Skip to main content

Nanotechnology Assets in Biosensors Design for Environmental Monitoring

  • Chapter
  • First Online:
Nanomaterials: A Danger or a Promise?

Abstract

In the last decade an intensive research effort has been performed in the field of biosensors design. These tools are very promising to detect chemical pollutants in the environment because they can provide rapid, sensitive, simple, and low-cost on-field detection. Nowadays the use of nanomaterials for the construction of biosensing devices constitutes one of the most exciting approaches. The extremely promising prospects of these devices accrue from the unique properties of nanomaterials. Different nanostructures can be employed and the assets of this new technology in biosensors design are reviewed in this chapter. The properties related to these nanomaterials used in the different transduction modes are presented at first, and then we discuss the interest of nanotechnologies to provide a stable immobilization of biomolecules in retaining their bioactivity. Enzymes-based biosensors, immunosensors, and cell-based biosensors are finally considered separately in their use for environmental monitoring application. The main advantages of the different nanosensing devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdullah J, Musa A, Lee YH, Nadarajah K, Hamidah S (2006) Stacked films immobilization of MBTH in nafion/sol-gel silicate and horseradish peroxidase in chitosan for the determination of phenolic compounds. Anal Bioanal Chem 386:1285–1292

    Article  Google Scholar 

  2. Ahn JM, Hwang ET, Youn CH, Banub DL, Kim BC, Niazi JH, Gu MB (2009) Prediction and classification of the modes of genotoxic actions using bacterial biosensors specific for DNA damages. Biosens Bioelectron 25(4):767–772

    Article  Google Scholar 

  3. Allan IJ, Vrana B, Greenwood R, Mills GA, Roig B, Gonzalez C (2006) A “toolbox” for biological and chemical monitoring requirements for the European Union’s Water Framework Directive. Talanta 69(2):302–322

    Article  Google Scholar 

  4. Arias-Barreiro CR, Okazaki K, Koutsaftis A, Inayat-Hussain SH, Tani A, Katsuhara M, Kimbara K, Mor IC (2010) A bacterial biosensor for oxidative stress using the constitutively expressed redox-sensitive protein roGFP2. Sensors 10(7):6290–6306

    Article  Google Scholar 

  5. Badihi-Mossberg M, Buchner V, Rishpon J (2007) Electrochemical biosensors for pollutants in the environment. Electroanalysis 19(19–20):2015–2028

    Article  Google Scholar 

  6. Bakker E, Pretsch E (2008) Nanoscale potentiometry. Trends Anal Chem 27(7):612–618

    Article  Google Scholar 

  7. Banik RM, Mayank Prakash R, Upadhyay SN (2008) Microbial biosensor based on whole cell of Pseudomonas sp. for online measurement of p-nitrophenol. Sens Actuators B 131(1):295–300

    Google Scholar 

  8. Barcelo D, Hansen PD (eds) (2009) Handbook of environmental chemistry, vol 5J. Biosensors for environmental monitoring of aquatic systems, Springer, Berlin

    Google Scholar 

  9. Baronian KHR (2004) The use of yeast and moulds as sensing elements in biosensors. Biosens Bioelectron 19(9):953–962

    Article  Google Scholar 

  10. Ben-Yoav H, Biran A, Pedahzur R, Belkin S, Buchinger S, Reifferscheid G, Shacham-Diamand Y (2009) A whole cell electrochemical biosensor for water genotoxicity bio-detection. Electrochim Acta 54:6113–6118

    Article  Google Scholar 

  11. Bratov A, Abramova N, Ipatov A (2010) Recent trends in potentiometric sensor arrays-a review. Anal Chim Acta 678(2):149–159

    Article  Google Scholar 

  12. Bucur B, Fournier D, Danet A, Marty JL (2006) Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection. Anal Chim Acta 562(1):115–121

    Article  Google Scholar 

  13. Bulukin E, Meucci V, Minunni M, Pretti C, Intorre L, Soldani G, Mascini M (2007) An optical immunosensor for rapid vitellogenin detection in plasma from carp (Cyprinus carpio). Talanta 72(2):785–790

    Article  Google Scholar 

  14. Bunimovich YL, Shin YS, Yeo WS, Amori M, Kwong G, Heath JR (2006) Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc 128:16323–16331

    Article  Google Scholar 

  15. Buonasera K, Pezzotti G, Scognamigli V, Tibuzzi A, Giardi MT (2010) New platform of biosensors for prescreening of pesticide residues to support laboratory analyses. J Agric Food Chem 58(10):5982–5990

    Article  Google Scholar 

  16. Campas M, Prieto-Simon B, Marty JL (2009) A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin Cell Dev Biol 20(1):3–9

    Article  Google Scholar 

  17. Carralero V, Melena ML, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2006) Development of a high analytical performance-tyrosinase biosensor based on a composite graphite–Teflon electrode modified with gold nanoparticles. Biosens Bioelectron 22(5):730–736

    Article  Google Scholar 

  18. Chen H, Mousty C, Cosnier S, Silveira CM, Moura JJG, Almeida MG (2007) Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochem Commun 9(9):2240–2245

    Article  Google Scholar 

  19. Chen J, Jin Y (2010) Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode. Microchim Acta 169(3–4):249–254

    Google Scholar 

  20. Chen L, Zeng G, Zhang Y, Tang L, Huang D, Liu C, Pang Y, Luo J (2010) Trace detection of picloram using an electrochemical immunosensor based on three-dimensional gold nanoclusters. Anal Biochem 407(2):172–179

    Article  Google Scholar 

  21. Chiappini SA, Kormes DJ, Bonetto MC, Sacco N, Cortona E (2010) A new microbial biosensor for organic water pollution based on measurement of carbon dioxide production. Sens Actuators B 148(1):103–109

    Google Scholar 

  22. Chong KF, Loh KP, Ang K, Ting YP (2008) Whole cell environmental biosensor on diamond. Analyst 133(6):739–743

    Article  Google Scholar 

  23. Chouteau C, Dzyadevych S, Chovelon JM, Durrieu C (2004) Development of novel conductometric biosensors based on immobilized whole cell Chlorella vulgaris microalgae. Biosens Bioelectron 19:1089–1096

    Article  Google Scholar 

  24. Chouteau C, Dzyadevych S, Durrieu C, Chovelon JM (2005) A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens Bioelectron 21:273–281

    Article  Google Scholar 

  25. Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ (2009) Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 20(1):10–26

    Article  Google Scholar 

  26. Cortina M, Del Valle M, Marty JL (2008) Electronic tongue using an enzyme inhibition biosensor array for the resolution of pesticide mixtures. Electroanalysis 20:54–60

    Article  Google Scholar 

  27. Crespilho FN, Ghica ME, Florescuc M, Nart FC, Oliveira ON, Brett CMA (2006) A strategy for enzyme immobilization on layer-by-layer dendrimer gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem Commun 8:1665–1670

    Article  Google Scholar 

  28. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7):2705–2738

    Article  Google Scholar 

  29. De Albuquerque YDT, Ferreira LF (2007) Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes. Anal Chim Acta 596:210–221

    Article  Google Scholar 

  30. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215

    Article  Google Scholar 

  31. Deo RP, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M, Scholz F, Chen W, Lin Y (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530(2):185–189

    Article  Google Scholar 

  32. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    Article  Google Scholar 

  33. Du D, Chen W, Zhang W, Liu D, Li H, Lin Y (2010) Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion. Biosens Bioelectron 25(6):1370–1375

    Article  Google Scholar 

  34. Dunn B, Miller JM, Dave BC, Valentine JS, Zink JI (1998) Strategies for encapsulating biomolecules in sol-gel Acta materiala 46(3):737–741

    Google Scholar 

  35. Durrieu C, Tran-Minh C (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51:206–209

    Article  Google Scholar 

  36. Durrieu C, Chouteau C, Barthet L, Chovelon JM, Tran-Minh C (2004) A bi-enzymatic whole-cell algal biosensor for monitoring waste water pollutants. Anal Lett 37(8):1589–1599

    Article  Google Scholar 

  37. Eguilaz M, Moreno-Guzman M, Campuzano S, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2010) An electrochemical immunosensor for testosterone using functionalized magnetic beads and screen-printed carbon electrodes. Biosens Bioelectron 26(2):517–522

    Article  Google Scholar 

  38. Eltzov E, Marks RS, Voost S, Wullings BA, Heringa MB (2009) Flow-through real time bacterial biosensor for toxic compounds in water. Sens Actuators B 142(1):11–18

    Article  Google Scholar 

  39. Evans SD, Johnson SR, Cheng YL, Shen T (2000) Vapour sensing using hybrid organic-inorganic nanostructured materials. J Mater Chem 10:83–188

    Google Scholar 

  40. Evtugyn GA, Eremin SA, Shaljamova RP, Ismagilova AR, Bidnikov HC (2006) Amperometric immunosensor for nonylphenol determination based on peroxidase indicating reaction. Biosens Bioelectron 22(1):56–62

    Article  Google Scholar 

  41. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1–2):8–26

    Article  Google Scholar 

  42. Farré M, Brix R, Barcelo D (2005) Screening water for pollutants using biological techniques under European Union funding during the last 10 years. Trends Anal Chem 24(6):532–545

    Article  Google Scholar 

  43. Farré M, Martínez E, Ramon J, Navarro A, Radjenovic J, Mauriz E, Lechuga L, Marco MP, Barcelo D (2007) Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor. Anal Bioanal Chem 388(1):207–214

