Skip to main content
Log in

Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new immunoassay for continuously monitoring atrazine in water has been developed. It uses a portable biosensor platform based on surface plasmon resonance (SPR) technology. This immunoassay is based on the binding inhibition format with purified polyclonal antibodies, with the analyte derivative covalently immobilized on a gold sensor surface. An alkanethiol self-assembled monolayer (SAM) was formed on the gold-coated sensor surface in order to obtain a reusable sensing surface. The low detection limit for the optimized assay, calculated as the concentration that produces a 10% decrease in the blank signal, is 20 ng/L. A complete assay cycle, including regeneration, is accomplished in 25 min. Additionally, a study of the matrix effects of different types of wastewater was performed. All measurements were carried out with the SPR sensor system (β-SPR) commercialised by the company Sensia, S.L. (Spain). The small size and low response time of the β-SPR platform would allow it to be used in real contaminated locations. The immunosensor was evaluated and validated by measuring the atrazine content of 26 natural samples collected from Ebro River. Solid-phase extraction followed by gas chromatography coupled to mass spectrometric detection (SPE–GC–MS) was used to validate the new immunoassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cooper RL, Stoker TE, Tyrey L, Goldman JM, McElroy WK (2000) Toxicol Sci 53:297–307

    Article  CAS  Google Scholar 

  2. Sathiakumar N, Delzell E (1997) Crit Rev Toxicol 27:599–612

    Article  CAS  Google Scholar 

  3. EC (1998) Off J Eur Commun L330:32

    Google Scholar 

  4. Patty L, Bruchet A, Jaskulke E, Acobas F, Van Hoof F, Sacher F, Bobeldijk I, Ventura F, Marecos do Mote MH (1998) TSM Hydrol Hydraul 9:24

    Google Scholar 

  5. Di Corcia A, Crescenzi C, Guerriero E, Samperi R (1997) Environ Sci Technol 31:1658–1663

    Article  Google Scholar 

  6. Koeber R, Fleischer C, Lanza F, Boos K-S, Sellergren B, Barcelo D (2001) Anal Chem 73:2437–2444

    Article  CAS  Google Scholar 

  7. Rodriguez-Mozaz S, López de Alda M-J, Barceló D (2004) J Chromatogr A 1045:85–92

    Article  CAS  Google Scholar 

  8. Jeannot R, Sabik H, Sauvard E, Genin E (2000) J Chromatogr A 879:51–71

    Article  CAS  Google Scholar 

  9. Dagnac T, Bristeau S, Jeannot R, Mouvet C, Baran N (2005) J Chromatogr A 1067:225–233

    Article  CAS  Google Scholar 

  10. Graziano N, McGuire MJ, Roberson A, Adams C, Jiang H, Blute N (2006) Environ Sci Technol 40:1163–1171

    Article  CAS  Google Scholar 

  11. Rodriguez-Mozaz S, López de Alda MJ, Barceló D (2006) Talanta 69:377–384

    Article  CAS  Google Scholar 

  12. Rodriguez-Mozaz S, Reder S, Lopez de Alda MJ, Gauglitz G, Barceló D (2004) Biosen Bioelectron 19:633–640

    Article  CAS  Google Scholar 

  13. Mauriz E, Calle A, Lechuga LM, Quintana J, Montoya A, Manclús JJ (2006) Anal Chim Acta 561:40–47

    Article  CAS  Google Scholar 

  14. Lim T, Oyama M, Ikebukuro K, Karube I (2000) Anal Chem 72:2856–2860

    Article  CAS  Google Scholar 

  15. Nakamura C, Hasegawa M, Nakamura N, Miyake J (2003) Biosen Bioelectron 18:599–603

    Article  CAS  Google Scholar 

  16. Shimomura M, Nomura Y, Zhang W, Sakino M, Lee KH, Ikebukuro K, Karube I (2001) Anal Chim Acta 434:223–230

    Article  CAS  Google Scholar 

  17. Homola J (2003) Anal Bioanal Chem 377:528

    Article  CAS  Google Scholar 

  18. Gascon J, Oubina A, Ballesteros B, Barceló D, Camps F, Marco M-P, Gonzalez-Martinez MA, Morais S, Puchades R, Maquieira A (1997) Anal Chim Acta 347:149–162

    Article  CAS  Google Scholar 

  19. Manson MM (ed)(1992) Immunochemical protocols (Methods in Molecular Biology 10). Humana, Totowa, NJ

  20. Ferretti S, Paynter S, Russell DA, Sapsford KE, Richardson DJ (2000) Trends Anal Chem 19:530

    Article  CAS  Google Scholar 

  21. Mauriz E, Calle A, Montoya A, Lechuga L (2006) Talanta 69:359–364

    Article  CAS  Google Scholar 

  22. Lacorte S, Guiffard I, Fraisse D, Barceló D (2000) Anal Chem 72:1430–1440

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the EU Project SWIFT WFD (Contract SSPI-CT-2003-502492) and the Ministry of Science and Technology (project number CTM2005-24255E) and (Contract number TEC20004-0121-E) and by the European Community (IST-2003-508774). The AMR group is a consolidated Grup de Recerca de la Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informaciá la Generalitat de Catalunya (expedient 2005SGR 00207).

Marinella Farré thanks the Juan de la Cierva Program of the Ministerio de Educación y Ciencia, and Javier Ramón thanks the I3P program of the CSIC. This work reflects only the authors’ views, and the European Community is not liable for any use that may be made of the information contained therein. Thanks to Sensia, S.L. for their loan of the SPR instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damià Barceló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farré, M., Martínez, E., Ramón, J. et al. Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor. Anal Bioanal Chem 388, 207–214 (2007). https://doi.org/10.1007/s00216-007-1214-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1214-2

Keywords

Navigation