Skip to main content
Log in

A DFT study of the structural and electronic properties of periodic forms of aniline and pyrrole polymers and aniline–pyrrole copolymer

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural and electronic properties of polyaniline, polypyrrole, and poly(aniline-co-pyrrole) (Ani-co-Py) in periodic form were investigated using calculations based on density functional theory (DFT). One to three monomers of aniline and pyrrole were placed in a supercell, and the effects of dihedral angles between the monomers on the electronic properties of the polymers were explored. All polymer configurations were optimized, and the band structures and densities of states (DOSs) were calculated and compared. The band gap of each polymer was calculated as the smallest energy difference between the HOMO and LUMO bands. The results showed that both sets of homopolymers exhibit semiconducting behavior which becomes less prominent after copolymerization. A comparison of the band structures of the homopolymers and the copolymer indicated that the pyrrole in the copolymer acts as an acceptor. The projected density of states (PDOS) was examined to obtain additional insight into orbital interactions and to identify the atoms that are most influential in the electronic properties of the studied polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–b
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BCK, Shi Y, Cui Y, Bao Z (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci USA 109(24):9287–9292. https://doi.org/10.1073/pnas.1202636109

  2. Dunst K, Karczewski J, Jasiński P (2017) Nitrogen dioxide sensing properties of PEDOT polymer films. Sensors Actuators B Chem 247:108–113. https://doi.org/10.1016/j.snb.2017.03.003

  3. Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, Yu G (2015) A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett 15(2):1146–1151. https://doi.org/10.1021/nl504217p

  4. Dyer AL, Thompson EJ, Reynolds JR (2011) Completing the color palette with spray-processable polymer electrochromics. ACS Appl Mater Interfaces 3(6):1787–1795. https://doi.org/10.1021/am200040p

  5. Colak B, Büyükkoyuncu A, Baycan Koyuncu F, Koyuncu S (2017) Electrochromic properties of phenantrene centered EDOT polymers. Polymer 123:366–375. https://doi.org/10.1016/j.polymer.2017.07.035

  6. Vonlanthen D, Lazarev P, See KA, Wudl F, Heeger AJ (2014) A stable polyaniline-benzoquinone-hydroquinone supercapacitor. Adv Mater 26(30):5095–5100. https://doi.org/10.1002/adma.201400966

  7. He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y (2015) Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photonics 9:174. https://doi.org/10.1038/nphoton.2015.6 https://www.nature.com/articles/nphoton.2015.6#supplementary-information

  8. Yue D, Khatav P, You F, Darling SB (2012) Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics. Energy Environ Sci 5(11):9163–9172. https://doi.org/10.1039/C2EE22597B

  9. Xu T, Yu L (2014) How to design low bandgap polymers for highly efficient organic solar cells. Mater Today 17(1):11–15. https://doi.org/10.1016/j.mattod.2013.12.005

  10. Ullah H, Ayub K, Ullah Z, Hanif M, Nawaz R, Shah A-u-HA, Bilal S (2013) Theoretical insight of polypyrrole ammonia gas sensor. Synth Met 172:14–20. https://doi.org/10.1016/j.synthmet.2013.03.021

  11. Ullah H, Shah A-u-HA, Bilal S, Ayub K (2013) DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J Phys Chem C 117(45):23701–23711. https://doi.org/10.1021/jp407132c

  12. Ullah H, Shah A-u-HA, Bilal S, Ayub K (2014) Doping and dedoping processes of polypyrrole: DFT study with hybrid functionals. J Phys Chem C 118(31):17819–17830. https://doi.org/10.1021/jp505626d

  13. Hong S-Y, Park S-M (2005) Electrochemistry of conductive polymers 36. pH dependence of polyaniline conductivities studied by current-sensing atomic force microscopy. J Phys Chem B 109(19):9305–9310. https://doi.org/10.1021/jp050173g

  14. Zhong W, Liu S, Chen X, Wang Y, Yang W (2006) High-yield synthesis of superhydrophilic polypyrrole nanowire networks. Macromolecules 39(9):3224–3230. https://doi.org/10.1021/ma0525076

  15. Chiou N-R, Lee LJ, Epstein AJ (2007) Self-assembled polyaniline nanofibers/nanotubes. Chem Mater 19(15):3589–3591. https://doi.org/10.1021/cm070847v

  16. Moon DK, Yun J-Y, Osakada K, Kambara T, Yamamoto T (2007) Synthesis of random copolymers of pyrrole and aniline by chemical oxidative polymerization. Mol Cryst Liq Cryst 464(1):177/[759]–185/[767]. https://doi.org/10.1080/15421400601030878

  17. Solanki PR, Singh S, Prabhakar N, Pandey MK, Malhotra BD (2007) Application of conducting poly(aniline-co-pyrrole) film to cholesterol biosensor. J Appl Polym Sci 105(6):3211–3219. https://doi.org/10.1002/app.26198

  18. Mavundla SE, Malgas GF, Motaung DE, Iwuoha EI (2010) Physicochemical and morphological properties of poly(aniline-co-pyrrole). J Mater Sci 45(12):3325–3330. https://doi.org/10.1007/s10853-010-4351-5

  19. Zhu Y-F, Zhang L, Natsuki T, Fu Y-Q, Ni Q-Q (2012) Synthesis of hollow poly(aniline-co-pyrrole)–Fe3O4 composite nanospheres and their microwave absorption behavior. Synth Met 162(3–4):337–343. https://doi.org/10.1016/j.synthmet.2011.12.015

  20. Kamran M, Ullah H, Shah A-u-HA, Bilal S, Tahir AA, Ayub K (2015) Combined experimental and theoretical study of poly(aniline-co-pyrrole) oligomer. Polymer 72:30–39. https://doi.org/10.1016/j.polymer.2015.07.003

  21. Bhadra S, Khastgir D (2008) Determination of crystal structure of polyaniline and substituted polyanilines through powder X-ray diffraction analysis. Polym Test 27(7):851–857. https://doi.org/10.1016/j.polymertesting.2008.07.002

  22. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater 12(11):1038–1044. https://doi.org/10.1038/nmat3722 http://www.nature.com/nmat/journal/v12/n11/abs/nmat3722.html#supplementary-information

  23. Lee H-J, Jo Y-R, Kumar S, Yoo SJ, Kim J-G, Kim Y-J, Kim B-J, Lee J-S (2016) Close-packed polymer crystals from two-monomer-connected precursors. Nat Commun 7:12803. https://doi.org/10.1038/ncomms12803

  24. Agbaoye RO, Adebambo PO, Akinlami JO, Afolabi TA, Karazhanov SZ, Ceresoli D, Adebayo GA (2017) Elastic constants and mechanical properties of PEDOT from first principles calculations. Comput Mater Sci 139:234–242. https://doi.org/10.1016/j.commatsci.2017.07.042

  25. Shi W, Zhao T, Xi J, Wang D, Shuai Z (2015) Unravelling doping effects on PEDOT at the molecular level: from geometry to thermoelectric transport properties. J Am Chem Soc 137(40):12929–12938. https://doi.org/10.1021/jacs.5b06584

  26. Kaloni TP, Schreckenbach G, Freund MS (2016) Band gap modulation in polythiophene and polypyrrole-based systems. Sci Rep 6:36554. https://doi.org/10.1038/srep36554

  27. Griffin LL, Wu J, Klein DJ, Schmalz TG, Bytautas L (2005) Scaling behavior of ground-state energy cluster expansion for linear polyenes. Int J Quantum Chem 102(4):387–397. https://doi.org/10.1002/qua.20300

  28. Hutchison GR, Ratner MA, Marks TJ (2005) Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors. J Am Chem Soc 127(48):16866–16881. https://doi.org/10.1021/ja0533996

  29. Kaloni TP, Schreckenbach G, Freund MS (2015) Structural and electronic properties of pristine and doped polythiophene: periodic versus molecular calculations. J Phys Chem C 119(8):3979–3989. https://doi.org/10.1021/jp511396n

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

  31. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  PubMed  Google Scholar 

  32. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895

  33. Hutchison GR, Zhao Y-J, Delley B, Freeman AJ, Ratner MA, Marks TJ (2003) Electronic structure of conducting polymers: limitations of oligomer extrapolation approximations and effects of heteroatoms. Phys Rev B 68(3):035204

  34. McCall RP, Ginder JM, Leng JM, Ye HJ, Manohar SK, Masters JG, Asturias GE, MacDiarmid AG, Epstein AJ (1990) Spectroscopy and defect states in polyaniline. Phys Rev B 41(8):5202–5213

  35. Leng JM, Ginder JM, McCall RP, Ye HJ, Epstein AJ, Sun Y, Manohar SK, Macdiarmid AG (1991) Photoexcitation spectroscopy of pernigraniline. Synth Met 41(3):1311–1314. https://doi.org/10.1016/0379-6779(91)91613-F

  36. Coplin KA, Jasty S, Long SM, Manohar SK, Sun Y, MacDiarmid AG, Epstein AJ (1994) Neutral soliton formation and disorder in pernigraniline base. Phys Rev Lett 72(20):3206–3209

  37. D’Aprano G, Leclerc M, Zotti G (1996) Electrochemistry of phenyl-N-capped aniline oligomers. Evaluation of optical and electrochemical properties of ideal polyaniline. Synth Met 82(1):59–61. https://doi.org/10.1016/S0379-6779(97)80010-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forough Kalantari Fotooh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardari, M., Fotooh, F.K. & Nateghi, M.R. A DFT study of the structural and electronic properties of periodic forms of aniline and pyrrole polymers and aniline–pyrrole copolymer. J Mol Model 24, 148 (2018). https://doi.org/10.1007/s00894-018-3667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3667-y

Keywords

Navigation