    Article  Google Scholar 

  44. Farré M, Barcelo D (2009) Biosensors for aquatic toxicology evaluation. Hdb Environ Chem 5J:115–160

    Article  Google Scholar 

  45. Gan N, Yang X, Xie D, Wu Y, Wen W (2010) A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors 10(1):625–638

    Article  Google Scholar 

  46. Gilbert L, Browning S, Jenkins ATA, Hart JP (2010) Studies towards an amperometric phosphate ion biosensor for urine and water analysis. Microchim Acta 170(3–4):331–336

    Google Scholar 

  47. Girotti S, Ferri EN, Fumo MG, Maiolini E (2008) Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 608(1):2–29

    Article  Google Scholar 

  48. Goure JP, Blum L (2009) Biosensors and chemical sensors based upon guided optics. In: Fouletier J, Fabry P (eds) Chemical and biological microsensors: applications in fluid media. Wiley, New York

    Google Scholar 

  49. Gong J, Wang L, Zhang L (2009) Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite. Biosens Bioelectron 24(7):2285–2288

    Article  Google Scholar 

  50. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8(3):1400–1458

    Article  Google Scholar 

  51. Gu MB, Gil GC, Kim JH (1999) A two-stage minibioreactor system for continuous toxicity monitoring. Biosens Bioelectron 14(4):355–361

    Article  Google Scholar 

  52. Guan G, Liu B, Wang Z, Zhang Z (2008) Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors. Sensors 8(12):8291–8320

    Article  Google Scholar 

  53. Guedri H, Durrieu C (2008) A self-assembled monolayers based conductometric algal whole cell biosensor for water monitoring. Micro Chim Acta 163(3–4):179–184

    Article  Google Scholar 

  54. Gupta AK, Nair PR, Akin D, Ladisch MR, Broyles S, Alam MA, Bashir RR (2006) Anomalous resonance in a nanomechanical biosensor. Proc Natl Acad Sci USA 103:13362–13367

    Article  Google Scholar 

  55. Habauzit D, Chopineau J, Roig B (2007) SPR-based biosensors: a tool for biodetection of hormonal compounds. Anal Bioanal Chem 387(4):1215–1223

    Article  Google Scholar 

  56. Haes AJ, Van Duyne RP (2002) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379(7–8):920–930

    Google Scholar 

  57. Han TS, Sasaki S, Yano K, Ikebukuro K, Atsushi K, Nagamune T, Karube I (2002) Flow injection microbial trichloroethylene sensor. Talanta 57(2):271–276

    Article  Google Scholar 

  58. Hansen KM, Thundat TT (2005) Microcantilever biosensors. Methods 37:57–64

    Article  Google Scholar 

  59. Hansen LH, Sorensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42(4):483–494

    Article  Google Scholar 

  60. Hervas Perez JP, Sanchez-Paniagua Lopez M, Lopez-Cabarcos E, Lopez-Ruiz B (2006) Amperometric tyrosinase biosensor based on polyacrylamide microgels. Biosens Bioelectron 22(3):429–439

    Article  Google Scholar 

  61. Hildebrandt A, Jordi R, Bragos R, Marty JL, Tresanchez M, Lacorte S (2008) Development of a portable biosensor for screening neurotoxic agents in water samples. Talanta 75(5):1208–1213

    Article  Google Scholar 

  62. Hleli S, Martelet C, Abdelghani A, Bessueille F, Errachid A, Samitier J, Burais N, Jaffrezic-Renault N (2006) Atrazine analysis using an impedimetric immunosensor based on mixed biotinylated self-assembled monolayer. Sens Actuators B 113(2):711–717

    Article  Google Scholar 

  63. Hnaien M, Lagarde F, Bausells J, Errachid A, Jaffrezic-Renault N (2011) A new bacterial biosensor for trichloroethylene detection based on a three dimensional carbon nanotubes bioarchitecture. Anal Bioanal Chem 400:1083–1092

    Article  Google Scholar 

  64. Hoa XD, Kirk AG, Tabrizian M (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron 23(2):151–160

    Article  Google Scholar 

  65. Hwang ET, Ahn JM, Kim BC, Gu MB (2008) Construction of a nrdA: luxCDABE fusion and its use in escherichia coli as a DNA damage biosensor. Sensors 8(2):1297–1307

    Article  Google Scholar 

  66. Imm JE, Han JA, Kim BK, Han JH, Park TS, Hwang S, Cho SI, Lee WY, Kim YR (2010) Electrochemical detectionof estrogen hormone by immobilized estrogen receptor on Au electrode. Surface Coatings Technol 205(Suppl 1):S275–S278

    Google Scholar 

  67. Inama L, Dire S, Carturan G (1993) Entrapment of viable microorganisms by SIO2 sol-gel layers on glass Surfacestrapping catalytic performance and immobilization durability of Saccharomyces cerevisiae. J Biotechnol 30:197–210

    Google Scholar 

  68. Ino K, Kitagawa Y, Watanabe T, Shiku H, Koide M, Itayama T, Yasukawa T, Matsue T (2009) Detection of hormone active chemicals using genetically engineered yeast cells and microfluidic devices with interdigitated array electrodes. Electrophoresis 30(19):3406–3412

    Article  Google Scholar 

  69. Jaffrezic-Renault N, Dzyadevych SV (2008) Conductometric microbiosensors for environmental monitoring. Sensors 8(4):2569–2588

    Article  Google Scholar 

  70. Jang E, Son KJ, Kimb B, Koh WG (2010) Phenol biosensor based on hydrogel microarrays entrapping tyrosinase and quantum dots. Analyst 135(11):2871–2878

    Article  Google Scholar 

  71. Joseph Y, Guse B, Yasuda A, Vossmeyer T (2004) Chemiresistor coatings from Pt- and Au- nanoparticule/nonanedithiol films: sensitivity to gases and solvent vapors. Sens Actuators B Chem 98:188–195

    Article  Google Scholar 

  72. Joshi KA, Prouza, Kum MM, Wang J, Tang J, Haddon R, Chen W, Mulchandani A (2006) V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode. Anal Chem 78(1):331–336

    Article  Google Scholar 

  73. Karnati C, Du H, Ji H, Xu X, Lvov Y, Mulchandani A, Mulchandani P, Chen W (2007) Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosens Bioelectron 22(11):2636–2642

    Article  Google Scholar 

  74. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15(11):913–947

    Article  Google Scholar 

  75. Khadro B, Namour P, Bessueille F, Léonard D, Jaffrezic-Renault N (2009) Validation of a conductometric bienzyme biosensor for the detection of proteins as marker of organic matter in river samples. J Environ Sci 21(4):545–551

    Article  Google Scholar 

  76. Khanna VK (2008) Nanoparticules-based sensors. Def Sci J 58(5):608–616

    MathSciNet  Google Scholar 

  77. Kim SJ, Gobi KV, Iwasaka H, Tanaka H, Miura N (2007) Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes. Biosens Bioelectron 23(5):701–707

    Article  Google Scholar 

  78. Kochana J, Gala A, Parczewski A, Adamski J (2008) Titania sol-gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects. Anal Bioanal Chem 391(4):1275–1281

    Article  Google Scholar 

  79. Komaitis E, Vasiliou E, Kremmydas G, Georgakopoulos DG, Georgiou C (2010) Development of a fully automated flow injection analyzer implementing bioluminescent biosensors for water toxicity assessment. Sensors 10(8):7089–7098

    Article  Google Scholar 

  80. Kong L, Huang S, Yue Z, Peng B, Li M, Zhang J (2009) Sensitive mediator-free tyrosinase biosensor for the determination of 2,4-dichlorophenol. Microchim Acta 165(1–2):203–209

    Google Scholar 

  81. Kotova VY, Manukhov IV, Zavilgelskii GB (2010) Lux biosensors for detection of SOS response, heat shock, and oxidative stress. Appl Biochem Microb 46(8):781–788

    Article  Google Scholar 

  82. Kumar S, Kundu S, Pakshirajan K, Dasu VV (2008) Cephalosporins determination with a novel microbial biosensor based on permeabilized pseudomonas aeruginosa whole cells. Appl Biochem Biotech 151(2–3):653–664

    Article  Google Scholar 

  83. Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesteraseand bromothymol blue. Talanta 74:613–618

    Article  Google Scholar 

  84. Kwan RCH, Leung HF, Hon PYT, Barford JP, Renneberg R (2005) A screen-printed biosensor using pyruvate oxidase for rapid determination of phosphate in synthetic wastewater. Appl Microb Biotech 66(4):377–383

    Article  Google Scholar 

  85. Lagarde F, Jaffresic-Renault N (2011) Cell-based electrochemical biosensors for water quality assessment. Anal Bioanal Chem 400:947–964

    Article  Google Scholar 

  86. Lanyon YH, Tothill IE, Mascini M (2006) An amperometric bacterial biosensor based on gold screen-printed electrodes for the detection of benzene. Anal Lett 39t(7–8):1669–1681

    Google Scholar 

  87. Lee CS, Kim SK, Kim M (2009) Ion-sensitive field-effect transistor for biological sensing. Sensors 9(9):7111–7131

    Article  Google Scholar 

  88. Lee JH, Youn CH, Kim BC, Gu MB (2007) An oxidative stress-specific bacterial cell array chip for toxicity analysis. Biosens Bioelectron 22(9–10):2223–2229

    Article  Google Scholar 

  89. Lee JH, Park JY, Min K, Cha HJ, Choi SS, Yoo YJ (2010) A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens Bioelectron 25(7):1566–1570

    Article  Google Scholar 

  90. Lei Y, Mulchandani P, Wang J, Chen W, Mulchandani A (2005) A highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Environ Sci Technol 39(22):8853–8857

    Article  Google Scholar 

  91. Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    Article  Google Scholar 

  92. Lei Y, Mulchandani P, Chen W, Mulchandani A (2007) Biosensors for direct determination of fenitrothion using recombinant Pseudomonas putida IS444 with surface expressed organophosphorus hydrolase. 2. Modified carbon paste electrode. Appl Biochem Biotechnol 136:243–250

    Article  Google Scholar 

  93. Li J, Gao H (2008) A renewable potentiometric immunosensor based on Fe3O4 nanoparticles immobilized anti-IgG. Electroanalysis 20(8):881–887

    Article  Google Scholar 

  94. Li M, Tang HX, Roukes ML (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol 2:114–120

    Article  Google Scholar 

  95. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3:538

    Article  Google Scholar 

  96. Ligler FS (2009) Perspective on optical biosensors and integrated sensor systems. Anal Chem 81(2):519–526

    Article  Google Scholar 

  97. Lin L, Xiao LL, Huang S, Zhao L, Cui JS, Wang XH, Chen X (2006) Novel BOD optical fiber biosensor based on co-immobilized microorganisms in ormosils matrix. Biosens Bioelectron 21(9):1703–1709

    Article  Google Scholar 

  98. Liu L, Shang L, Liu C, Liu C, Zhang B, Dong S (2010) A new mediator method for BOD measurement under non-deaerated condition. Talanta 81(4–5):1170–1175

    Google Scholar 

  99. Liu S, Leech D, Ju HX (2003) Application of colloidal gold in protein immobilization, electron transfer, and biosensing. Anal Lett 36(1):1–19

    Article  Google Scholar 

  100. Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441

    Google Scholar 

  101. Long F, He M, Shi HC, Zhu AN (2008) Development of evanescent wave all-fiber immunosensor for environmental water analysis. Biosens Bioelectron 23(7):952–958

    Article  Google Scholar 

  102. Luckarift HR, Balasubramanian S, Paliwal S, Johnson GR, Simonian AL (2007) Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface. Colloids Surf B 58(1):28–33

    Article  Google Scholar 

  103. Luong JHT, Maleb KB, Glennon JD (2009) Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. Analyst 134(10):1965–1979

    Article  Google Scholar 

  104. Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors—principles and applications to clinical chemistry. Clin Chim Acta 314(1–2):1–26

    Article  Google Scholar 

  105. Mann TS, Mikkelsen SR (2008) Antibiotic susceptibility testing at a screen-printed carbon electrode array. Anal Chem 80(3):843–848

    Article  Google Scholar 

  106. Marchesini GR, Meulenberg E, Haasnoot W, Irth H (2005) Biosensor immunoassays for the detection of bisphenol A. Anal Chim Acta 528(1):37–45

    Article  Google Scholar 

  107. Martin CR, Siwy ZS (2007) Learning nature’s way: biosensing with synthetic nanopores. Science 317:331–332

    Article  Google Scholar 

  108. Mauriz E, Calle A, Lechuga LM, Quintana J, Montaya A, Manclus JJ (2006) Real-time detection of chlorpyrifos at part per trillion levels ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal Chim Acta 561(1–2):40–47

    Article  Google Scholar 

  109. Mauriz E, Calle A, Manclus JJ, Montoya A, Hildebrandt A, Barcelo D, Lechuga LM (2007) Optical immunosensor for fast and sensitive detection of DDT and related compounds in river water samples. Biosens Bioelectron 22(7):1410–1418

    Google Scholar 

  110. Mita DG, Attanasio A, Arduini F, Diano N, Grano V, Bencivenga U, Rossi S, Amine A, Moscone D (2007) Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers. Biosens Bioelectron 23(1):60–65

    Article  Google Scholar 

  111. Mitchell J (2010) Small molecule immunosensing using surface plasmon resonance. Sensors 10(8):7323–7346

    Google Scholar 

  112. Monk DJ, Walt DR (2004) Opticalfiber-based biosensors. Anal Bioanal Chem 379:931–945

    Article  Google Scholar 

  113. Nakamura H, Suzuki K, Ishikuro H, Kinoshita S, Koizumi R, Okuma S, Gotoh M, Karube I (2007) A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta 72(1):210–216

    Article  Google Scholar 

  114. Ndobo-Epoy JP, Lesniewska E, Guicquero JP (2007) Nano-pH sensor for the study of reactive materials. Anal Chem 79:7560–7564

    Article  Google Scholar 

  115. Notsu H, Tatsuma T, Fujishima A (2002) Tyrosinase-modified boron doped diamond electrodes for the determination of phenol derivatives. J Electroanal Chem 523(1):86–92

    Article  Google Scholar 

  116. Nowicka AM, Kowalczyk A, Stojek Z, Hepel M (2010) Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants. Biophys Chem 146(1):42–53

    Article  Google Scholar 

  117. Palchetti I, Mascini M (2008) Nucleic acid biosensors for environmental pollution monitoring. Analyst 133(7):846–854

    Article  Google Scholar 

  118. Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci USA 101:14017–14022

    Article  Google Scholar 

  119. Perez Lopez B, Merkoci A (2009) Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Analyst 134(1):60–64

    Article  Google Scholar 

  120. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Gold naoparticucle-based electrochemical biosensors. Electrochim Acta 53:5848–5866

    Article  Google Scholar 

  121. Poghossian A, Ingebrandt S, Offenhäusser A, Schöning MJ (2009) Field-effect devices for detecting cellular signals. Semin Cell Dev Biol 20(1):41–48

    Article  Google Scholar 

  122. Ponomareva ON, Arlyapov VA, Alferov VA, Reshetilov AN (2011) Microbial biosensors for detection of biological oxygen demand (a review). Appl Biochem Microb 47(1):1–11

    Article  Google Scholar 

  123. Popovtzer R, Neufeld T, Ron EZ J, Rishpon, Shacham-Diamand Y (2006) Electrochemical detection of biological reactions using a novel nano-bio-chip array. Sens Acta B 19:664–672

    Article  Google Scholar 

  124. Prodromidis MI (2010) Impedimetric immunosensors—a review. Electrochim Acta 55:4227–4233

    Article  Google Scholar 

  125. Quan D, Nagarale RK, Shin W (2010) A nitrite biosensor based on coimmobilization of nitrite reductase and viologen-modified polysiloxane on glassy carbon electrode. Electroanalysis 22(20):2389–2398

    Article  Google Scholar 

  126. Rahman MA, Shiddiky MJA, Park JS, Shim YB (2007) An impedimetric immunosensor for the label-free detection of bisphenol A. Biosens Bioelectron 22(11):2464–2470

    Article  Google Scholar 

  127. Ramanathan M, Simonian AL (2007) Array biosensor based on enzyme kinetics monitoring by fluorescence spectroscopy: Application for neurotoxins detection. Biosens Bioelectron 22(12):3001–3007

    Article  Google Scholar 

  128. Riu J, Maroto A, Rius FX (2006) Nanosens Environ Anal 69(2):288–301

    Google Scholar 

  129. Rodriguez-Mozaz S, Marco MP, Lopez de Alda M, Barcelo D (2004) Biosensors for environmental monitoring of endocrine disruptors: a review article. Anal Bioanal Chem 378(3):588–598

    Article  Google Scholar 

  130. Rodriguez-Mozaz S, Lopez de Alda M, Marco MP, Barcelo D (2005) Biosensors for environmental monitoring. A global perspective. Talanta 65(2):291–297

    Google Scholar 

  131. Rodriguez-Mozaz S, Lopez de Alda M, Marco MP, Barcelo D (2007) Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography-mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J Chromatogr A 1152(1–2):97–115

    Google Scholar 

  132. Rogers KR (2006) Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta 568(1–2):222–231

    Article  Google Scholar 

  133. Sakaguchi T, Morioka Y, Yamasaki M, Iwanaga J, Beppu K, Maedac H, Morita Y, Tamiya E (2007) Rapid and onsite BOD sensing system using luminous bacterial cells-immobilized chip. Biosens Bioelectron 22(7):1345–1350

    Google Scholar 

  134. Sanchez-Acevedo ZC, Riu J, Rius FX (2009) Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-α. Biosens Bioelectron 24(9):842–2846

    Article  Google Scholar 

  135. Scarano S, Mascini M, Turner APF, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25(5):957–966

    Article  Google Scholar 

  136. Schöning MJ, Poghossian A (2006) Bio FEDs (Field-Effect Devices): state-of-the art and new directions. Electroanalysis 18(19–20):1893–1900

    Article  Google Scholar 

  137. Sepulveda B, Sanchez del Rio J, Moreno M, Blanco FJ, Mayora K, Dominguez C, Lechuga LM (2006) Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices. J Opt A 8(7):S561–S566

    Article  Google Scholar 

  138. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized grapheme. Biosens Bioelectron 25:1504

    Article  Google Scholar 

  139. Shitanda I, Takamatsu S, Watanabe K, Itagaki M (2009) Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds. Electrochim Acta 54(21):4933–4936

    Article  Google Scholar 

  140. Shulga O, Kirchhoff JR (2007) An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochem Commun 9(5):935–940

    Article  Google Scholar 

  141. Sohail M, Adeloju SB (2009) Fabrication of redox-mediator supported potentiometric nitrate biosensor with nitrate reductase. Electroanalysis 21(12):1411–1418

    Article  Google Scholar 

  142. Soldatkin OO, Pavluchenko OS, Kukla OL, Kucherenko IS, Peshkova VM, Rkhypova VM, Dzyadevych SV, Soldatkin AP, El’skaya AV (2009) Application of enzyme multibiosensor for toxicity analysis of real water samples of different origin. Biopolym cell 25(3):204–209

    Google Scholar 

  143. Song Y, Li G, Thorton SF, Thompson IP, Banwart SA, Lerner DN, Huang W (2009) Optimization of bacterial whole cell bioreporters for toxicity assay of environmental samples. Environ Sci Technol 43(20):7931–7938

    Article  Google Scholar 

  144. Stankovich S, Dikin DA, Domett GHB, Kohlass KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282

    Article  Google Scholar 

  145. Su S, He Y, Zhang M, Yang K, Song S, Zhang X, Fan C, Lee ST (2008) High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors. Appl Phys Lett 93:023113

    Article  Google Scholar 

  146. Tag K, Riedel K, Bauer HJ, Hanke G, Baronian KHR, Kunze G (2007) Amperometric detection of Cu2+ by yeast biosensors using flow injection analysis (FIA). Sens Actuators B 122(2):403–40905

    Article  Google Scholar 

  147. Tatsuma T, Yoshida Y, Shitanda I, Notsu H (2009) Algal biosensor array on a single electrode. Analyst 134(2):223–225

    Article  Google Scholar 

  148. Teles FRR, Fonseca LP (2008) Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng 28(8):1530–1543

    Article  Google Scholar 

  149. Timur S, Anik U, Odaci D, Gorton L (2007) Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochem Commun 9(7):1810–1815

    Google Scholar 

  150. Tschmelak J, Proll G, Riedt J, Kaiser J, Kraemmer P, Barzaga L, Wilkinson JS, Hua P, Hole JP, Nudd R, Jackson M, Abuknesha R, Barcelo D, Rodriguez-Mozaz S, Lopez de Alda MJ, Sacher F, Stien J, Slobodnik J, Oswald P, Kozmenko H, Korenkova E, Tothova L, Krascsenits Z, Gauglitz G (2005) Automated water analyser computer supported system (AWACSS).PartII: Intelligent, remote-controlled, costeffective, on-line, water-monitoring measurement system. Biosens Bioelectron 20(8):1509–1519

    Article  Google Scholar 

  151. Tschmelak J, Kumpf M, Kappel N, Proll G, Gauglitz G (2006) Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: antibody characterization, assay development and real sample measurements. Talanta 69:343–350

    Article  Google Scholar 

  152. Turner APF, Karube I, Wilson Biosensors SW (1986) Fundamentals and applications. Oxford Science Publications, Oxford

    Google Scholar 

  153. Tymecki L, Glab S, Koncki R (2006) Miniaturized planar ion-selective electrodes fabricated by means of thick-film technology. Sensors 6(6):390–396

    Article  Google Scholar 

  154. Van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8(7):511–522

    Article  Google Scholar 

  155. Védrine C, Leclerc C, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18(4):457–463

    Google Scholar 

  156. Vidal JC, Bonel L, Castillo JR (2008) A modulated tyrosinase enzyme-based biosensor for application to the detection of dichlorvos and atrazine pesticides. Electroanalysis 20(8):865–873

    Article  Google Scholar 

  157. Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24(9):2772–2777

    Article  Google Scholar 

  158. Vo-Dinh T (2008) Nanosensing at the single cell level. Spectrochim Acta Part B 63:95–103

    Google Scholar 

  159. Wang J (2004) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14

    Article  Google Scholar 

  160. Wang L, Ran Q, Tian Y, Xu J, Xian Y, Peng R, Jin L (2010) Covalent grafting tyrosinase and its application in phenolic compounds detection. Microchim Acta 171(3–4):217–223

    Google Scholar 

  161. Wang S, Tan Y, Zhao D, Liu G. G (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Biosens Bioelectron 23(12):1781–1787

    Article  Google Scholar 

  162. Wang WU, Chen C, Lin KH, Fang Y, LieberM CM (2005) Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA 102:3208–3212

    Article  Google Scholar 

  163. Wang X, Zhi L, Mullen K (2007) Transparent conductive graphene electrode for dye-sensitized solar cells. Nano Lett 8:323

    Google Scholar 

  164. Wei D, Bailey MJA, Andrew P, Ryhanen T (2009) Electrochemical biosensors at the nanoscale. Lab Chip 9(15):2123–2131

    Article  Google Scholar 

  165. Wijaya C, Lenaerts S, Maricot J, Hastanin S, Habraken JP, Vilcot R, Boukherroub S, Szunerits S (2011) Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Curr Opin Solid State Mater Sci 15:208–224

    Article  Google Scholar 

  166. Woutersen M, Belkin S, Brouwer B, van Wezel AP, Heringa MB (2010) Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal Bioanal Chem 400(4):915–929

    Article  Google Scholar 

  167. Xia W, Li Y, Wan Y, Chen T, Wei J, Lin Y, Xu S (2010) Electrochemical biosensor for estrogenic substance using lipid bilayers modified by Au nanoparticles. Biosens Bioelectron 25(10):2253–2258

    Google Scholar 

  168. Xu Z, Chen X, Dong S (2006) Electrochemical biosensors based on advanced bioimmobilization matrices. Trends Anal Chem 25(9):899–908

    Article  Google Scholar 

  169. Xuejiang W, Dzyadevych SV, Chovelon JM, Jaffrezic-Renault N, Ling C, Siqing X, Jianfu Z (2006) Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes. Talanta 69(2):450–455

    Article  Google Scholar 

  170. Yanez-Sedeno P, Pingarron JM (2005) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382(4):884–886

    Article  Google Scholar 

  171. Yildiz HB, Castillo J, Guschin DA, Toppare L, Schuhmann W (2007) Phenol biosensor based on electrochemically controlled integration of tyrosinase in a redox polymer. Microchim Acta 159(1–2):27–34

    Google Scholar 

  172. Yuan CJ, Wang CL, Wu TY, Hwang KC, Chao WC (2011) Fabrication of a carbon fiber paper as the electrode and its application toward developing a sensitive unmediated amperometric biosensor. Biosens Bioelectron 26(6):2858–2863

    Article  Google Scholar 

  173. Zeijli H, Hidalgo-Hidalgode Cisneros JL, Naranjo-Rodriguez I, Liu B, Tansamani KR, Marty JL (2008) Phenol biosensorbased on sonogel-carbon transducer with tyrosinase alumina sol-gel immobilization. Anal Chim Acta 612:198–203

    Article  Google Scholar 

  174. Zhang J, Lang HP, Huber F, Bietsch A, Grange W, Certa U, McKendry R, Guntgerodt HJ, Hegner M, Gerber C (2006) Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol 1:214–220

    Article  Google Scholar 

  175. Zhang Z, Jaffrezic-Renault N, Bessueille F, Léonard D, Xia S, Wang X, Chen L, Zhao J (2008) Development of a conductometric phosphate biosensor based on tri-layer maltose phosphorylase composite films. Anal Chim Acta 615(1):73–79

    Article  Google Scholar 

  176. Zhang Z, Xia S, Léonard D, Jaffrezic-Renault N, Zhang J, Bessueille F, Goepfert Y, Wang X, Chen L, Zhu Z, Zhao J, Almeida MG, Silveira CM (2009) A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane. Biosens Bioelectron 24(6):1574–1579

    Article  Google Scholar 

  177. Zhao J, Zhi Y, Zhou W (2009) A tyrosinase biosensor based on ZnO nanorod clusters/nanocrystalline diamond electrodes for biosensing of phenolic compounds. Anal Sci 25(9):1083–1088

    Article  Google Scholar 

  178. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowiresensor arrays. Nat Biotechnol 23:1294–1301

    Article  Google Scholar 

  179. Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959

    Google Scholar 

  180. Zoski CG, Yang N, He P, Berdondini L, Koudelka-Hep M (2007) Addressable nanoelectrode membrane arrays: Fabrication and steady-state behavior. Anal Chem 79:1474–1484

    Article  Google Scholar 

  181. Zhang Y, Zhang K, Ma H (2009) Electrochemical DNA biosensors based on gold nanoparticles/cysteamine/poly(glutamic acid) modified electrode. Am J Biomed Sci 1(2):115–125

    Article  Google Scholar 

  182. Zhou Y, Zhi J (2006) Development of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode. Electrochem Commun 8(12):1811–1816

    Article  Google Scholar 

  183. Zourob M, Simonian A, Wild J, Mohr S, Fan X, Abdulhalime I, Goddard NJ (2007) Optical leaky waveguide biosensors for the detection of organophosphorus pesticides. Analyst 132(2):114–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Durrieu, C., Lagarde, F., Jaffrezic-Renault, N. (2013). Nanotechnology Assets in Biosensors Design for Environmental Monitoring. In: Brayner, R., Fiévet, F., Coradin, T. (eds) Nanomaterials: A Danger or a Promise?. Springer, London. https://doi.org/10.1007/978-1-4471-4213-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4213-3_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4212-6

  • Online ISBN: 978-1-4471-4213-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics