Skip to main content

Pathogenesis of Murine Spongiform Myeloencephalopathy Induced by a Murine Retrovirus

  • Chapter
Molecular Neurovirology

Abstract

Most retroviruses isolated to date from various animal species induce neoplasia in vivo or cell transformation in vitro. They appear to do so by mimicking, perturbing, or utilizing unique signal-transducing pathways of the cell. A few of these viruses (visna [1], caprine arthritis encephalitis virus [2], equine infectious anemia virus [3], and simian immunodeficiency virus [4]) induce inflammatory neurological diseases (encephalitis and myelitis), and some murine leukemia virus (MuLV) isolates (57) induce a noninflammatory spongiform myeloencephalopathy. Interestingly, among the few retroviruses inducing disease in humans, two, human immunodeficiency virus-1 (HIV-1) (8) and human T-cell lymphotropic virus-1 (HTLV-1) (9), have been found to be associated with a severe neurological disease. Most likely, the animal models of retrovirus-induced neurological diseases will provide insight into the pathogenesis of these human diseases apparently induced by human retroviruses. In addition, because of the way retroviruses interact with their host target cells, these animal models may also be instrumental in probing the mechanism(s) of neuronal loss in other human neurodegenerative diseases, even those that are not induced by a retrovirus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haase, A. T. (1986) Pathogenesis of lentivirus infections. Nature 322, 130–136.

    Article  PubMed  CAS  Google Scholar 

  2. Crawford, T. B., D. S. Adams, W. P. Cheevers, and L. C. Cork (1980) Chronic arthritis in goats caused by a retrovirus. Science 207, 997–999.

    Article  PubMed  CAS  Google Scholar 

  3. McClure, J. J., W. A. Lindsay, W. Taylor, R. Ochoa, C. J. Issel, and S. J. Coulter (1982) Ataxia in four horses with equine infectious anemia. J. Am. Vet. Med. Assoc. 180, 279–283.

    PubMed  CAS  Google Scholar 

  4. Ringler, D. J., R. D. Hunt, R. C. Desrosiers, M. D. Daniel, L. V. Chalifoux, and N. W. King (1988) Simian immunodeficiency virus-induced meningoencephalitis: Natural history and retrospective study. Ann. Neurol. 23, S101-S107.

    Google Scholar 

  5. Gardner, M. B., B. E. Henderson, J. E. Officer, R. W. Rongey, J. C. Parker, C. Oliver, J. D. Estes, and R. J. Huebner (1973) A spontaneous lower motor neuron disease apparently caused by indigenous type-C RNA virus in wild mice. J. Natl. Cancer Inst. 51, 1243–1254.

    PubMed  CAS  Google Scholar 

  6. McCarter, J. A., J. K. Ball, and J. V. Frei (1977) Lower-limb paralysis induced in mice by a temperature-sensitive mutant of Moloney leukemia virus. J. Natl. Cancer Inst. 59, 179–183.

    PubMed  CAS  Google Scholar 

  7. Officer, J. E., N. Tecson, J. D. Estes, E. Fontanilla, R. W. Rongey, and M. B. Gardner (1973) Isolation of a neurotropic type-C virus. Science 181, 945–947.

    Article  PubMed  CAS  Google Scholar 

  8. Price, R. W., B. Brew, J. Sibtis, M. Rosenblum, A. C. Scheck, and P. Cleary (1988) The brain in AIDS: Central nervous system HIV infection and AIDS dementia complex. Science 239, 586–592.

    Article  PubMed  CAS  Google Scholar 

  9. McFarlin, D. E. and Koprowski, H. (1990) Neurological disorders associated with HTLV-1. Curr. Top. Microbiol. Immunol. 160, 99–119.

    Article  Google Scholar 

  10. Jolicoeur, P. (1990) Retrovirus-induced lower motor neuron disease in mice: A model for amyotrophic lateral sclerosis and human spongiform neurological diseases, in Amyotrophic Lateral Sclerosis. Concepts in Pathogenesis and Etiology. Hudson, A. J., ed., University of Toronto Press, Toronto, pp. 53–82.

    Google Scholar 

  11. Jolicoeur, P., E. Rassart, L. DesGroseillers, Y. Robitaille, Y. Paquette, and D. G. Kay (1991) Retrovirus-induced motor neuron disease of mice: Molecular basis of neurotropism and paralysis, in Amyotrophic Lateral Sclerosis. Rowland, Lewis P., ed., Raven, New York, pp. 481–493; Adv. Neurology 56, 481-493.

    Google Scholar 

  12. Gardner, M. B. (1978) Type-C viruses of wild mice: Characterization and natural history of amphotropic, ecotropic and xenotropic murine leukemia viruses. Curr. Top. Microbiol. Immunol. 79, 215–239.

    Article  PubMed  CAS  Google Scholar 

  13. Gardner, M. B. (1985) Retroviral spongiform polioencephalomyelopathy. Rev. Infect. Dis. 7, 99–110.

    Article  PubMed  CAS  Google Scholar 

  14. Portis, J. L. (1990) Wild mouse retrovirus: Pathogenesis. Curr. Top. Microbiol. Immunol. 160, 11–27.

    Article  PubMed  CAS  Google Scholar 

  15. Andrews, J. M. and R. L. Andrews (1976) The comparative neuropathology of motor neuron diseases, in Amyotrophic Lateral Sclerosis. Andrews, J. M., R. T. Johnson, and M. A. B. Brazier, eds., Academic, New York, pp. 181–216.

    Google Scholar 

  16. Andrews, J. M. and M. B. Gardner} (1974) Lower motor neuron degeneration associated with type C RNA virus infection in mice: Neuropathological features. J. Neuropathol. Exp. Neurol. 33, 285–307.

    Article  PubMed  CAS  Google Scholar 

  17. Brooks, B. R., J. R. Swarz, and R. T. Johnson (1979) Spongiform polio-encephalomyelopathy caused by a murine retrovirus. Lab. Invest. 43, 480–486.

    Google Scholar 

  18. Oldstone, M. B. A., F. Jensen, F. J. Dixon, and P. W. Lampert (1980) Pathogenesis of the slow-disease of the central nervous system associated with wild mouse virus. II. Role of virus and host gene products. Virology 107, 180–193.

    Article  PubMed  CAS  Google Scholar 

  19. Oldstone, M. B. A., P. W. Lampert, S. Lee, and F. J. Dixon (1977) Pathogenesis of the slow-disease of the central nervous system associated with VM 1504 E virus. Am. J. Pathol. 88, 193–206.

    PubMed  CAS  Google Scholar 

  20. Swarz, J. R., B. R. Brooks, and R. T. Johnson (1981) Spongiform polio-encephalomyelopathy caused by a murine retrovirus. II. Ultrastructural localization of virus replication and spongiform changes in the central nervous system. Neuropathol. Appl. Neurobiol. 7, 365–380.

    Article  PubMed  CAS  Google Scholar 

  21. Paquette, Y., D. G. Kay, E. Rassart, Y. Robitaille, and P. Jolicoeur (1990) Substitution of the U3 long terminal repeat region of the neurotropic Cas-Br-E retrovirus affects its disease-inducing potential. J. Virol. 64, 3742–3752.

    PubMed  CAS  Google Scholar 

  22. Jolicoeur, P. (1979) The Fv-1 gene of the mouse and its control of murine leukemia virus replication. Curr. Top. Microbiol. Immunol. 86, 67–122.

    Article  PubMed  CAS  Google Scholar 

  23. Lai, M. M. C., C. S. Shimizu, S. Rasheed, B. K. Pal, and M. B. Gardner (1982) Characterization of genome structure of amphotropic and eco-tropic wild mouse retroviruses. J. Virol. 41, 605–614.

    PubMed  CAS  Google Scholar 

  24. Chattopadhyay, S. K., A. I. Oliff, D. L. Linemeyer, M. R. Lander, and D. R. Lowy (1981) Genomes of murine leukemia viruses isolated from wild mice. J. Virol. 39, 777–791.

    PubMed  CAS  Google Scholar 

  25. Jolicoeur, P., N. Nicolaiew, L. DesGroseillers, and E. Rassart (1983) Molecular cloning of infectious viral DNA from ecotropic neurotropic wild mouse retrovirus. J. Virol. 45, 1159–1163.

    PubMed  CAS  Google Scholar 

  26. Rassart, E., L. Nelbach, and P. Jolicoeur (1986) Cas-Br-E murine leukemia virus: Sequencing of the paralytogenic region of its genome and derivation of specific probes to study its origin and the structure of its recombinant genomes in leukemic tissues. J. Virol. 60, 910–919.

    PubMed  CAS  Google Scholar 

  27. DesGroseillers, L., M. Barrette, and P. Jolicoeur (1984) Physical mapping of the paralysis-inducing determinant of a wild mouse ecotropic neurotropic retrovirus. J. Virol. 52, 356–363.

    PubMed  CAS  Google Scholar 

  28. Paquette, Y., Z. Hanna, P. Savard, R. Brosseau, Y. Robitaille, and P. Jolicoeur (1989) Retrovirus-induced murine motor neuron disease: Mapping the determinant of spongiform degeneration within the envelope gene. Proc. Natl. Acad. Sci. USA 86, 3896–3900.

    Article  PubMed  CAS  Google Scholar 

  29. DesGroseillers, L., E. Rassart, and P. Jolicoeur (1983) Thymotropism of murine leukemia virus is conferred by its long terminal repeat. Proc. Natl. Acad. Sci. USA 80, 4203–4207.

    Article  PubMed  CAS  Google Scholar 

  30. Chatis, P. A., C. A. Holland, J. W. Hartley, W. P. Rowe, and N. Hopkins (1983) Role of the 3′ end of the genome in determining disease specificity of Friend and Moloney murine leukemia viruses. Proc. Natl. Acad. Sci. USA 80, 4408–4411.

    Article  PubMed  CAS  Google Scholar 

  31. Bosze, Z., H.-J. Thiesen, and F. Charnay (1986) A transcriptional enhancer with specificity for erythroid cells is located in the long terminal repeat of Friend murine leukemia virus. EMBO J. 5, 1615–1623.

    PubMed  CAS  Google Scholar 

  32. Celander, D. and W. A. Haseltine (1984) Tissue-specific transcription preference as a determinant of cell tropism and leukemogenic potential of murine retroviruses. Nature 312, 159–162.

    Article  PubMed  CAS  Google Scholar 

  33. Chatis, P. A., C. A. Holland, J. E. Silver, T. N. Frederickson, N. Hopkins, and J. W. Hartley (1984) A 3′ end fragment encompassing the transcriptional enhancers of nondefective Friend virus confers erythroleukemogenicity on Moloney leukemia virus. J. Virol. 52, 248–254.

    PubMed  CAS  Google Scholar 

  34. DesGroseillers, L. and P. Jolicoeur (1984) The tandem direct repeats within the long terminal repeat of murine leukemia viruses are the primary determinant of their leukemogenic potential. J. Virol. 52, 945–952.

    PubMed  CAS  Google Scholar 

  35. DesGroseillers, L. and P. Jolicoeur (1984) Mapping the viral sequences conferring leukemogenicity, and disease specificity in Moloney and amphotropic murine leukemia viruses. J. Virol. 52, 448–456.

    PubMed  CAS  Google Scholar 

  36. DesGroseillers, L., R. Villemur, and P. Jolicoeur (1983) The high leukemogenic potential of Gross passage A murine leukemia virus maps in the region of the genome corresponding to the long terminal repeat and to the 3′ end of env} . J. Virol. 47, 24–32.

    PubMed  CAS  Google Scholar 

  37. Hallberg, B. and T. Grundstrom (1988) Tissue specific motifs in the enhancer of leukemogenic mouse retrovirus SL3-3. Nucleic Acids Res. 16, 5927–5944.

    Article  PubMed  CAS  Google Scholar 

  38. Holland, C. A., C. Y. Thomas, S. K. Chattopadhyay, C. Koehne, and P. V. O’Donnell (1989) Influence of enhancer sequence on thymotropism and leukemogenicity of mink cell focus-forming viruses. J. Virol. 63, 1284–1292.

    PubMed  CAS  Google Scholar 

  39. Lenz, J. D., D. Celander, R. L. Crowther, R. Patar, D. W. Perkins, and W. A. Haseltine (1984) Determination of the leukemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature 308, 467–470.

    Article  PubMed  CAS  Google Scholar 

  40. Li, Y., E. Golemis, J. W. Hartley, and N. Hopkins (1987) Disease specificity of nondefective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J. Virol. 61, 693–700.

    PubMed  CAS  Google Scholar 

  41. LoSardo, J. E., L. A. Cupelli, M. K. Short, J. W. Berman, and J. Lenz (1989) Differences in activities of murine retroviral long terminal repeats in cytotoxic T lymphocytes, and T-lymphoma cells. J. Virol. 63, 1087–1094.

    PubMed  CAS  Google Scholar 

  42. Rosen, C. A., W. A. Haseltine, J. Lenz, R. Ruprecht, and M. W. Cloyd (1985) Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences. J. Virol. 55, 862–866.

    PubMed  CAS  Google Scholar 

  43. Vogt, M., C. Haggblom, S. Swift, and M. Haas (1985) Envelope gene and long terminal repeat determine the different biological properties of Rauscher, Friend, and Moloney mink cell focus-inducing viruses. J. Virol. 55, 184–192.

    PubMed  CAS  Google Scholar 

  44. Jolicoeur, P. and L. DesGroseillers (1985) Neurotropic Cas-Br-E murine leukemia virus harbors several determinants of leukemogenicity mapping in different regions of the genome. J. Virol. 56, 639–643.

    PubMed  CAS  Google Scholar 

  45. DesGroseillers, L., E. Rassart, Y. Robitaille, and P. Jolicoeur (1985) Retrovirus-induced spongiform encephalopathy: The 3′-end long terminal repeat-containing viral sequences influence the incidence of the disease and the specificity of the neurological syndrome. Proc. Natl. Acad. Sci. USA 82, 8818–8822.

    Article  PubMed  CAS  Google Scholar 

  46. Bilello, J. A., O. M. Pitts, and P. M. Hoffman (1986) Characterization of a progressive neurodegenerative disease induced by a temperaturesensitive Moloney murine leukemia virus infection. J. Virol. 59, 234–241.

    PubMed  CAS  Google Scholar 

  47. Portis, J. L., S. Czub, C. F. Garon, and F. J. McAtee (1990) Neurodegenerative disease induced by the wild mouse ecotropic retrovirus is markedly accelerated by long terminal repeat and gag-pol sequences from nondefective Friend murine leukemia virus. J. Virol. 64, 1648–1656.

    PubMed  CAS  Google Scholar 

  48. Oldstone, M. B. A., F. Jensen, J. Elder, F. J. Dixon, and P. W. Lampert (1983) Pathogenesis of the slow disease of the central nervous system associated with wild mouse virus. III. Role of the input virus and MCF recombinants in disease. Virology 128, 154–165.

    Article  PubMed  CAS  Google Scholar 

  49. Pitts, O. M., J. M. Powers, J. A. Bilello, and P. M. Hoffman (1987) Ultrastructural changes associated with retroviral replication in central nervous system capillary endothelial cells. Lab. Invest. 56, 401–408.

    PubMed  CAS  Google Scholar 

  50. Hoffman, P. H., O. M. Pitts, J. A. Bilello, and E. F. Cimino (1988) Retrovirus induced motor neuron degeneration. Rev. Neurol. (Paris) 144, 676–679.

    CAS  Google Scholar 

  51. Morey, M. K. and C. A. Wiley (1990) Immunohistochemical localization of neurotropic ecotropic murine leukemia virus in moribund mice. Virology 178, 104–112.

    Article  PubMed  CAS  Google Scholar 

  52. Sharpe, A. H., J. J., Hunter, P., Chassler, and R. Jaenisch (1990) Role of abortive retroviral infection of neurons in spongiform CNS degeneration. Nature 346, 181–183.

    Article  PubMed  CAS  Google Scholar 

  53. Aaronson, S. A. and J. R. Stephenson (1976) Endogenous type-C RNA viruses of mammalian cells. Biochim. Biophys. Acta 458, 323–354.

    PubMed  CAS  Google Scholar 

  54. Coffin, J. (1984) Endogenous viruses, in Molecular Biology of Tumor Viruses: RNA Tumor Viruses. Weiss, R., N. Teich, H. Varmus, and J. Coffin, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 1109–1203.

    Google Scholar 

  55. Levy, J. A.} (1978) Xenotropic type C viruses. Curr. Top. Microbiol. Immunol. 79, 111–213.

    Article  PubMed  CAS  Google Scholar 

  56. Risser, R., J. M. Horowitz, and J. M. C. Cubrey (1983) Endogenous mouse leukemia viruses. Annu. Rev. Genet. 17, 85–121.

    Article  PubMed  CAS  Google Scholar 

  57. Fischinger, P. J. and S. Nomura (1975) Efficient release of murine xenotropic oncornavirus after murine leukemia virus infection of mouse cells. Virology 65, 304–307.

    Article  PubMed  CAS  Google Scholar 

  58. Huang, M., C. Simard, and P. Jolicoeur (1989) Immunodeficiency and clonal growth of target cells induced by helper-free defective retrovirus. Science 246, 1614–1617.

    Article  PubMed  CAS  Google Scholar 

  59. Simard, C. and P. Jolicoeur (1991) The effect of antineoplastic drugs on murine acquired immunodeficiency syndrome. Science 251, 305–308.

    Article  PubMed  CAS  Google Scholar 

  60. Contag, C. H., J. T. Harty, and P. G. W. Plagemann (1989) Dual virus etiology of age-dependent poliomyelitis of mice. A potential model for human motor neuron diseases. Microb. Pathogen. 6, 391–401.

    Article  CAS  Google Scholar 

  61. Contag, C. H. and P. G. W. Plagemann (1989) Age-dependent poliomyelitis of mice: Expression of endogenous retrovirus correlates with cytocidal replication of lactate dehydrogenase-elevating virus in motor neurons. J. Virol. 63, 4362–4369.

    PubMed  CAS  Google Scholar 

  62. Kay, D. G., C. Gravel, Y. Robitaille, and P. Jolicoeur (1991) Retrovirus-induced spongiform myeloencephalopathy in mice: Regional distribution of infected target cells and neuronal loss occuring in the absence of viral expression in neurons. Proc. Natl. Acad. Sci. USA 88, 1281–1285.

    Article  PubMed  CAS  Google Scholar 

  63. Panganiban, A. T. and H. M. Temin (1983) The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature 306, 155–160.

    Article  PubMed  CAS  Google Scholar 

  64. Harris, J. D., H. Blum, J. Scott, B. Traynor, P. Ventura, and A. Haase (1984) Slow virus visna: Reproduction in vitro of virus from extrachromosomal DNA. Proc. Natl. Acad. Sci. USA 81, 7212–7215.

    Article  PubMed  CAS  Google Scholar 

  65. Eilbott, D. J., N. Peress, H. Burger, D. La Neve, J. Orenstein, H. E. Gendelman, R. Seidman, and B. Weiser (1989) Human immunodeficiency virus type 1 in spinal cords of acquired immunodeficiency syndrome patients with myelopathy: Expression, and replication in macrophages. Proc. Natl. Acad. Sci. USA 86, 3337–3341.

    Article  PubMed  CAS  Google Scholar 

  66. Koenig, S., H. E. Gendelman, J. M. Orenstein, M. C. Dal Canto, G. H. Pezeshkpour, M. Yungbluth, F. Janotta, A. Aksamit, M. A. Martin, and A. S. Fauci (1986) Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233, 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  67. Rinfret, A., H. Latendresse, R. Lefebvre, G. St-Louis, P. Jolicoeur, and L. Lamarre (1991) HIV-1 infected multinucleated histiocytes in oropharyngeal lymphoid tissues from two asymptomatic patients. Am. J. Pathol. 138, 421–426.

    PubMed  CAS  Google Scholar 

  68. Wong, P. K. Y. (1990) Moloney murine leukemia virus temperature-sensitive mutants: A model for retrovirus-induced neurological disorders. Curr. Top. Microbiol. Immunol. 160, 29–60.

    Article  PubMed  CAS  Google Scholar 

  69. Shinoda, H., A. M. Marini, C. Cosi, and J. P. Schwartz (1989) Brain region and gene specificity of neuropeptide gene expression in cultured astrocytes. Science 245, 415–417.

    Article  PubMed  CAS  Google Scholar 

  70. Janzer, R. C. and M. C. Raff (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325, 253–257.

    Article  PubMed  CAS  Google Scholar 

  71. Jefferies, W. A., M. R. Brandon, S. V. Hunt, A. F. Williams, K. C. Gatter, and D. Y. Mason (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312, 162, 163.

    Article  PubMed  CAS  Google Scholar 

  72. Szurek, P. F., P. H., Yuen, J. K. Ball, and P. K. Y. Wong (1990) A val-25-to Ile substitution in the envelope precursor polyprotein, gPr80env is responsible for the temperature sensitivity, inefficient processing of gPr80env, and neurovirulence of ts1, a mutant of Moloney murine leukemia virus TB. J. Virol. 64, 467–475.

