Skip to main content

Moloney Murine Leukemia Virus Temperature-Sensitive Mutants: A Model for Retrovirus-Induced Neurologic Disorders

  • Conference paper
Retrovirus Infections of the Nervous System

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 160))

Abstract

In the early 1960s Stansly observed in BALB/c mice a neurogenic paralysis of the hind limb associated with the cell-free transmission of a reticulum cell sarcoma, and suggested that the paralytogenic agent and the neoplastic virus could be the same (Stansly 1965). About a decade later, the discovery by Gardner and coworkers (1973) that an isolate of murine leukemia virus (MuLV) of wild mouse origin not only possesses the ability to cause lymphomas but also the ability to induce a nononcogenic, yet fatal disease of the CNS further suggested that MuLV is not only lymphomagenic but also neurovirulent. This naturally occurring MuLV-induced neurologic disorder was later found to be readily and reproducibly transmitted to susceptible laboratory mice (Officer et al. 1973; Oldstone et al. 1977), establishing the fact that this MuLV-related neurologic disease not only occurs in wild mice but can also be induced in laboratory mice (for review see Gardner 1985). Since then at least three instances of neurologic disorders induced by MuLV in laboratory mice and rats have been reported. In two of these instances, temperature-sensitive (ts) mutants of Moloney murine leukemia virus (MoMuLV) were involved. In the first case a group of ts mutants of MoMuLV-TB, a variant of MoMuLV, was found to be able to induce a rapidly progressive paralytic disease in mice (McCarter et al. 1977; Wong et al. 1983). The second case, which was reported by Billello and coworkers (1986), also involved a ts mutant of MoMuLV designated ts Mo BA-I MuLV, which was initially obtained from Peter Nobis of the University of Hamburg, Federal Republic of Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi M, Schneck L, Cara J, Volk BW (1973) Spongy degeneration of the central nervous system (van Bogaert and Bertrand type; Canavan’s disease): a review. Hum Pàhol 4; 331–347

    Article  CAS  Google Scholar 

  • Anders KH, Guerra WF, Tomiyasu U, Verity MA, Vinters HW (1986) The neuropathology of AIDS. Am J Pathol 124: 537–558

    PubMed  CAS  Google Scholar 

  • Anderson RGW, Orci L (1987) A view of acidic intracellular compartments. J Cell Biol 106: 539–543

    Article  Google Scholar 

  • Andrews Jm, Gardner MB (1974) Lower motor neuron degeneration associated with type C RNA virus infection in mice: neuropathological features. J Neuropathol Exp Neurol 33: 285–307

    Article  PubMed  CAS  Google Scholar 

  • Atkins GJ, Sheahan BJ (1982) Simliki Forest virus neurovirulence mutants have altered cytopathogenicity for central nervous system cells. Infect Immun 36: 333–341

    PubMed  CAS  Google Scholar 

  • Ball JK, Huh TY, McCarter JA (1964) On the statistical distribution of epidermal papillomata in mice. Br J Cancer 18: 120–123

    Article  PubMed  CAS  Google Scholar 

  • Bassel-Duby R, Spriggs DR, Tyler KL, Fields BN (1986) Identification of attenuating mutations on the retrovirus type 3 SI double stranded RNA segment using a rapid sequencing technique. J Virol 60: 64–67

    PubMed  CAS  Google Scholar 

  • Bedigian HG, Johnson DA, Jenkins NA, Copeland NG, Evans R (1984) Spontaneous and induced leukemias of myeloid origin in recombinant inbred BxH mice. J virol 51: 586–594

    PubMed  CAS  Google Scholar 

  • Bilello JA, Pitts OM, Hoffman PM (1986) Characterization of a progressive neurodegenerative disease induced by a temperature-sensitive Moloney murine leukemia virus infection. J Virol 59: 234–241

    PubMed  CAS  Google Scholar 

  • Brooks BR, Swarz JR, Johnson RT (1980) Spongiform polioencephalomyelopathy caused by a murine retrovirus. I. Pathogenesis of infection in newborn mice. Lab Invest 43: 480–486

    PubMed  CAS  Google Scholar 

  • Brooks Br, Gossage J, Johnson RT (1981) Age-dependent in vitro restriction of mouse neurotropic retrovirus replication in central nervous system-derived cells from susceptible Fv-1“ mice. Trans Am Neurol Assoc 106: 238–241

    PubMed  CAS  Google Scholar 

  • Brooks Br, Feussner GK, Lust WD (1983) Spinal cord metabolic changes in murine retrovirusinduced motor neuron disease. Brain Res Bull 11: 681–686

    Article  PubMed  CAS  Google Scholar 

  • Choppin J, Schaffar-Deshayes L, Debre P, Levy J (1981) Lymphoid cell surface receptor for Moloney leukemia virus envelope glycoprotein gp71. I. Binding characteristics. J Immunol 126: 2347–2351

    PubMed  CAS  Google Scholar 

  • Crispens CG (1978) In: Handbook on the laboratory mouse. Thomas, Springfield, pp. 139

    Google Scholar 

  • DeLarco J, Todaro G (1976) Membrane receptors for the murine leukemia viruses: characterization using the purified viral envelope glycoprotein, gp71. Cell 8: 365–371

    Article  PubMed  CAS  Google Scholar 

  • DesGroseillers L, Barrett M, Jolicoeur P (1984) Physical mapping of the paralysis-inducing determinant of a wild mouse ecotropic neurotropic retrovirus. J Virol 52: 356–363

    Google Scholar 

  • DesGroseillers L, Rassart E, Robitaille Y, Jolicoeur P (1985) Retrovirus-induced spongiform encephalopathy: the 3’-end long terminal repeat containing viral sequences influence the incidence of the disease and the specificity of the neurological syndrome. Proc Natl Acad Sci USA 82: 8818–8822

    Article  Google Scholar 

  • Dietzschold B, Wunner WH, Wiktor TJ, Lopes AD, Lafon M, Smith CL, Koprowski H (1983) Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. Proc Natl Acad Sci USA 80: 70–74

    Article  PubMed  CAS  Google Scholar 

  • Dietzschold B, Wiktor TJ, Trojanowski JQ, MacFarland RI, Wunner WH, Torres-Anjel MJ, Koprowski H (1985) Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J Virol 56: 12–18

    PubMed  CAS  Google Scholar 

  • Gardner MB (1978) Type C viruses of wild mice: characterization and natural history of amphotropic, ecotropic, and xenotropic MuLV. In: Current topics in microbiology and immunology, vol 79. Springer, Berlin Heidelberg New York, pp 215–259

    Chapter  Google Scholar 

  • Gardner MB (1985) Retroviral spongiform polioencephalomyelopathy. Rev Infect Dis 7: 99–110

    Article  PubMed  CAS  Google Scholar 

  • Gardner MB, Henderson BE, Officer JE, Rongey RW, Parker JC, Oliver C, Estes JD, Huebner RJ (1973) A spontaneous lower motor neuron disease apparently caused by indigenous type C RNA virus in wild mice. JNCI 51: 1243–1249

    PubMed  CAS  Google Scholar 

  • Gartner S, Markovitz P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233: 215–219

    Article  PubMed  CAS  Google Scholar 

  • Gazdar AF, Oie H, Lalley P, Moss WW, Minna JD (1977) Identification of mouse chromosomes required for murine leukemia virus replication. Cell 11: 949–956

    Article  PubMed  CAS  Google Scholar 

  • Goff S, Lobel LI (1987) Mutants of murine leukemia viruses and retroviral replication. Biochim Biophys Acta 907: 93–123

    PubMed  CAS  Google Scholar 

  • Gonzalez-Scarano F, Janssen RS, Najjar JA, Pbjecky N, Nathanson N (1985) An avirulent Gllglycoprotein variant of La Crosse bunyavirus with defective fusion function. J Virol 54: 757–763

    PubMed  CAS  Google Scholar 

  • Greenberger JS, Stephenson JR, Aaronson SA (1975) Temperature-sensitive mutants of murine leukemia virus. V. Impaired leukemogenic activity in vivo. Int J Cancer 15: 1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Haase AT (1986) Pathogenesis of lentivirus infections. Nature 322: 130–136

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PM, Ruscetti SK, Morse HC (1981) Pathogenesis of paralysis and lymphoma associated with a wild mouse retrovirus infection. Part I. Age and dose-related effects in susceptible laboratory mice. J Neuroimmunol 1: 275–285

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PM, Robbin DS, Morse HC (1984) Role of immunity in age-related resistance to paralysis after murine leukemia virus infection. J Virol 52: 734–738

    PubMed  CAS  Google Scholar 

  • Jackson AC, Moench TR, Trapp BD, Griffin DE (1988) Basis of neurovirulence in Sindbis virus encephalomyelitis of mice. Lab Invest 58: 503–509

    PubMed  CAS  Google Scholar 

  • Janssen R, Gonzalez-Scarano F, Nathanson N (1984) Mechanisms of bunyavirus virulence: comparative pathogenesis of a virulent strain of La Crosse and an avirulent strain of Tahyna virus. Lab Invest 50: 447–455

    PubMed  CAS  Google Scholar 

  • Johnson PA, Rosner MR (1986) Characterization of murine-specific leukemia virus receptor from L cells. J Virol 58: 900–908

    PubMed  CAS  Google Scholar 

  • Johnson RT (1982) Selective vulnerability of neural cells to viral infections. Adv Neurol 36: 331–337

    PubMed  CAS  Google Scholar 

  • Kai K, Furuta T (1984) Isolation of paralysis-inducing murine leukemia viruses from Friend virus passaged in rats. J Virol 50: 970–973

    PubMed  CAS  Google Scholar 

  • Kaye KM, Spriggs DR, Bassel-Duby R, Fields BN, Tyler KL (1986) Genetic basis for altered pathogenesis of an immune-selected antigenic variant of reovirus type 3 (Dearing). J Virol 59: 90–97

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Katayama M, Satoh J, Suzuki K, Suzuki K (1988) The twitcher mouse. An alteration of the unmyelinated fibers in the CNS. Am J Pathol 131: 30–319

    Google Scholar 

  • Koeing S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, Janotta F, Aksamit A, Martin MA, Fauci AS (1986) Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233: 1089–1093

    Article  Google Scholar 

  • Kristensson K, Norrby E (1986) Persistence of RNA viruses in the central nervous system. Annu Rev Microbiol 40: 159–184

    Article  PubMed  CAS  Google Scholar 

  • Lampert PW, Gajdusek DC, Gibbs CJ (1972) Subacute spongiform virus encephalopathies, scrapie, kuru, and Creutzfeldt-Jakob disease (a review). Am J Pathol 68: 626–646

    PubMed  CAS  Google Scholar 

  • Lodish HF (1988) Transport of secretory and membrane glycoproteins from the rough endolasmic reticulum to the Golgi. J Biol Chem 263: 2107–2110

    PubMed  CAS  Google Scholar 

  • Lustig S, Jackson AC, Hahn CS, Griffin DE, Strauss EG, Strauss JH (1988) Molecular basis of Sindbis virus neurovirulence in mice. J Virol 62: 2329–2336.

    PubMed  CAS  Google Scholar 

  • McCarter JA, Ball JK, Frei JV (1977) Lower limb paralysis induced in mice by a temperature-sensitive mutant of Moloney leukemia virus. JNCI 59: 179–183

    PubMed  CAS  Google Scholar 

  • McClure MO, Marsh M, Weiss RA (1988) Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism. EMBO J 7: 513–518

    PubMed  CAS  Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathway. Annu Rev Biochem 55: 663–700

    Article  PubMed  CAS  Google Scholar 

  • Mohan S, Pal BK (1982) Binding characteristics of wild mouse type C virus to mouse spinal cord and spleen cells. Infect Immun 37: 532–538

    PubMed  CAS  Google Scholar 

  • Moloney JB (1960) Biological studies on a lymphoid-leukemia virus extracted from sarcoma 371. Origin and introductory investigation. JNCI 24: 933–947

    PubMed  CAS  Google Scholar 

  • Navia BA, Cho E-S, Petito CK et al. (1986) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19: 525–535

    Article  PubMed  CAS  Google Scholar 

  • Officer JE, Tecson N, Fontanilma E, Rongey RW, Estes JD, Gardner MB (1973) Isolation of a neurotropic type-C virus. Science 181: 945–947

    Article  PubMed  CAS  Google Scholar 

  • Oie HK, Gazdar AF, Lalley PA, Russell EK, Minna JD, DeLarco J, Todaro GJ, Francke U (1978) Mouse chromosome 5 codes for ecotropic murine leukemia virus cell-surface receptor. Nature 274: 60–62

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Lampert PW, Lee S, Dixon FJ (1977) Pathogenesis of the slow disease of the central nervous system associate with WM-1504E virus. Am J pathol 88: 193–206

    PubMed  CAS  Google Scholar 

  • Oldstone MBA, Jensen F, Dixon FJ, Lampert PW (1980) Pathogenesis of the slow disease of the nervous system associated with wild mouse virus. II. Role of virus and Host gene products. Virology 107: 180–193

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Jensen F, Elder J, Dixon FJ, Lampert PW (1983) Pathogenesis of the slow disease of the central nervous system associated with wild mouse virus. III. Role of input virus and MCF recombinants in disease. Virology 128: 154–165

    Article  PubMed  CAS  Google Scholar 

  • Osame M, Usuku K, Izumo S et al. (1986) HTLV-I associated myelopathy. A new clinical entity. Lancet i: 1031–1032

    Article  Google Scholar 

  • Pahwa R, Good RG, Pahwa S (1987) Prematurity, hypogamma-glubulinemia, and neuropathology with human immunodeficiency virus (HIV) infection. Proc Natl Acad Sci USA 84: 3826–3820

    Article  PubMed  CAS  Google Scholar 

  • Pal BK, Mohan S, Nimo R, Gardner MB (1983) Wild mouse retrovirus-induced neurogenic paralysis in laboratory mice. 1. Virus replication and expression in central nervous system. Arch Virol 77: 239–247

    Article  PubMed  CAS  Google Scholar 

  • Prasad G, Stoica G, Wong PKY (1989) The role of the thymus in the pathogenesis of hind-limb paralysis induced by tsl, a mutant of Moloney murine leukemia virus-TB. Virology 169: 332–340

    Article  PubMed  CAS  Google Scholar 

  • Petito CK, Navia BA, Cho E-S, Jordan BD, George DC, Price RW (1985) Vacuolar Myelopathy pathologically resembling subacute combined degeneration in patients with the acquired immunodeficiency syndrome. N Engl J Med 312: 874–879

    Article  PubMed  CAS  Google Scholar 

  • Pincus T, Rowe WP, Lilly F (1971) A major genetic locus affecting resistance to infection with murine leukemia viruses. II. Apparent identity to a major locus described for resistance to Friend murine leukemia virus. J Exp Med 133: 1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ, Tung J-S, O’Donnell PV, Hammerling U (1982) Structural domains of endogenous murine leukemia virus gp70s containing specific antigenic determinants defined by monoclonal antibodies. Virology 116: 499–516

    Article  PubMed  CAS  Google Scholar 

  • Pitts OM, Powers JM, Bilello JA, Hoffman PM (1987) Ultrastructural changes associated with retroviral replication in central nervous system capillary endothelial cells. Lab Invest 56: 401–409

    PubMed  CAS  Google Scholar 

  • Prusiner SB, DeArmond SJ (1987) Prions causing nervous system degeneration. Lab Invest 56: 349–363

    PubMed  CAS  Google Scholar 

  • Rasheed S, Gardner MB, Lai MMC (1983) Isolation and characterization of new ecotropic murine leukemia viruses after passage of an amphotropic virus in NIH Swiss mice. Virology 130: 439–451

    Article  PubMed  CAS  Google Scholar 

  • Rassart E, Nelbach L, Jolicoeur P (1986) Cas-Br-E murine leukemia virus: sequencing of the paralytogenic regions of its genome and derivation of specific probes to study its origin and the structure of its recombinant genomes in leukemic tisues. J Virol 60: 910–919

    PubMed  CAS  Google Scholar 

  • Reddy EP, Dunn CY, Aaronson SA (1980) Different lymphoid target cells for transformation by replication-competent Moloney and Rauscher mouse leukemia viruses. Cell 19: 663–669

    Article  PubMed  CAS  Google Scholar 

  • Robey WG, Dekaban GA, Ball JK, Poore CM, Fischinger RI (1985) Thymotropic envelope gene recombinants of Moloney leukemia virus have highly conserved envelope structures. Virology 142: 183–196

    Article  PubMed  CAS  Google Scholar 

  • Roman GC (1987) Retrovirus-associated myelopathies. Arch Neurol 44: 659–663

    Article  PubMed  CAS  Google Scholar 

  • Rude R, Gallick GE, Wong PKY (1980) A fast replica plating technique for the isolation of post-integration mutants of the Moloney strain of murine leukaemia virus. J Gen Virol 49: 367–374

    Article  PubMed  CAS  Google Scholar 

  • Sarma PS, Cheong MP, Hartley JW, Huebner RJ (1967) A viral interference test for mouse leukemia viruses. Virology 33: 180–184

    Article  PubMed  CAS  Google Scholar 

  • Schnittman SM, Lane HC, Higgins SE, Folks T, Fauci AS (1986) Direct polyclonal activation of human B lymphocytes by the acquired immune deficiency syndrome virus. Science 233: 1084–1086

    Article  PubMed  CAS  Google Scholar 

  • Seif I, Coulon P, Rollin PE, Flamand A (1985) Rabies Virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J Virol 53: 926–934

    PubMed  CAS  Google Scholar 

  • Smith JE, Brooks BR, Dolan K (1988) Molecularly cloned neurotropic retrovirus induced vacuolar myelopathy: dynamics of vacuolar formtions. (to be published)

    Google Scholar 

  • Spriggs DR, Bronson RT, Fields BN (1983) Hemagglutinin variants of retrovirus type 3 have altered central nervous system tropism. Science 220: 505–507

    Article  PubMed  CAS  Google Scholar 

  • Stanley J, Cooper SJ, Griffin DE (1985) Alphavirus neurovirulence: monoclonal antibodies discriminating wild-type from neuroadapted Sindbis virus. J Virol 56: 110–119

    PubMed  CAS  Google Scholar 

  • Stansly PG (1965) Non-oncogenic infectious agents associated with experimental tumors. Prog Exp Tumor Res 7: 224–258

    PubMed  CAS  Google Scholar 

  • Stein BS, Gowda SD, Lifson JD, Penhallow RC, Bensch KG, Engleman EG (1987) pH Independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49: 659–668

    Article  PubMed  CAS  Google Scholar 

  • Swarz JR, Brooks BR, Johnson RT (1981) Spongiform polioencephalomyelopathy caused by a murine retrovirus. II. Ultrastructural localization of virus replication and spongiform changes in the central nervous system. Neuropathol Appl Neurol 7: 365–380

    Article  CAS  Google Scholar 

  • Szurek PF, Yuen PH, Jerzy R, Wong PKY (1988) Identification of point mutations in the envelope gene of Moloney murine leukemia virus TB temperature-sensitive paralytogenic mutant tsl: molecular determinants for neurovirulence. J Virol 62: 357–360

    PubMed  CAS  Google Scholar 

  • Szurek PF, Yuen PH, Ball JK, Wong PKY (1990) A Val-to-Ile substitution in the envelope precursor polyprotein, gPr80e“”, is responsible for the temperature sensitivity, in efficient processing of gPr80e“”, and neurovirulence of tsl, a mutant of Moloney murine leukemia Virus-TB. J Virol in press

    Google Scholar 

  • Tyler KL (1988) Host and viral genetic factors which influence viral neurotropism. In: Rosenberg RN, Harding AE (eds) Molecular biology of neurological disease. Butterworths, London, pp 64–65

    Google Scholar 

  • Uzman LL, Rumley MK (1958) Changes in the composition of the developing mouse brain during early myelination. J Neurochem 3: 170–184

    Article  PubMed  CAS  Google Scholar 

  • Weis W, Brown JH, Cusack S, Paulson JC, Skehel LI, Wiley DC (1988) Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333: 426–431

    Article  PubMed  CAS  Google Scholar 

  • Wiley DC, Wilson IA, Skehel JJ (1981) Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289: 373–378

    Article  PubMed  CAS  Google Scholar 

  • Wolozin L, Pruchnicki A, Dickson DW, Davies P (1986) A neuronal antigen in the brains of Alzheimer patients. Science 231: 648–650

    Article  Google Scholar 

  • Wong PKY, Gallick GE (1978) Preliminary characterization of the temperature-sensitive mutant of murine leukemia virus which produces defective particles at the restrictive temperature. J Virol 25: 187–192

    PubMed  CAS  Google Scholar 

  • Wong PKY, McCarter JA (1974) Studies of two temperature–sensitive mutants of Moloney murine leukemia virus. Virology 58–396–408

    Google Scholar 

  • Wong PKY, Russ LI, McCarter JA (1973) Rapid, selective procedure for isolation of spontaneous temperature-sensitive mutants of Moloney leukemia virus. Virology 51: 424–431

    Article  PubMed  CAS  Google Scholar 

  • Wong PKY, Soong MM, MacLeod R, Gallick GE, Yuen PH (1983) A group of temperature-sensitive mutants of Moloney leukemia virus which is defective in cleavage of env precursor polypeptide in infected cells also induces hind limb paralysis in newborn CFW/D mice. Virology 125: 513–518

    Article  PubMed  CAS  Google Scholar 

  • Wong PKY, Knupp C, Yuen PH, Soong MM, Zachary JF, Tompkins WAF (1985) tsl, a paralytogenic mutant of Moloney murine leukemia virus TB, has an enhanced ability to replicate in the central nervous system and primary nerve cell culture. J Virol 55: 760–766

    PubMed  CAS  Google Scholar 

  • Wong PKY, Prasad G, Hansen J, Yuen PH (1989) tsl,a mutant of Moloney murine leukemia virus-TB, causes both immunodeficiency and neurologic disorders in BALB/c mice. Virology 170: 450–459

    Article  PubMed  CAS  Google Scholar 

  • Yuen PH, Szurek PF (1989) The reduced virulence of the thymotropic Moloney murine leukemia virus derivative MoMuLV-TB is mapped to II mutations within the U3 region of the LTR. J Virol 63: 471–480

    PubMed  CAS  Google Scholar 

  • Yuen PH, Wong PKY (1977) Electron microscopy characterization of defectiveness of a temperature-sensitive mutant of MoMuLV restricted in assembly. J Virol 24: 222–230

    PubMed  CAS  Google Scholar 

  • Yuen PH, Malehorn D, Knupp C, Wong PKY (1985a) A 1.6-kilobase pair fragment in the genome of the tsl mutant of Moloney murine leukemia virus TB that is associated with temperature sensitivity, nonprocessing of Pr80`“°, and paralytogenesis. J Virol 54: 364–373

    PubMed  CAS  Google Scholar 

  • Yuen PH, Malehorn D, Nau C, Soong MM, Wong PKY (1985b) Molecular cloning of two paralytogenic, temperature-sensitive mutants, tsl and ts7, and the parently wild-type Moloney murine leukemia virus. J Virol 54: 178–185

    PubMed  CAS  Google Scholar 

  • Yuen PH, Tzeng E, Knupp C, Wong PKY (1986) The neurovirulent determinants of tsl, a paralytogenic mutant of Moloney murine leukemia virus TB, are localized in at least two functionally distinct regions in the genome. J Virol 59: 59–65

    PubMed  CAS  Google Scholar 

  • Zachary JF, O’Brien DP (1985) Spongy degeneration of the central nervous system in two canine littermates. Vet Pathol 22: 561–571

    Article  PubMed  CAS  Google Scholar 

  • Zachary JF, Knupp CJ, Wong PKY (1986) Non-inflammatory spongiform polioencephalomyelopathy caused by a neurotropic temperature-sensitive mutant of Moloney murine leukemia virus TB. Am J Pathol 124: 457–468

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Wong, P.K.Y. (1990). Moloney Murine Leukemia Virus Temperature-Sensitive Mutants: A Model for Retrovirus-Induced Neurologic Disorders. In: Oldstone, M.B.A., Koprowski, H. (eds) Retrovirus Infections of the Nervous System. Current Topics in Microbiology and Immunology, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75267-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75267-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75269-8

  • Online ISBN: 978-3-642-75267-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics