Skip to main content
Log in

Structure and function of blood and connective tissue cells of the fresh water pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The morphology and the ultrastructure of the blood and connective tissue cells of Lymnaea stagnalis were studied. Special attention was paid to the role of these cells in the cellular defense mechanism (phagocytosis). This problem was investigated in injection experiments with enzyme histochemistry and electron microscopy.

The blood contains one type of cell, the amoebocyte. The amoebocytes are very active in phagocytosis. They phagocytoze various particulate materials like India ink, trypan blue, colloidal silver, ferritin, bacteria and zymosan granules. Digestion of the phagocytozed biotic material was observed. The cells show a very strong peroxidase activity. The acid phosphatase activity is weak. It increased after phagocytosis. Numerous amoebocytes loaded with phagocytozed inert material were still found three months after injection. It is concluded that migration of phagocytes to the exterior via various epithelia, as found in other molluscs, is of minor importance.

In the connective tissue 8 different cell types were distinguished: 1. pore cells, 2. granular cells, 3. vesicular connective tissue cells, 4. amoebocytes, 5. fibroblasts, 6. undifferentiated cells, 7. pigment cells, 8. muscle cells.

Pore cells are characterized by numerous invaginations of the cell membrane bridged by cytoplasmic tongues. Probably these cells produce haemocyanin. Granular cells contain numerous cysteine rich glycoprotein granules. The contents of these granules are released by exocytosis. It is suggested that these cells are involved in the production of blood proteins. The empty looking vesicular connective tissue cells appeared to contain large amounts of glycogen. Obviously these cells have nutritive functions.

True fixed macrophages were not observed in the connective tissue. Only the amoebocytes phagocytoze in large amounts various materials. Furthermore, the pore cells show a limited phagocytosis capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aardt, W. J. van: Quantitative aspects of the water balance in Lymnaea stagnalis (L.). Neth. J. Zool. 18, 253–312 (1968).

    Google Scholar 

  • Anderson, W. A., Personne, P.: The localization of glycogen in the spermatozoa of various invertebrate and vertebrate species. J. Cell Biol. 44, 29–51 (1970).

    Google Scholar 

  • Baecker, R.: Die Mikromorphologie von Helix pomatia und einigen anderen Stylommatophoren. Ergebn. Anat. 29, 449–585 (1932).

    Google Scholar 

  • Baleydier, C.: Les évolutions cellulaires (conjunctive, musculaire et nerveuse) au cours de la régénération du rhinophore de Glossodoris messinensis (Idhering) (Gastropode Opisthobranche). Thesis, Université de Lyon, 1969.

  • Bargeton, M.: Les variations saisonnières du tissu conjonctif vésiculeux de l'huître. Bull. Biol. France Belg. 76, 176–191 (1942).

    Google Scholar 

  • Barka, T., Anderson, P. J.: Histochemical methods for acid phosphatase using hexazonium pararosanilin as coupler. J. Histochem. Cytochem. 10, 741–753 (1962).

    Google Scholar 

  • Bekius, R.: The circulatory system of Lymnaea stagnalis (L.). Neth. J. Zool. 22, 1–58 (1972).

    Google Scholar 

  • Belding, M. E., Klebanoff, S. J., Ray, C. G.: Peroxidase-mediated virucidal systems. Science 167, 195–196 (1970).

    Google Scholar 

  • Blundstone, E. R.: On the occurrence of glycogen as a constituent of the vesicular cells of the connective tissue of molluscs. Proc. roy. Soc. Lond. 38, 442–445 (1885).

    Google Scholar 

  • Boer, H. H., Wendelaar Bonga, S. E., Rooyen, N. van: Light and electron microscopical investigations on the salivary glands of Lymnaea stagnalis L. Z. Zellforsch. 76, 228–247 (1967).

    Google Scholar 

  • Brightman, M. W.: The distribution within the brain of ferritin injected into cerobrospinal fluid compartments. I. Ependymal distribution. J. Cell Biol. 26, 99–123 (1965).

    Google Scholar 

  • Brown, A. C.: Elimination of foreign particles by the snail, Helix aspersa. Nature (Lond.) 213, 1145–1155 (1967).

    Google Scholar 

  • Brown, A. C., Brown, R. J.: The fate of thorium dioxide injected into the pedal sinus of Bullia (Gastropoda: Prosobranchiata). J. exp. Biol. 42, 509–519 (1965).

    Google Scholar 

  • Buchholz, K., Kuhlmann, D., Nolte, A.: Aufnahme von Trypanblau und Ferritin in die Blasenzellen des Bindegewebes von Helix pomatia und Cepaea nemoralis (Stylommatophora, Pulmonata). Z. Zellforsch. 113, 203–215 (1971).

    Google Scholar 

  • Carriker, M. R., Bilstad, N. M.: Histology of the alimentary system of the snail Lymnaea stagnalis appressa Say. Trans. micr. Soc. 65, 250–275 (1946).

    Google Scholar 

  • Cheney, D. P.: A summary of invertebrate leucocyte morphology with emphasis on blood elements of the manilla clam, Tapes semidecussata. Biol. Bull. 140, 353–368 (1971).

    Google Scholar 

  • Cheng, T. C., Galloway, P. C.: Transplantation immunity in mollusks: the histoincompatibility of Helisoma duryi normale with allografts and xenografts. J. Invert. Path. 15, 177–192 (1970).

    Google Scholar 

  • Cheng, T. C., Rifkin, E.: Cellular reactions in marine molluscs in response to helminth parasitism. A symp. on diseases of fishes and shellfishes. Am. Fish. Soc. spec. publ. 5, 443–496 (1970).

    Google Scholar 

  • Cheng, T. C., Thakur, A. S., Rifkin, E.: Phagocytosis as an internal defense mechanism in the Mollusca: with an experimental study of the role of leucocytes in the removal of ink particles in Littorina scabra Linn. Proc. Symp. Mollusca II, 546–563 (1969).

  • Cohn, Z. A., Fedorko, M. E.: The formation and the fate of lysosomes. In: Lysosomes in biology and pathology I., eds. J. T. Dingle and H. B. Fell, p. 43–63. Amsterdam-London: North-Holland Publ. Co. 1969.

    Google Scholar 

  • Cuénot, L.: Etudes physiologiques sur les Gastéropods Pulmonés. Arch. Biol. (Liege) 12, 683–740 (1892).

    Google Scholar 

  • Cuénot, L.: L'excrétion chez les Mollusques. Arch. Biol. (Liege) 16, 4–96 (1899).

    Google Scholar 

  • Duve, C. de, Baudhin, P.: Peroxisomes (microbodies and related particles). Physiol. Rev. 46, 323–357 (1966).

    Google Scholar 

  • Duve, C. de, Wattiaux, R.: Functions of lysosomes. Ann. Rev. Physiol. 28, 435–492 (1966).

    Google Scholar 

  • Fahimi, H. D.: The fine structural localization of endogenous and exogenous peroxidase activity in Kupffer cells of rat liver. J. Cell Biol. 47, 247–262 (1970).

    Google Scholar 

  • Feng, S. Y., Feng, J. S., Burke, C. N., Khairallah, L. H.: Light and electron microscopy of the leucocytes of Crassostrea virginica (Mollusca: Pelecypoda). Z. Zellforsch. 120, 222–245 (1971).

    Google Scholar 

  • Fernández, J.: Nervous system of the snail Helix aspersa. I. Structure and histochemistry of ganglionic sheath and neuroglia. J. comp. Neurol. 127, 157–182 (1966).

    Google Scholar 

  • Fernández, J.: Nervous system of the snail Helix aspersa. II. Fine structure of vascular channels and amebocytes associated with the ganglionic sheath. Z. Zellforsch. 118, 512–524 (1971).

    Google Scholar 

  • Galtsoff, P. S.: The american oyster, Grassostrea virginica Gmelin. Fish. Bull., Fish and Wildlife Serv. 64, 1–480 (1964).

    Google Scholar 

  • George, W. C., Ferguson, J. H.: The blood of gastropod molluscs. J. Morph. 86, 315–327 (1950).

    Google Scholar 

  • Goldfischer, S., Essner, E.: Further observations on the peroxidatic activities of microbodies (peroxisomes). J. Histochem. Cytochem. 17, 681–686 (1969).

    Google Scholar 

  • Graham, R. C., Karnovsky, M. J.: The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney; ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14, 291–302 (1966).

    Google Scholar 

  • Hyman, L. H.: The invertebrates, vol VI, Mollusca I. New York: McGraw-Hill 1967.

    Google Scholar 

  • Jong-Brink, M. de: Histochemical and electron microscope observations on the reproductive tract of Biomphalaria glabrata (Australorbis glabratus), intermediate host of Schistosoma mansoni. Z. Zellforsch. 102, 507–542 (1969).

    Google Scholar 

  • Kisker, L. G.: Über Anordnung und Bau der interstitiellen Bindesubstanzen von Helix pomatia L. Z. wiss. Zool. 121, 64–125 (1923).

    Google Scholar 

  • Kollmann, M.: Recherches sur les leucocytes et le tissu lymphoide des Invertébrés. Ann. Sci. Nat. Zool. IX, 8, 1–240 (1908).

    Google Scholar 

  • Lammens, J. J.: Growth and reproduction in a tidal flat population of Macoma balthica (L.). Neth. J. Sea Res. 3, 315–382 (1967).

    Google Scholar 

  • Lever, J., Jager, J. C., Westerveld, A.: A new anaesthetization technique for fresh water snails, tested on Lymnaea stagnalis. Malacologia 1, 331–337 (1964).

    Google Scholar 

  • Leydig, Fr.: Über Paludina vivipara. Z. wiss. Zool. 2, 125–197 (1850).

    Google Scholar 

  • Meek, G. A.: Apparent intracellular collagen synthesis. In: Cell structure and its interpretation, eds. S. M. McGee-Russell and K. F. A. Ross, p. 225–235. London: E. Arnold Ltd. 1968.

    Google Scholar 

  • Miller, F., Herzog, V.: Die Lokalisation von Peroxidase und saurer Phosphatase in eosinophilen Leukocyten während der Reifung. Elektronenmikroskopisch-cytochemische Untersuchungen am Knochenmark von Ratte und Kaninchen. Z. Zellforsch. 97, 84–110 (1969).

    Google Scholar 

  • Müller, G.: Morphologie, Lebenslauf und Bildungsort der Blutzellen von Lymnaea stagnalis L. Z. Zellforsch. 44, 519–556 (1956).

    Google Scholar 

  • Nakahara, H., Bevelander, G.: An electron microscope study of ingestion of thorotrast by amoebocytes of Pinctada radiata. Texas Rep. Biol. Med. 27, 102–110 (1969).

    Google Scholar 

  • Nicaise, G., Garronne, R., Pavans de Ceccatty, M.: Aspects membranaires du fibroblaste, au cours de la genèse du collagène chez Glossodoris (Gastéropode Opisthobranche). C. R. Acad. Sci. (Paris) 262, 2248–2250 (1966).

    Google Scholar 

  • Nisbet, R. H., Plummer, J. M.: Fibroblasts and collagen in Achatinidae. J. Physiol. (Lond.) 196, 18–20P (1968a).

  • Nisbet, R. H., Plummer, J. M.: The fine structure of the cardiac and other molluscan muscle. Symp. Zool. Soc. (Lond.) 22, 193–211 (1968b).

    Google Scholar 

  • Novikoff, A. B., Goldfischer, S.: Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J. Histochem. Cytochem. 17, 675–680 (1969).

    Google Scholar 

  • Okun, M. R., Edelstein, L. M., Or, N., Hamada, G., Donnellan, B., Lever, W. F.: Histochemical differentiation of peroxidase-mediated from tyrosinase-mediated melanin formation in mammalian tissues. The biological significance of peroxidase-mediated oxidation of tyrosin to melanin. Histochemie 23, 295–309 (1970).

    Google Scholar 

  • Pan, C. T.: The general histology and topographic microanatomy of Australorbis glabratus. Bull. Mus. Comp. Zool. Harv. 119, 238–299 (1958).

    Google Scholar 

  • Pearse, A. G. E.: Histochemistry. Theoretical and applied. London: J. & A. Churchill 1968.

    Google Scholar 

  • Pease, D. C.: Histological technique for electron microscopy, 2nd ed. New York: Academic Press 1964.

    Google Scholar 

  • Plummer, J. M.: Collagen formation in Achatinidae associated with a specific cell type. Proc. Malac. Soc. (Lond.) 37, 189–198 (1966).

    Google Scholar 

  • Reade, P. C.: Phagocytosis in invertebrates. Aust. J. exp. Biol. med. Sci. 46, 219–229 (1968).

    Google Scholar 

  • Ruddell, C. L., Wellings, S. R.: The ultrastructure of the oyster brown cell, a cell with a fenestrated plasma membrane. Z. Zellforsch. 120, 17–28 (1971).

    Google Scholar 

  • Sanchis, C. A., Zambrano, D.: The structure of the central nervous system of a pulmonate mollusc (Cryptomphallus aspersa). I. Ultrastructure of the connective epineural sheath. Z. Zellforsch. 94, 62–71 (1969).

    Google Scholar 

  • Schmidt, R.: Struktur, topochemisches Verhalten und physiologische Bedeutung der granulierten Zellen (sogenannten Körnchenzellen) aus dem interstitiellen Bindegewebe des Fußes von Helix pomatia L. und ihre Beziehungen zum Sekret eiweißhaltiger Drüsen. Acta histochem. (Jena) 21, 323–354 (1965).

    Google Scholar 

  • Smith, D. S.: Insect cells. Their structure and function. Edinburgh: Oliver & Boyd Ltd. 1968.

    Google Scholar 

  • Stang-Voss, C.: Zur Ultrastruktur der Blutzellen wirbelloser Tiere. III. Über die Haemocyten der Schnecke Lymnea stagnalis L. (Pulmonata). Z. Zellforsch. 107, 141–156 (1970).

    Google Scholar 

  • Stang-Voss, C., Staubesand, J.: Mikrotubuläre Formationen in Zisternen des endoplasmatischen Retikulums. Elektronenmikroskopische Untersuchungen an Bindegewebszellen von Lymnae stagnalis L. (Pulmonata). Z. Zellforsch. 115, 69–78 (1971).

    Google Scholar 

  • Stauber, L. A.: The fate of India ink injected intracardially into the oyster, Ostrea virginica Gmelin. Biol. Bull. 98, 227–241 (1950).

    Google Scholar 

  • Takatsuki, S.: On the nature and functions of the amoebocytes of Ostrea edulis. Quart. J. micr. Sci. 76, 379–431 (1934).

    Google Scholar 

  • Tripp, M. R.: The fate of foreign materials experimentally introduced into the snail Australorbis glabratus. J. Parasit. 47, 745–751 (1961).

    Google Scholar 

  • Tripp, M. R.: Defense mechanisms of mollusks. J. reticuloendoth. Soc. 7, 173–182 (1970).

    Google Scholar 

  • Wagge, L. E.: Amoebocytes. Int. Rev. Cytol. 4, 31–78 (1955).

    Google Scholar 

  • Wendelaar Bonga, S. E., Boer, H. H.: Ultrastructure of the renopericardial system in the pond snail Lymnaea stagnalis (L.). Z. Zellforsch. 94, 513–529 (1969).

    Google Scholar 

  • Wondrak, G.: Die Ultrastruktur der Zellen aus dem interstitiellen Bindegewebe von Arion rufus (L.), Pulmonata, Gastropoda. Z. Zellforsch. 95, 249–262 (1969).

    Google Scholar 

  • Zs.-Nagy, I., S.-Rózsa, K.: The ultrastructure and histochemical properties of the granulated cells in the heart of the snail Lymnaea stagnalis L. Acta biol. Acad. Sci. hung. 21, 121–133 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author is greatly indebted to Dr. H. H. Boer for suggesting the problem and for his valuable criticism during the investigations and the preparation of the manuscript, to Prof. Dr. J. Lever for his stimulating interest during the investigations, to Mr. G. Elisée-Désir for his technical assistance and for preparing the micrographs, to Miss G. Th. Klinge for her participation in the investigations, to Mr. U. Zijlstra for correcting the English text and to Miss P. G. Brink for typing the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sminia, T. Structure and function of blood and connective tissue cells of the fresh water pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry. Z.Zellforsch 130, 497–526 (1972). https://doi.org/10.1007/BF00307004

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307004

Key words

Navigation