    PubMed  CAS  Google Scholar 

  73. Baszler, T. V. and J. F. Zachary (1990) Murine retroviral-induced spongiform neuronal degeneration parallels resident microglial cell infection. Lab. Invest. 63, 612–623.

    PubMed  CAS  Google Scholar 

  74. Hoffman, P. M., W. F. Davidson, S. K. Ruscetti, T. M. Chused, and H. C. Morse, III (1981) Wild mouse ecotropic murine leukemia virus infection of inbred mice: Dual-tropic virus expression precedes the onset of paralysis and lymphoma. J. Virol. 39, 597–602.

    PubMed  CAS  Google Scholar 

  75. Angevine, J. B. (1965) Time of neuron origin in the hippocampal region. Exp. Neurol. (Suppl. ) 2, 1–70.

    Google Scholar 

  76. Caviness, V. S. (1973) Time of neuron origin in the hippocampus and dentate gyrus of normal and reeler mutant mice: An autoradiographic analysis. J. Comp. Neurol. 151, 113–120.

    Article  PubMed  Google Scholar 

  77. Fugita, S. (1967) Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum. J. Cell Biol. 32, 277–287.

    Article  Google Scholar 

  78. Miale, I. L. and R. L. Sidman (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp. Neurol. 4, 277–296.

    Article  PubMed  CAS  Google Scholar 

  79. Schlessinger, A. R., W. M. Cowan, and D. I. Gottlieb (1975) An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J. Comp. Neurol. 159, 149–176.

    Article  PubMed  CAS  Google Scholar 

  80. Sharpe, A. H., R. Jaenisch, and R. M. Ruprecht (1987) Retroviruses, and mouse embryos. A rapid model for neurovirulence and transplacental antiviral therapy. Science 236, 1671–1674.

    Article  PubMed  CAS  Google Scholar 

  81. Jaenisch, R. (1980) Retroviruses and embryogenesis: Microinjection of Moloney leukemia virus into midgestation mouse embryos. Cell 19, 181–188.

    Article  PubMed  CAS  Google Scholar 

  82. Dalgleish, A. G., P. C. L. Beverley, P. R. Clapham, D. H. Crawford, M. F. Greaves, and R. A. Weiss (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–767.

    Article  PubMed  CAS  Google Scholar 

  83. Klatzmann, D., E. Champagne, S. Chamaret, J. Gruest, D. Guetard, T. Hercend, J. C. Gluckman, and L. Montagnier (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312, 767, 768.

    Article  PubMed  CAS  Google Scholar 

  84. Maddon, P. J., A. G. Dalgleish, J. S. McDougal, P. R. Clapham, R. A. Weiss, and R. Axel (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47, 333–348.

    Article  PubMed  CAS  Google Scholar 

  85. Li, J. P., A. D. D’Andrea, H. F. Lodish, and D. Baltimore (1990) Activation of cell growth by binding of Friend spleen focus-forming virus gp55 glycoprotein to the erythropoietin receptor. Nature 343, 762–764.

    Article  PubMed  CAS  Google Scholar 

  86. Albritton, L. M., L. Tseng, D. Scadden, and J. M. Cunningham (1989) A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57, 659–666.

    Article  PubMed  CAS  Google Scholar 

  87. Prusiner, S. B (1987) Prions and neurodegenerative diseases. N. Engl. J. Med. 317, 1571–1581.

    Article  PubMed  CAS  Google Scholar 

  88. Gardner, M. B., S. Rasheed, and V. Klement (1976) Lower motor neuron disease in wild mice caused by indigenous type C virus and search for a similar etiology in human amyotropic lateral sclerosis, in Amyotrophic Lateral Sclerosis, Andrews, J. M., R. T. Johnson, and M. A. B. Brazier, eds., Academic, New York, pp. 143–145.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jolicoeur, P., Gravel, C., Kay, D.G. (1992). Pathogenesis of Murine Spongiform Myeloencephalopathy Induced by a Murine Retrovirus. In: Roos, R.P. (eds) Molecular Neurovirology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0407-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0407-7_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6748-5

  • Online ISBN: 978-1-4612-0407-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics