Skip to main content
Log in

Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A whole cell-based amperometric biosensor for highly selective, sensitive, rapid, and cost-effective determination of the organophosphate pesticides fenitrothion and ethyl p-nitrophenol thiobenzenephosphonate (EPN) is discussed. The biosensor comprised genetically engineered p-nitrophenol (PNP)-degrading bacteria Pseudomonas putida JS444 anchoring and displaying organophosphorous hydrolase (OPH) on its cell surface as biological sensing element and carbon paste electrode as the amperometric transducer. Surface-expressed OPH catalyzed the hydrolysis of organophosphorous pesticides such as fenitrothion and EPN to release PNP and 3-methyl-4-nitrophenol, respectively, which were subsequently degraded by the enzymatic machinery of P. putida JS444 through electrochemically active intermediates to the TCA cycle. The electrooxidization current of the intermediates was measured and correlated to the concentration of organophosphates. Operating at optimum conditions, 0.086 mg dry wt of cell operating at 600 mV of applied potential (vs Ag/AgCl reference) in 50 mM citratephosphate buffer, pH 7.5, with 50 μM CoCl2 at room temperature, the biosensor measured as low as 1.4 ppb of fenitrothion and 1.6 ppb of EPN. There was no interference from phenolic compounds, carbamate pesticides, triazine herbicides, or organophosphate pesticides without nitrophenyl substituent. The service life of the biosensor and the applicability to lake water were also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beltran, J., Pitarch, E., Egea, S., Lopez, F. J., and Hernandez, F. (2001), Chromatographia 54, 757–763.

    Article  CAS  Google Scholar 

  2. Aharonson, N., Cohen, S. Z., Drescher, N., et al. (1987), Pure Appl. Chem. 59, 1419–1446.

    CAS  Google Scholar 

  3. Wang, J., Chen, G., Muck, A., Chatrathi, M. P., Mulchandani, A., and Chen, W. (2004), Anal. Chim. Acta 505, 183–187.

    Article  CAS  Google Scholar 

  4. Kim, D. H., Heo, G. S., and Lee, D. W. (1998), J. Chromatogr. A 824, 63–70.

    Article  CAS  Google Scholar 

  5. Lee, X. P., Kumazawa, T., Sato, K., and Suzuki, O. (1996), Chromatographia 42, 135–140.

    Article  CAS  Google Scholar 

  6. Schellin, M., Hauser, B., and Popp, P. (2004), J. Chromatogr. A 1040, 251–258.

    Article  CAS  Google Scholar 

  7. Sanchez, M. E., Mendez, R., Gomez, X., and Martin-Villacorta, J. (2003), J. Liquid Chromatogr. Relat. Technol. 26, 483–497.

    Article  CAS  Google Scholar 

  8. Cho, Y., Matsuoka, N., and Kamiya, A. (1997), Chem. Pharm. Bull. 45, 737–740.

    CAS  Google Scholar 

  9. Kolosova, A. Y., Park, J. H., Eremin, S. A., et al. (2004), Anal. Chim. Acta 511, 323–331.

    Article  CAS  Google Scholar 

  10. Kim, Y. J., Cho, Y. A., Lee, H. S., and Lee, Y. T. (2003), Anal. Chim. Acta 494, 29–40.

    Article  CAS  Google Scholar 

  11. Watanabe, E., Kanzaki, Y., Tokumoto, H., Hoshino, R., Kubo, H., and Nakazawa, H. (2002), J. Agric. Food Chem. 50, 53–58.

    Article  CAS  Google Scholar 

  12. Watanabe, E., Kubo, H., and Nakazawa, H. (2002), Anal. Chim. Acta 460, 99–110.

    Article  CAS  Google Scholar 

  13. Lui, J., Tan., M., Liang, C., and Ying, K. B. (1996), Anal. Chim. Acta 329, 297–304.

    Article  CAS  Google Scholar 

  14. Kumaran, S. and Morita, M. (1995), Talanta 42, 649–655.

    Article  CAS  Google Scholar 

  15. Diaz, A. N. and Peinado, M. C. R. (1997), Sens. Actuators B Chem. 39, 426–431.

    Article  Google Scholar 

  16. Diaz, A. N., Sanchez, F. G., Bracho, V., Lovillo, J., and Aguilar, A. (1997), Fresenius J. Anal. Chem. 357, 958–961.

    Article  Google Scholar 

  17. Sanchez, F. G., Diaz, A. N., Peinado, M. C. R., and Belledone, C. (2003), Anal. Chim. Acta 484, 45–51.

    Article  CAS  Google Scholar 

  18. Lin, Y. H, Lu, F., and Wang, J. (2004), Electroanalysis 16, 146–149.

    Google Scholar 

  19. Donarski, W. J., Dumas, D. P., Heitmeyer, D. P., Lewis, V. E., and Raushel, F. M. (1989), Biochemistry 28, 4650–4655.

    Article  CAS  Google Scholar 

  20. Dumas, D. P., Caldwell, S. R., Wild, J. R., and Raushel, F. M. (1989), J. Biol. Chem. 33, 19,659–19,665.

    Google Scholar 

  21. Dumas, D. P., Wild, J. R., and Raushel, F. M. (1989), Biotechnol. Appl. Biochem. 11, 235–243.

    CAS  Google Scholar 

  22. Mulchandani, A., Kaneva, I., and Chen, W. (1998), Anal. Chem. 70, 5042–5046.

    Article  CAS  Google Scholar 

  23. Mulchandani, A., Mulchandani, P., Kaneva, I., and Chen, W. (1998), Anal. Chem. 70, 4140–4145.

    Article  CAS  Google Scholar 

  24. Mulchandani, A., Mulchandani, P., Chen, W., Wang, J., and Chen, L. (1999), Anal. Chem. 71, 2246–2249.

    Article  CAS  Google Scholar 

  25. Mulchandani, A., Pan, S., and Chen, W. (1999), Biotechnol. Prog. 15, 130–134.

    Article  CAS  Google Scholar 

  26. Mulchandani, P., Mulchandani, A., Kaneva, I., and Chen, W. (1999), Biosens. Bioelectron. 14, 77–85.

    Article  CAS  Google Scholar 

  27. Mulchandani, A., Chen, W., Mulchandani, P., Wang, J., and Rogers, K. R. (2001), Biosens. Bioelectron. 16, 225–230.

    Article  CAS  Google Scholar 

  28. Mulchandani, P., Chen, W., and Mulchandani, A. (2001), Environ. Sci. Technol. 35, 2562–2565.

    Article  CAS  Google Scholar 

  29. Mulchandani, P., Chen, W., Mulchandani, A., Wang, J., and Chen, L. (2001), Biosens. Bioelectron. 16, 433–437.

    Article  CAS  Google Scholar 

  30. Rogers, K. R., Wang, Y., Mulchandani, A., Mulchandani, P., and Chen, W. (1999), Biotechnol. Prog. 15, 517–522.

    Article  CAS  Google Scholar 

  31. Wang, J., Chen, L., Mulchandani, A., Mulchandani, P., and Chen, W. (1999), Electroanalysis 11, 866–869.

    Article  CAS  Google Scholar 

  32. Chough, S. H., Mulchandani, A., Mulchandani, P., Chen, W., Wang, J., and Rogers, K. R. (2002), Electroanalysis 14, 273–276.

    Article  CAS  Google Scholar 

  33. Wang, J., Chatrathi, M. P., Mulchandani, A., and Chen, W. (2001), Anal. Chem. 73, 1804–1808.

    Article  CAS  Google Scholar 

  34. Lei, Y., Mulchandani, P., Chen, W., Wang, J., and Mulchandani, A. (2004), Biotechnol. Bioeng. 15, 706–713.

    Article  CAS  Google Scholar 

  35. Lei, Y., Mulchandani, A., and Chen, W. (2005), Biotechnol. Prog. 21, 678–681.

    Article  CAS  Google Scholar 

  36. Lei, Y., Mulchandani, P., Chen, W., and Mulchandani, A. (2005), J. Agric. Food Chem. 53, 524–527.

    Article  CAS  Google Scholar 

  37. Lei, Y., Mulchandani, P., Chen, W., and Mulchandani, A. (2006), Sensors 6, 466–472.

    Article  CAS  Google Scholar 

  38. Lei, Y., Mulchandani, P., Chen, W., and Mulchandani, A. (2005), Environ. Sci. Technol. 39, 8853–8857.

    Article  CAS  Google Scholar 

  39. Han, T. S., Kim, Y. C., and Karube, I. (2001), Anal. Chim. Acta 431, 225–230.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, Y., Mulchandani, P., Chen, W. et al. Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode. Appl Biochem Biotechnol 136, 243–250 (2007). https://doi.org/10.1007/s12010-007-9023-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9023-9

Index Entries

Navigation