain Polymers. In: Labanowski, J.K., Andzelm, J.W. (eds) Density Functional Methods in Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3136-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3136-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7809-2

  • Online ISBN: 978-1-4612-3136-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics