Skip to main content

Gastropod Immunobiology

  • Chapter
Invertebrate Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 708))

Abstract

Over their 500 million year history, gastropods have radiated into marine, freshwater and terrestrial environments and adopted life styles ranging from herbivory to carnivory to endoparasitism to symbiont-mediated chemoautotrophy. They contend with many pathogens, including several lineages of specialized eukaryotic parasites. Their immunobiology is as yet poorly known, in part because most studies focus on a very small segment of gastropod diversity. Gastropod genome sequences are now forthcoming but synthetic overviews of the gastropod immunome are not yet available. Most immunological studies focus on interactions between gastropods and the larval stages of digenetic trematodes (digeneans) such as the medically important schistosomes. Digeneans elicit demonstrable and relevant snail defense responses and provide insights, augmented by the recently available schistosome genome sequences, for how gastropod responses are subverted. Survival of digeneans in snails depends at least in part on their ability to mimic host glycotopes, to overcome the immediate attack of reactive oxygen and nitrogen species produced by host hemocytes, and to induce long-term down-regulation of immune functions. Gastropods can mount distinct responses to different categories of pathogens, and can orchestrate effective elevated secondary responses under certain circumstances. Defense responses of at least one gastropod species, Biomphalaria glabrata, involve hemolymph lectins that are diversified by a variety of processes, including somatic diversification. Such observations have played a role in revising our general concept of invertebrate defense to include the possibility of more sophisticated and diversified responses beyond the production of limited repertoires of invariant pattern recognition molecules. The study of gastropod immunobiology is thus of basic interest and has several applied uses as well, including our need to conserve imperiled gastropod diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fryda J, Nutzel A, Wagner PJ. Paleozoic Gastropoda. In: Ponder WF, Lindberg DR, eds. Phylogeny and Evolution of the Mollusca. Berkeley: University of California Press, 2008:239–270.

    Google Scholar 

  2. Parkhaev PY. The early Cambrian radiation of Mollusca. In: Ponder WF, Lindberg DR, eds. Phylogeny and Evolution of the Mollusca. Berkeley: University of California Press, 2008:33–69.

    Google Scholar 

  3. Lindberg DR, Ponder WF, Haszprunar G. The Mollusca: relationships and patterns from their first half-billion years. In: Cracaft J, Donoghue MJ, eds. Assembling the Tree of Life. New York: Oxford University Press, 2004:252–278.

    Google Scholar 

  4. Aktipis SW, Giribet G, Lindberg DR et al. Gastropoda an overview and analysis. In: Ponder WF, Lindberg DR, eds. Phylogeny and Evolution of the Mollusca. Berkeley: University of California Press, 2008:201–237.

    Google Scholar 

  5. Bouchet P, Lozouet P, Maestrati P et al. Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biol J Linn Soc 2002; 75:421–436.

    Article  Google Scholar 

  6. Heller J. Longevity in mollusks. Malacologia 1990; 31:259–295.

    Google Scholar 

  7. Curtis LA. Spatial heterogeneity in size and parasitism: How it arises in an estuarine snail population. J Exp Mar Biol Ecol 2007; 352:317–330.

    Article  Google Scholar 

  8. Storey KB. Life in the slow lane: molecular mechanisms of estivation. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:733–754.

    Article  PubMed  Google Scholar 

  9. Bates AE. Feeding strategy, morphological specialisation and presence of bacterial episymbionts in lepetodrilid gastropods from hydrothermal vents. Mar Ecol-Progr Ser 2007; 347:87–99.

    Article  Google Scholar 

  10. Burghardt I, Evertsen J, Johnsen G et al. Solarpoweredseaslugs — Mutualistic symbiosis of aeolid nudibranchia (Mollusca, Gastropoda, Opisthobranchia) with Symbiodinium. Symbiosis 2005; 38:227–250.

    Google Scholar 

  11. Suzuki Y, Kojima S, Watanabe H et al. Single host and symbiont lineages of hydrothermalvent gastropods Ifremeria nautilei (Provannidae): biogeography and evolution. Mar Ecol-Progr Ser 2006; 315:167–175.

    Article  CAS  Google Scholar 

  12. Prince JS. Presumptive alphavirus in the gastropod mollusc, Aplysia californica. Bull Mar Sci 2003; 73:673–677.

    Google Scholar 

  13. Hooper C, Hardy-Smith P, Handlinger J. Ganglioneuritis causing high mortalities in farmed Australian abalone (Haliotis laevigata and Haliotis rubra). Aust Vet J 2007; 85:188–193.

    Article  PubMed  CAS  Google Scholar 

  14. Travers MA, Barbou A, Le Goic N et al. Construction of a stable GFP-tagged Vibrio harveyi strain for bacterial dynamics analysis of abalone infection. FEMS Microbiol Lett 2008; 289:34–40.

    Article  PubMed  CAS  Google Scholar 

  15. Travers MA, Mirella da Silva P, Le Goic N et al. Morphologic, cytometric and functional characterisation of abalone (Haliotis tuberculata) haemocytes. Fish Shellfish Immunol 2008; 24:400–411.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng L, Huang J, Shi CY et al. Vibrio parahaemolyticus associated with mass mortality of postlarval abalone, Haliotis divericolor supertexta (L.), in Sanya, China. Journal of the World Aquaculture Society. 2008; 39:746–757.

    Article  Google Scholar 

  17. Moore JD, Finley CA, Robbins TT et al. Withering syndrome and restoration of southern California abalone populations. Cal Coop Ocean Fish 2002; 43:112–117.

    Google Scholar 

  18. Travers MA, Basuyaux O, Le Goic N et al. Influence of temperature and spawning effort on Haliotis tuberculata mortalities caused by Vibrio harveyi: an example of emerging vibriosis linked to global warming. Global Change Biol 2009; 15:1365–1376.

    Article  Google Scholar 

  19. Van Horn DJ, Hall JR, Loker ES et al. Gut bacterial community composition in three planorbid snail species. In review.

    Google Scholar 

  20. Cribb TH, Bray RA, Olson PD et al. Life cycle evolution in the Digenea: a new perspective from phylogeny. Advan Parasitol 2003; 54:197–254.

    Article  Google Scholar 

  21. Lockyer AE, Jones CS, Noble LR et al. Trematodes and snails: an intimate association. Can J Zool. 2004; 82:251–269.

    Article  Google Scholar 

  22. Gros O, Frenkiel L, Aranda DA. Structural analysis of the digestive gland of the queen conch Strombus gigas Linnaeus, 1758 and its intracellular parasites. J Mollus Stud. 2009; 75:59–68.

    Article  Google Scholar 

  23. McClymont HE, Dunn AM, Terry RS et al. Molecular data suggest that microsporidian parasites in freshwater snails are diverse. Int J Parasitol 2005; 35:1071–1078.

    Article  CAS  Google Scholar 

  24. Selman BJ, Jones AA, Barker GM. Microsporida (Microspora) parasitic in terrestrial gastropods. In: Barker GM, ed. Natural Enemies of Terrestrial Molluscs. Wallingford and Cambridge: CABI Press, 2004:579–597.

    Chapter  Google Scholar 

  25. Hertel LA, Bayne CJ, Loker ES. The symbiont Capsaspora owczarzaki, nov. gen. nov. sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata is related to members of the Mesomycetozoea. Int J Parasitol 2002; 32:1183–1191.

    Article  PubMed  CAS  Google Scholar 

  26. Morand, S, Wilson, MJ, Glen DM et al. Nematodes (Nematoda) parasitic in terrestrial gastropods. In: Barker GM, ed. Natural Enemies of Terrestrial Molluscs. Wallingford and Cambridge: CABI Press, 2004:525–557.

    Chapter  Google Scholar 

  27. Schrodl M. Heavy infestation by endoparasitic copepod crustaceans (Poecilostomatoida:Splanchnotrophidae) in Chilean opisthobranch gastropods, with aspects of splanchnotrophid evolution. Organisms Diversity and Evolution 2002; 2:19–26.

    Article  Google Scholar 

  28. Schupbach HU, Baur B. Parasitic mites influence fitness components of their host, the land snail Arianta arbustorum. Invertebr Biol 2008; 127:350–356.

    Article  Google Scholar 

  29. Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007; 25:697–743.

    Article  PubMed  CAS  Google Scholar 

  30. Ziegler K, Pujol N. C. elegans defence mechanisms. Med Sci (Paris) 2009; 25:497–503.

    Article  Google Scholar 

  31. Hibino T, Loza-Coll M, Messier C et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 2006; 300:349–365.

    Article  PubMed  CAS  Google Scholar 

  32. Vieira TC, Costa-Filho A, Salgado NC et al. Acharan sulfate, the new glycosaminoglycan from Achatina fulica Bowdich 1822. Structural heterogeneity, metabolic labeling and localization in the body, mucus and the organic shell matrix. Eur J Biochem 2004; 271:845–854.

    Article  PubMed  CAS  Google Scholar 

  33. Ehara T, Kitajima S, Kanzawa N et al. Antimicrobial action of achacin is mediated by l-amino acid oxidase activity. FEBS Letters 2002; 531:509–512.

    Article  PubMed  CAS  Google Scholar 

  34. Guo F, Huang ZB, Huang MQ et al. Effects of small abalone, Haliotis diversicolor, pedal mucus on bacterial growth, attachment, biofilm formation and community structure. Aquaculture 2009; 293:35–41.

    Article  Google Scholar 

  35. Matricon-Gondran M, Letocart M. Internal defenses of the snail Biomphalaria glabrata. I. Characterization of hemocytes and fixed phagocytes. J Invertebr Pathol 1999; 74:224–234.

    Article  PubMed  CAS  Google Scholar 

  36. Albrecht U, Keller H, Gebauer W et al. Rhogocytes (pore cells) as the site of hemocyanin biosynthesis in the marine gastropod Haliotis tuberculata. Cell Tissue Res 2001; 304:455–462.

    Article  PubMed  CAS  Google Scholar 

  37. Sminia T. Structure and function of blood and connective tissue cells of fresh water pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry. Zeitschrift fur Zellforschung und Mikroskopische Anatomie 1972; 130:497–526.

    Article  PubMed  CAS  Google Scholar 

  38. Gorbushin AM, Iakovleva NV. Haemogram of Littorina littorea. J Mar Biol Assoc UK. 2006; 86:1175–1181.

    Article  Google Scholar 

  39. Martin GG, Oakes CT, Tousignant HR et al. Structure and function of haemocytes in two marine gastropods, Megathura crenulata and Aplysia californica. J Mollus Stud 2007; 73:355–365.

    Article  Google Scholar 

  40. Hermann PM, Nicol JJ, Bulloch AGM et al. RGD-dependent mechanisms in the endoneurial phagocyte response and axonal regeneration in the nervous system of the snail Lymnaea stagnalis. J Exp Biol 2008; 211:491–501.

    Article  PubMed  CAS  Google Scholar 

  41. Lie KJ, Heyneman D, Yau P. Origin of amebocytes in Biomphalaria glabrata. J. Parasitol 1975; 61:574–576.

    Article  Google Scholar 

  42. Rondelaud D, Barthe D. The development of the amebocyte producing organ in Lymnaea truncatula Muller infected by Fasciola hepatica L. Z Parasitenkd 1981; 65:331–341.

    Article  PubMed  CAS  Google Scholar 

  43. Sullivan JT, Spence JV, Nunez JK. Killing of Schistosoma mansoni sporocysts in Biomphalaria glabrata implanted with amoebocyte-producing organ allografts from resistant snails. J Parasitol 1995; 81:829–833.

    Article  PubMed  CAS  Google Scholar 

  44. Vasquez RE, Sullivan JT. Hematopoietic tissue allografts in Biomphalaria glabrata (Mollusca: Pulmonata) induce humoral immunity to Schistosoma mansoni. Dev Comp Immunol 2001; 25:561–564.

    Article  PubMed  CAS  Google Scholar 

  45. Souza SD, Andrade ZA. On the origin of the Biomphalaria glabrata hemocytes. Mem Inst Oswaldo Cruz 2006; 101:213–218.

    Article  Google Scholar 

  46. Sminia T. Haematopoiesis in the freshwater snail Lymnaea stagnalis studied by electron microscopy and autoradiography. Cell Tissue Res 1974; 150:443–454.

    Article  PubMed  CAS  Google Scholar 

  47. Hooper C, Day R, Slocombe R et al. Stress and immune responses in abalone: limitations in current knowledge and investigative methods based on other models. Fish Shellfish Immunol 2007;22:363–379.

    Article  PubMed  CAS  Google Scholar 

  48. Salamat Z, Sullivan JT. Involvement of protein kinase C signalling and mitogen-activated protein kinase in the amebocyte-producing organ of Biomphalaria glabrata (Mollusca). Dev Comp Immunol 2009; 33:725–727.

    Article  PubMed  CAS  Google Scholar 

  49. Noda S. Effects of excretory-secretory products of Echinostoma paraensei larvae on the hematopoietic organ of M line Biomphalaria glabrata snails. J Parasitol 1992; 78:512–517.

    Article  PubMed  CAS  Google Scholar 

  50. Hanington PC, Lun CM, Adema CM et al. Time series analysis of the transcriptional responses of Biomphalaria glabrata throughout the course of intramolluscan development of Schistosoma mansoni and Echinostoma paraensei. Int J Parasitol 2010; 40(7):819–831.

    Article  PubMed  CAS  Google Scholar 

  51. Adema CM, Hertel LA, Miller RD et al. A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proc Natl Acad Sci USA 1997; 94:8691–8696.

    Article  PubMed  CAS  Google Scholar 

  52. Iijima R, Kisugi J, Yamazaki M. L-Amino acid oxidase activity of an antineoplastic factor of a marine mollusk and its relationship to cytotoxicity. Dev Comp Immunol 2003; 27:505–512.

    Article  PubMed  CAS  Google Scholar 

  53. Yoshino TP, Dinguirard N, Kunert J et al. Molecular and functional characterization of a tandem-repeat galectin from the freshwater snail Biomphalaria glabrata, intermediate host of the human blood fluke Schistosoma mansoni. Gene 2008; 411:46–58.

    Article  PubMed  CAS  Google Scholar 

  54. Davids BJ, Yoshino TP. Integrin-like RGD-dependent binding mechanism involved in the spreading response of circulating molluscan phagocytes. Dev Comp Immunol 1998; 22:39–53.

    Article  PubMed  CAS  Google Scholar 

  55. Bender RC, Broderick EJ, Goodall CP et al. Respiratory burst of Biomphalaria glabrata hemocytes: Schistosoma mansoni-resistant snails produce more extracellular H2O2 than susceptible snails. J Parasitol 2005; 91:275–279.

    Article  PubMed  CAS  Google Scholar 

  56. Gorbushin AM, Iakovleva NV. Functional characterization of Littorina littorea (Gastropoda: Prosobranchia) blood cells. J Mar Biol Assoc UK 2007; 87:741–746.

    Article  Google Scholar 

  57. Wright B, Lacchini AH, Davies AJ et al. Regulation of nitric oxide production in snail (Lymnaea stagnalis) defence cells: a role for PKC and ERK signalling pathways. Biol Cell 2006; 98:265–278.

    Article  PubMed  CAS  Google Scholar 

  58. Zelck UE, Gege BE, Schmid S. Specific inhibitors of mitogen-activated protein kinase and PI3-K pathways impair immune responses by hemocytes of trematode intermediate host snails. Dev Comp Immunol 2007; 31:321–331.

    Article  PubMed  CAS  Google Scholar 

  59. Humphries JE, Yoshino TP. Regulation of hydrogen peroxide release in circulating hemocytes of the planorbid snail Biomphalaria glabrata. Dev Comp Immunol 2008; 32:554–562.

    Article  PubMed  CAS  Google Scholar 

  60. Lacchini AH, Davies AJ, Mackintosh D et al. Beta-1, 3-glucan modulates PKC signalling in Lymnaea stagnalis defence cells: a role for PKC in H2O2 production and downstream ERK activation. J Exp Biol 2006; 209:4829–4840.

    Article  PubMed  CAS  Google Scholar 

  61. Plows LD, Cook RT, Davies AJ et al. Phagocytosis by Lymnaea stagnalis haemocytes: a potential role for phosphatidylinositol 3-kinase but not protein kinase A. J Invertebr Pathol 2006; 91:74–77.

    Article  PubMed  CAS  Google Scholar 

  62. Gorbushin AM, Klimovich AV, Iakovleva NV. Himasthla elongata: effect of infection on expression of the LUSTR-like receptor mRNA in common periwinkle haemocytes. Exp Parasitol 2009; 123:24–30.

    Article  PubMed  CAS  Google Scholar 

  63. Travers MA, Le Bouffant R, Friedman CS et al. Pathogenic Vibrio harveyi, in contrast to non-pathogenic strains, intervenes with the p38 MAPK pathway to avoid an abalone haemocyte immune response. J Cell Biochem 2009; 106:152–160.

    Article  PubMed  CAS  Google Scholar 

  64. Goodson MS, Kojadinovic M, Troll JV et al. Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis. Appl Environ Microbiol 2005; 71:6934–6946.

    Article  PubMed  CAS  Google Scholar 

  65. Qiu LM, Song LS, Xu W et al. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong scallop, Chlamys farreri. Fish Shellfish Immunol 2007; 22:451–466.

    Article  PubMed  CAS  Google Scholar 

  66. Wang L, Song L, Zhao J et al. Expressed sequence tags from the Zhikong scallop (Chlamys farreri): discovery and annotation of host-defense genes. Fish Shellfish Immunol 2009; 26:744–750.

    Article  PubMed  CAS  Google Scholar 

  67. Jiang Y, Wu X. Characterization of a RelNF-kappaB homologue in a gastropod abalone, Haliotis diversicolor supertexta. Dev Comp Immunol 2007; 31:121–131.

    Article  PubMed  CAS  Google Scholar 

  68. Zhang SM, Zeng Y, Loker ES. Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein. Immunogenetics 2007; 59:883–898.

    Article  PubMed  CAS  Google Scholar 

  69. Coustau C, Gourbal B, Mitta G et al. Echinostomes and snails: exploring complex interactions. In: Fried B, Toledo R, eds. The Biology of Echinostomes. New York: Springer, 2008:35–60.

    Google Scholar 

  70. Bayne, CJ. Successful parasitism of vector snail Biomphalaria glabrata by the human blood fluke (trematode) Schistosoma mansoni: a 2009 assessment. Mol Biochem Parasitol 2009; 165:8–18.

    Article  PubMed  CAS  Google Scholar 

  71. Adema CM, Hanington PC, Lun CM et al. Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites, Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes). Mol Immunol 2010; 47:849–860.

    Article  PubMed  CAS  Google Scholar 

  72. Matricon-Gondran M, Letocart M. Internal defenses of the snail Biomphalaria glabrata. III. Observations on tubular helical filaments inducedin the hemolymph by foreign material. J Invertebr Pathol 1999; 74:248–254.

    Article  PubMed  CAS  Google Scholar 

  73. Bouchut A, Roger E, Coustau C et al. Compatibility in the Biomphalaria glabrata/Echinostoma caproni model: potential involvement of adhesion genes. Int J Parasitol 2006; 36:175–184.

    Article  PubMed  CAS  Google Scholar 

  74. Sanchez JF, Lescar J, Chazalet V et al. Biochemical and structural analysis of Helix pomatia agglutinin. A hexameric lectin with a novel fold. J Biol Chem 2006; 281:20171–20180.

    Article  PubMed  CAS  Google Scholar 

  75. Hathaway JJ, Adema CM, Stout BA et al. Identification of protein components of egg masses indicates parental investment in immunoprotection of offspring by Biomphalaria glabrata (Gastropoda, Mollusca). Dev Comp Immunol 2010; 34:425–435.

    Article  PubMed  CAS  Google Scholar 

  76. Vergote D, Bouchut A, Sautiere PE et al. Characterisation of proteins differentially present in the plasma of Biomphalaria glabrata susceptible or resistant to Echinostoma caproni. Int J Parasitol 2005; 35:215–224.

    Article  PubMed  CAS  Google Scholar 

  77. Guillou F, Mitta G, Galinier R et al. Identification and expression of gene transcripts generated during an anti-parasitic response in Biomphalaria glabrata. Dev Comp Immunol 2007; 31:657–671.

    Article  PubMed  CAS  Google Scholar 

  78. Smith VJ, Soderhall K. A comparison of phenoloxidase activity in the blood of marine invertebrates. Dev Comp Immunol 1991; 15:251–261.

    Article  PubMed  CAS  Google Scholar 

  79. Bahgat M, Doenhoff M, Kirschfink M et al. Serine protease and phenoloxidase activities in hemocytes of Biomphalaria glabrata snails with varying susceptibility to infection with the parasite Schistosoma mansoni. Parasitol Res 2002; 88:489–494.

    PubMed  CAS  Google Scholar 

  80. Bai G, Brown JF, Watson C et al. Isolation and characterization of phenoloxidase from egg masses of the gastropod mollusc, Biomphalaria glabrata. Comp Biochem Physiol B Biochem Mol Biol 1997; 118:463–469.

    Article  PubMed  CAS  Google Scholar 

  81. Suzuki M, Saruwatari K, Kogure T et al. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 2009; 325:1388–1390.

    Article  PubMed  CAS  Google Scholar 

  82. Berriman M, Haas BJ, LoVerde PT et al. The genome of the blood fluke Schistosoma mansoni. Nature 2009; 460:352–358.

    Article  PubMed  CAS  Google Scholar 

  83. Zhou Y, Zheng H, Liu F et al. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 2009; 460:345–351.

    Article  CAS  Google Scholar 

  84. Guillou F, Roger E, Mone Y et al. Excretory-secretory proteome of larval Schistosoma mansoni and Echinostoma caproni, two parasites of Biomphalaria glabrata. Mol Biochem Parasitol 2007; 155:45–56.

    Article  PubMed  CAS  Google Scholar 

  85. Wu XJ, Sabat G, Brown JF et al. Proteomic analysis of Schistosoma mansoni proteins released during in vitro miracidium-to-sporocyst transformation. Mol Biochem Parasitol 2009; 164:32–44.

    Article  PubMed  CAS  Google Scholar 

  86. Roger E, Grunau C, Pierce RJ et al. Controlled chaos of polymorphic mucins in a metazoan parasite (Schistosoma mansoni) interacting with its invertebrate host (Biomphalaria glabrata). PLoS Negl Trop Dis 2008; 2:e330.

    Article  PubMed  CAS  Google Scholar 

  87. Roger E, Mitta G, Mone Y et al. Molecular determinants of compatibility polymorphism in the Biomphalaria glabrata/Schistosoma mansoni model: new candidates identified by a global comparative proteomics approach. Mol Biochem Parasitol 2008; 157:205–216.

    Article  PubMed  CAS  Google Scholar 

  88. Raghavan N, Knight M. The snail (Biomphalaria glabrata) genome project. Trends Parasitol 2006; 22:148–151.

    Article  PubMed  CAS  Google Scholar 

  89. Adema CM, Luo MZ, Hanelt B et al. A bacterial artificial chromosome library for Biomphalaria glabrata, intermediate snail host of Schistosoma mansoni. Mem Inst Oswaldo Cruz 2006; 101Suppl 1:167–177.

    Article  PubMed  CAS  Google Scholar 

  90. Hanelt B, Lun CM, Adema CM. Comparative ORESTES-sampling of transcriptomes of immune-challenged Biomphalaria glabrata snails. J Invertebr Pathol 2008; 99:192–203.

    Article  PubMed  CAS  Google Scholar 

  91. Veriovski-Almeida S, Venancio TM, Oliveira K et al. Use of a 44k oligoarray to explore the transcriptome of Schistosoma mansoni adult worms. Expt Parasitol 2007; 117:236–245.

    Article  CAS  Google Scholar 

  92. Lockyer AE, Spinks J, Kane RA et al. Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant-and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni. BMC Genomics 2008; 9:634.

    Article  PubMed  CAS  Google Scholar 

  93. Wang SH, Wang YL, Zhang ZX et al. Response of innate immune factors in abalone Haliotis diversicolor supertextato pathogenic or nonpathogenic infection. J Shellfish Res 2004; 23:1173–1177.

    Google Scholar 

  94. Mitta G, Galinier R, Tisseyre P et al. Gene discovery and expression analysis of immune-relevant genes from Biomphalaria glabrata hemocytes. Dev Comp Immunol 2005; 29:393–407.

    Article  PubMed  CAS  Google Scholar 

  95. Zhang SM, Zeng Y, Loker ES. Expression profiling and binding properties of fibrinogen-related proteins (FREPs), plasma proteins from the schistosome snail host Biomphalaria glabrata. Innate Immun 2008; 14:175–189.

    Article  PubMed  CAS  Google Scholar 

  96. Bixler LM, Lerner JP, Ivanchenko M et al. Axenic culture of Schistosoma mansoni sporocysts in low O2 environments. J Parasitol 2001; 87:1167–1168.

    PubMed  CAS  Google Scholar 

  97. Peterson NA, Hokke CH, Deelder AM et al. Glycotype analysis in miracidia and primary sporocysts of Schistosoma mansoni: Differential expression during the miracidium-to-sporocyst transformation. Int J Parasitol 2009; 39:1331–1344.

    Article  PubMed  CAS  Google Scholar 

  98. Lehr T, Geyer H, Maass K et al. Structural characterization of N-glycans from the freshwater snail Biomphalaria glabrata cross-reacting with Schistosoma mansoni glycoconjugates. Glycobiology 2007; 17:82–103.

    Article  PubMed  CAS  Google Scholar 

  99. Lehr T, Beuerlein K, Doenhoff MJ et al. Localization of carbohydrate determinants common to Biomphalaria glabrata as well as to sporocysts and miracidia of Schistosoma mansoni. Parasitology 2008; 135:931–942.

    Article  PubMed  CAS  Google Scholar 

  100. Nowak TS, Woodards AC, Jung Y et al. Identification of transcripts generated during the response of resistant Biomphalaria glabrata to Schistosoma mansoni infection using suppression subtractive hybridization. J Parasitol 2004; 90:1034–1040.

    Article  PubMed  CAS  Google Scholar 

  101. Knight M, Raghavan N, Goodall C et al. Biomphalaria glabrata peroxiredoxin: Effect of Schistosoma mansoni infection on differential gene regulation. Mol Biochem Parasitol 2009; 167:20–31.

    Article  PubMed  CAS  Google Scholar 

  102. Ittiprasert W, Miller A, Myers J et al. Identification of immediate response genes dominantly expressed in juvenile resistant and susceptible Biomphalaria glabrata snails upon exposure to Schistosoma mansoni. Mol Biochem Parasitol 2010; 169:27–39.

    Article  PubMed  CAS  Google Scholar 

  103. Ittiprasert W, Nene R, Miller A et al. Schistosoma mansoni infection of juvenile Biomphalaria glabrata induces a differential stress response between resistant and susceptible snails. Exp Parasitol 2009; 123:203–211.

    Article  PubMed  CAS  Google Scholar 

  104. Lie KJ, Jeong KH, Heyneman D. Molluscan host reactions to helminthic infection. Immune Responses in Parasitic Infections: Immunology, Immunopathology, and Immunoprophylaxis. Boca Raton: CRC Press, 1987:211–270.

    Google Scholar 

  105. Lie KJ, Heyneman D, Richards CS. Studies on resistance in snails — interference by nonirradiated echinostome larvae with natural resistance to Schistosoma mansoni in Biomphalaria glabrata. J Invertebr Pathol 1977; 29:118–125.

    Article  PubMed  CAS  Google Scholar 

  106. Gorbushin AM, Iakovleva NV. The enigma of the haemogram “left-shift” in periwinkles infected with trematodes. Fish Shellfish Immunol 2008; 24:745–751.

    Article  PubMed  CAS  Google Scholar 

  107. Noda S, Loker ES. Phagocytic activity of hemocytes of M line Biomphalaria glabrata snails: effect of exposure to the trematode Echinostoma paraensei. J Parasitol 1989; 75:261–269.

    Article  PubMed  CAS  Google Scholar 

  108. Loker ES, Cimino DF, Hertel LA. Excretory-secretory products of Echinostoma paraensei sporocysts mediate interference with Biomphalaria glabrata hemocyte functions. J Parasitol 1992; 78:104–115.

    Article  PubMed  CAS  Google Scholar 

  109. Adema CM, Arguello DF, 2nd, Stricker SA et al. A time-lapse study of interactions between Echinostoma paraensei intramolluscan larval stages and adherent hemocytes from Biomphalaria glabrata and Helix aspersa. J Parasitol 1994; 80:719–727.

    Article  PubMed  CAS  Google Scholar 

  110. Humbert E, Coustau C. Refractoriness of host haemocytes to parasite immunosuppressive factors as a putative resistance mechanism in the Biomphalaria glabrata-Echinostoma caproni system. Parasitology 2001; 122:651–660.

    Article  PubMed  CAS  Google Scholar 

  111. Iakovleva NV, Shaposhnikova TG, Gorbushin AM. Rediae of echinostomatid and heterophyid trematodes suppress phagocytosis of haemocytes in Littorina littorea (Gastropoda: Prosobranchia). Exp Parasitol 2006; 113:24–29.

    Article  PubMed  CAS  Google Scholar 

  112. Lie KJ. Survival of Schistosoma mansoni and other trematode larvae in the snail Biomphalaria glabrata — a discussion of the interference theory. Trop Geogr Med 1982; 34:111–122.

    PubMed  CAS  Google Scholar 

  113. Hertel LA, Stricker SA, Loker ES. Calcium dynamics of hemocytes of the gastropod Biomphalaria glabrata: effects of digenetic trematodes and selected bioactive compounds. Invertebr Biol. 2000; 119:27–37.

    Article  Google Scholar 

  114. Walker AJ. Do trematode parasites disrupt defence-cell signalling in their snail hosts? Trends Parasitol 2006; 22:154–159.

    Article  PubMed  CAS  Google Scholar 

  115. Plows LD, Cook RT, Davies AJ et al. Carbohydrates that mimic schistosome surface coat components affect ERK and PKC signalling in Lymnaea stagnalis haemocytes. Int J Parasitol 2005; 35:293–302.

    Article  PubMed  CAS  Google Scholar 

  116. Zahoor Z, Davies AJ, Kirk RS et al. Disruption of ERK signalling in Biomphalaria glabrata defence cells by Schistosoma mansoni: Implications for parasite survival in the snail host. Dev Comp Immunol 2008; 32:1561–1571.

    Article  PubMed  CAS  Google Scholar 

  117. Stout BA, Adema CM, Zhang S et al. Biology of FREPs: diversified lectins with fibrinogen-related domains from the freshwater snail Biomphalaria glabrata. In: Vasta GR, Ahmed H, eds. Animal Lectins: A Functional View. Boca Raton: CRC Press, 2009:475–491.

    Google Scholar 

  118. Basch PF. An interpretation of snail-trematode infection rates: specificitity based on concordance of compatible phenotypes. Int J Parasitol 1975; 5:449–452.

    Article  PubMed  CAS  Google Scholar 

  119. Theron A, Coustau C. Are Biomphalaria snails resistant to Schistosoma mansoni? J Helminthol 2005;79:187–191.

    Article  PubMed  CAS  Google Scholar 

  120. Messier-Solek C, Buckley KM, Rast JP. Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol 2010; 22(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  121. Loker ES, Adema CM, Zhang SM et al. Invertebrate immune systems-not homogeneous, not simple, not well understood. Immunol Rev 2004; 198:10–24.

    Article  PubMed  Google Scholar 

  122. Litman GW, Dishaw LJ, Cannon JP et al. Alternative mechanisms of immune receptor diversity. Curr Opin Immunol 2007; 19:526–534.

    Article  PubMed  CAS  Google Scholar 

  123. Horak P, Vander Knaap WPW. Lectins in snail-trematode immune interactions: are view. Folia Parasitologica 1997; 44:161–172.

    CAS  Google Scholar 

  124. Vasta GR, Ahmed H, Tasumi S et al. Biological roles of lectins in innate immunity: molecular and structural basis for diversity in self/non-self recognition. Adv Exp Med Biol 2007; 598:389–406.

    Article  PubMed  Google Scholar 

  125. Dong Y, Dimopoulos G. Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites. J Biol Chem 2009; 284:9835–9844.

    Article  PubMed  CAS  Google Scholar 

  126. Zhang SM, Adema CM, Kepler TB et al. Diversification of Ig superfamily genes in an invertebrate. Science 2004; 305:251–254.

    Article  PubMed  CAS  Google Scholar 

  127. Gorbushin AM, Panchin YV, Iakovleva NV. In search of the origin of FREPs: characterization of Aplysia californica fibrinogen-related proteins. Dev Comp Immunol 2010; 34:465–473.

    Article  PubMed  CAS  Google Scholar 

  128. Costa MM, Prado-Alvarez M, Gestal C et al. Functional and molecular immune response of Mediterranean mussel (Mytilus galloprovincialis) haemocytes against pathogen-associated molecular patterns and bacteria. Fish Shellfish Immunol 2009; 26:515–523.

    Article  PubMed  CAS  Google Scholar 

  129. Raghavan N, Tettelin H, Miller A et al. Nimbus (BgI): an active non-LTR retrotransposon of the Schistosoma mansoni snail host Biomphalaria glabrata. Int J Parasitol 2007; 37:1307–1318.

    Article  PubMed  CAS  Google Scholar 

  130. Hauton C, Smith VJ. Adaptive immunity in invertebrates: a straw house without a mechanistic foundation. Bioessays 2007; 29:1138–1146.

    Article  PubMed  CAS  Google Scholar 

  131. Lie KJ, Heyneman D, Lim HK. Studies on resistance in snails: specific resistance induced by irradiated miracidia of Echinostoma lindoense in Biomphalaria glabrata snails. Int J Parasitol 1975; 5:627–631.

    Article  PubMed  CAS  Google Scholar 

  132. Lie KJ, Heyneman D. Studies on resistance in snails. 3. Tissue reactions to Echinostoma lindoense sporocysts in sensitized and resensitized Biomphalaria glabrata. J Parasitol 1976; 62:51–58.

    Article  PubMed  CAS  Google Scholar 

  133. Jiang Y, Loker ES, Zhang SM. In vivo and in vitro knockdown of FREP2 gene expression in the snail Biomphalaria glabrata using RNA interference. Dev Comp Immunol 2006; 30:855–866.

    Article  PubMed  CAS  Google Scholar 

  134. Korneev SA, Kemenes I, Straub V et al. Suppression of nitric oxide (NO)-dependent behavior by double-stranded RNA-mediated silencing of a neuronal NO synthase gene. J Neurosci 2002; 22:RC227.

    PubMed  Google Scholar 

  135. Fabioux C, Corporeau C, Quillien V et al. In vivo RNA interference in oyster-vasa silencing inhibits germ cell development. FEBS J 2009; 276:2566–2573.

    Article  PubMed  CAS  Google Scholar 

  136. Yakovleva NV, Samoilovich MP, Gorbushin AM. The diversity of strategies of defense from pathogens in molluscs. J Evol Biochem Physl 2001; 37:358–367.

    Article  Google Scholar 

  137. Klussmann-Kolb A, Dinapoli A, Kuhn K et al. From sea to land and beyond — New insights into the evolution of euthyneuran Gastropoda (Mollusca). BMC Evol Biol 2008; 8:57.

    Article  PubMed  CAS  Google Scholar 

  138. Adamowicz A, Bolaczek M. Blood cells morphology of the snail Helix aspersa maxima (Helicidae). Zoologica Poloniae 2003; 48:93–101.

    Google Scholar 

  139. Iakovleva NV, Gorbushin AM, Zelck UE. Partial characterization of mitogen-activated protein kinases (MAPK) from haemocytes of the common periwinkle, Littorina littorea (Gastropoda: Prosobranchia). Fish Shellfish Immunol 2006; 20:665–668.

    Article  PubMed  CAS  Google Scholar 

  140. Takamatsu N, Shiba T, Muramoto K et al. Molecular cloning of the defense factor in the albumen gland of the sea hare Aplysia kurodai. FEBS Lett 1995; 377:373–376.

    Article  PubMed  CAS  Google Scholar 

  141. Iijima R, Kisugi J, Yamazaki M. Antifungal activity of aplysianin-E, a cytotoxic protein of sea hare (Aplysia kurodai) eggs. Dev Comp Immunol 1995; 19:13–19.

    Article  PubMed  CAS  Google Scholar 

  142. Butzke D, Hurwitz R, Thiede B et al. Cloning and biochemical characterization of APIT, a new l-amino acid oxidase from Aplysia punctata. Toxicon 2005; 46:479–489.

    Article  PubMed  CAS  Google Scholar 

  143. Mah SA, Moy GW, Swanson WJ et al. A perforin-like protein from a marine mollusk. Biochem Bioph Res Co 2004; 316:468–475.

    Article  CAS  Google Scholar 

  144. Wang GD, Zhang KF, Zhang ZP et al. Molecular cloning and responsive expression of macrophage expressed gene from small abalone Haliotis diversicolor supertexta. Fish Shellfish Immunol 2008; 24:346–359.

    Article  PubMed  CAS  Google Scholar 

  145. Nikapitiya C, De Zoysa M, Lee J. Molecular characterization and gene expression analysis of a pattern recognition protein from disk abalone, Haliotis discus discus. Fish Shellfish Immunol 2008; 25:638–647.

    Article  PubMed  CAS  Google Scholar 

  146. Wu LJ, Wu XZ. Molecular cloning and expression analysis of a beta-thymosin homologue from a gastropod abalone, Haliotis diversicolor supertexta. Fish Shellfish Immunol 2009; 27:379–382.

    Article  PubMed  CAS  Google Scholar 

  147. Wu LJ, Wu XZ, Zhu BJ et al. Identification and functional characterization of a novel cytidine deaminase in a gastropod abalone, Haliotis diversicolor supertexta. Dev Comp Immunol 2009; 33:709–717.

    Article  PubMed  CAS  Google Scholar 

  148. De Zoysa M, Nikapitiya C, Whang I et al. Abhisin: A potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus). Fish Shellfish Immunol 2009; 27:639–646.

    Article  PubMed  CAS  Google Scholar 

  149. De Zoysa M, Jung S, Lee J. First molluscan TNF-alpha homologue of the TNF superfamily in disk abalone: Molecular characterization and expression analysis. Fish Shellfish Immunol 2009; 26:625–631.

    Article  PubMed  CAS  Google Scholar 

  150. Ren HL, Xu DD, Gopalakrishnan S et al. Gene cloning of a sigma class glutathione S-transferase from abalone (Haliotis diversicolor) and expression analysis upon bacterial challenge. Dev Comp Immunol 2009; 33:980–990.

    Article  PubMed  CAS  Google Scholar 

  151. De Zoysa M, Nikapitiya C, Moon DO et al. A novel Fas ligand in mollusk abalone: Molecular characterization, immune responses and biological activity of the recombinant protein. Fish Shellfish Immunol 2009; 27:423–432.

    Article  PubMed  CAS  Google Scholar 

  152. Wang N, Whang I, Lee J. A novel C-type lectin from abalone, Haliotis discus discus, agglutinates Vibrio alginolyticus. Dev Comp Immunol 2008; 32:1034–1040.

    Article  PubMed  CAS  Google Scholar 

  153. De Zoysa M, Kang HS, Song YB et al. First report of invertebrate Mx: Cloning, characterization and expression analysis of Mx cDNA in disk abalone (Haliotis discus discus). Fish Shellfish Immunol 2007; 23:86–96.

    Article  PubMed  CAS  Google Scholar 

  154. Cheng W, Hsiao IS, Hsu CH et al. Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunol 2004; 17:235–243.

    Article  PubMed  CAS  Google Scholar 

  155. Iakovleva NV, Gorbushin AM, Storey KB. Modulation of mitogen-activated protein kinases (MAPK) activity in response to different immune stimuli in haemocytes of the common periwinkle Littorina littorea. Fish Shellfish Immunol 2006; 21:315–324.

    Article  PubMed  CAS  Google Scholar 

  156. Iehata S, Inagaki T, Okunishi S et al. Colonization and probiotic effects of lactic acid bacteria in the gut of the abalone Haliotis gigantea. Fisheries Sci 2009; 75:1285–1293.

    Article  CAS  Google Scholar 

  157. Tan J, Lancaster M, Hyatt A et al. Purification of a herpes-like virus from abalone (Haliotis spp.) with ganglioneuritis and detection by transmission electron microscopy. J Virol Methods 2008; 149:338–341.

    Article  PubMed  CAS  Google Scholar 

  158. Wang KJ, Ren HL, Xu DD et al. Identification of the up-regulated expression genes in hemocytes of variously colored abalone (Haliotis diversicolor Reeve, 1846) challenged with bacteria. Dev Comp Immunol 2008; 32:1326–1347.

    Article  PubMed  CAS  Google Scholar 

  159. Rosa FM, Godard ALB, Negrao-Correa D et al. Biomphalaria tenagophila: dynamics of populations of resistant and susceptible strains to Schistosoma mansoni, with or without pressure of the parasite. Mem Inst Oswaldo Cruz 2006; 101:247–251.

    Article  PubMed  Google Scholar 

  160. Negrao-Correa D, Pereira CAJ, Rosa FM et al. Molluscan response to parasite: Biomphalaria and Schistosoma mansoni interaction. Invertebrate Survival Journal 2007; 4:101–111.

    Google Scholar 

  161. Cunningham AA, Daszak P. Extinction of a species of land snail due to infection with a microsporidian parasite. Conserv Biol 1998; 12:1139–1141.

    Article  Google Scholar 

  162. Adema CM, Lun CM, Hanelt B et al. Digenean trematode infections of native freshwater snails and invasive Potamopyrgus antipodarum in the Grand Teton National Park/John D. Rockefeller Memorial Parkway Area. J Parasitol 2009; 95:224–227.

    Article  PubMed  CAS  Google Scholar 

  163. Zbikowski J, Zbikowska E. Invaders of an invader — trematodes in Potamopyrgus antipodarum in Poland. J Invertebr Pathol 2009; 101:67–70.

    Article  PubMed  Google Scholar 

  164. Johnson CK, Tinker MT, Estes JA et al. Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. Proc Natl Acad Sci USA 2009; 106:2242–2247.

    Article  PubMed  CAS  Google Scholar 

  165. Mouritsen KN, Bay GM. Fouling of gastropods: a role for parasites? Hydrobiologia 2000; 418:243–246.

    Article  Google Scholar 

  166. Abrous M, Rondelaud D, Dreyfuss G. The stress of Lymnaea truncatula just before miracidial exposure with Fasciola hepatica increased the prevalence of infection. Exp Parasitol 2001; 99:49–51.

    Article  PubMed  CAS  Google Scholar 

  167. Salice CJ, Roesijadi G. Resistance to cadmium and parasite infection are inversely related in two strains of a freshwater gastropod. Environ Toxicol Chem 2002; 21:1398–1403.

    Article  PubMed  CAS  Google Scholar 

  168. Russo J, Madec L, Brehelin M. Effect of a toxicant on phagocytosis pathways in the freshwater snail Lymnaea stagnalis. Cell Tissue Res 2008; 333:147–158.

    Article  PubMed  CAS  Google Scholar 

  169. Gopalakrishnan S, Thilagam H, Huang WB et al. Immunomodulation in the marine gastropod Haliotis diversicolor exposed to benzo(a)pyrene. Chemosphere 2009; 75:389–397.

    Article  PubMed  CAS  Google Scholar 

  170. De Zoysa M, Whang I, Lee Y et al. Transcriptional analysis of antioxidant and immune defense genes in disk abalone (Halitois discus discus) during thermal low-salinity and hypoxic stress. Comp Biochem Phys B 2009; 154:387–395.

    Article  CAS  Google Scholar 

  171. Fevrier Y, Russo J, Madec L. Intraspecific variation in life history traits of a land snail after a bacterial challenge. J Zool 2009; 277:149–156.

    Article  Google Scholar 

  172. Langand J, Jourdane J, Coustau C et al. Cost of resistance, expressed as a delayed maturity, detected in the host-parasite system Biomphalaria glabrata/Echinostoma caproni. Heredity 1998; 80:320–325.

    Article  Google Scholar 

  173. Rigby MC, Jokela J. Predator avoidance and immune defence: costs and trade-offs in snails. Proc Roy Soc Lond B Bio 2000; 267:171–176.

    Article  CAS  Google Scholar 

  174. Zbikowska E. Does behavioural fever occur in snails parasitised with trematode larvae? J Therm Biol 2004; 29:675–679.

    Article  Google Scholar 

  175. Moore JD, Juhasz CI, Robbins TT et al. Green abalone, Haliotis fulgens infected with the agent of withering syndrome do not express disease signs under a temperature regime permissive for red abalone, Haliotis rufescens. Mar Biol 2009; 156:2325–2330.

    Article  Google Scholar 

  176. Allegretti SM, Carvalho JF, Magalhaes LA et al. Behaviour of albino and melanic variants of Biomphalaria glabrata Say, 1818 (Mollusca: Planorbidae) following infection by Schistosoma mansoni Sambon, 1907. Braz J Biol 2009; 69:217–222.

    Article  PubMed  CAS  Google Scholar 

  177. Martins-Souza RL, Pereira CA, Martins Filho OA et al. Differential lectin labelling of circulating hemocytes from Biomphalaria glabrata and Biomphalaria tenagophila resistant or susceptible to Schistosoma mansoni infection. Mem Inst Oswaldo Cruz 2006; 101Suppl 1:185–192.

    Article  PubMed  Google Scholar 

  178. Barbosa L, Caldeira RL, Carvalho OS et al. Resistance to Schistosoma mansoni by transplantation of APO Biomphalaria tenagophila. Parasite Immunol 2006; 28:209–212.

    Article  PubMed  CAS  Google Scholar 

  179. Hahn UK, Bender RC, Bayne CJ. Killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata: role of reactive oxygen species. J Parasitol 2001; 87:292–299.

    PubMed  CAS  Google Scholar 

  180. Goodall CP, Bender RC, Broderick EJ et al. Constitutive differences in Cu/Zn Superoxide dismutase mRNA levels and activity in hemocytes of Biomphalaria glabrata (Mollusca) that are either susceptible or resistant to Schistosoma mansoni (Trematoda). Mol Biochem Parasitol 2004; 137:321–328.

    Article  PubMed  CAS  Google Scholar 

  181. Goodall CP, Bender RC, Brooks JK et al. Biomphalaria glabrata cytosolic copper/zinc superoxide dismutase (SOD1) gene: association of SOD1 alleles with resistance/susceptibility to Schistosoma mansoni. Mol Biochem Parasitol 2006; 147:207–210.

    Article  PubMed  CAS  Google Scholar 

  182. Bender RC, Goodall CP, Blouin MS et al. Variation in expression of Biomphalaria glabrata SOD1: a potential controlling factor in susceptibility/resistance to Schistosoma mansoni. Dev Comp Immunol 2007; 31:874–878.

    Article  PubMed  CAS  Google Scholar 

  183. Coelho JR, Bezerra FS. Compatibility of Biomphalaria tenagophila with Schistosoma mansoni: a study of homologous plasma transference. Mem Inst Oswaldo Cruz 2006; 101:111–112.

    Article  PubMed  Google Scholar 

  184. Pereira CAJ, Martins-Souza RL, Correa A et al. Participation of cell-free haemolymph of Biomphalaria tenagophila in the defence mechanism against Schistosoma mansoni sporocysts. Parasite Immunol 2008; 30:610–619.

    PubMed  CAS  Google Scholar 

  185. Myers J, Ittiprasert W, Raghavan N et al. Differences in cysteine protease activity in Schistosoma mansoni-resistant and-susceptible Biomphalaria glabrata and characterization of the hepatopancreas cathepsin B full-length cDNA. J Parasitol 2008; 94:659–668.

    PubMed  CAS  Google Scholar 

  186. Guillou F, Mitta G, Dissous C et al. Use of individual polymorphism to validate potential functional markers: case of a candidate lectin (BgSel) differentially expressed in susceptible and resistant strains of Biomphalaria glabrata. Comp Biochem Physiol B Biochem Mol Biol 2004; 138:175–181.

    Article  PubMed  CAS  Google Scholar 

  187. Bouchut A, Sautiere PE, Coustau C et al. Compatibility in the Biomphalaria glabrata/Echinostoma caproni model: Potential involvement of proteins from hemocytes revealed by a proteomic approach. Acta Trop 2006; 98:234–246.

    Article  PubMed  CAS  Google Scholar 

  188. Jannotti-Passos LK, Andrade HM et al. Proteome analysis of the cardiac and pericardial tissue of Biomphalaria tenagophila populations susceptible and resistant to Schistosoma mansoni infection. Acta Trop 2008; 105:229–234.

    Article  PubMed  CAS  Google Scholar 

  189. Sullivan JT, Pikios SS, Alonzo AQ. Mitotic responses to extracts of miracidia and cercariae of Schistosoma mansoni in the amebocyte-producing organ of the snail intermediate host Biomphalaria glabrata. J Parasitol 2004; 90:92–96.

    Article  PubMed  Google Scholar 

  190. Raghavan N, Miller AN, Gardner M et al. Comparative gene analysis of Biomphalaria glabrata hemocytes pre-and post-exposure to miracidia of Schistosomamansoni. Mol Biochem Parasitol 2003; 126:181–191.

    Article  PubMed  CAS  Google Scholar 

  191. Hertel LA, Adema CM, Loker ES. Differential expression of FREP genes in two strains of Biomphalaria glabrata following exposure to the digenetic trematodes Schistosoma mansoni and Echinostoma paraensei. Dev Comp Immunol 2005; 29:295–303.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Loker, E.S. (2010). Gastropod Immunobiology. In: Söderhäll, K. (eds) Invertebrate Immunity. Advances in Experimental Medicine and Biology, vol 708. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8059-5_2

Download citation

Publish with us

Policies and ethics