Skip to main content

Effects of 5-FU

  • Chapter
Chemo Fog

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 678))

Abstract

5-fluorouracil (5-FU) is a chemotherapeutical agent used to treat cancers including breast and colorectal. Working as an antimetabolite to prevent cell proliferation, it primarily inhibits the enzyme thymidylate synthase blocking the thymidine formation required for DNA synthesis. Although having a relatively short half-life (<30 mins) it readily enters the brain by passive diffusion. Clinically, it is used both as a single agent or in combination with other chemotherapies and has been associated with the long-term side effects of cognitive impairment, known as “chemo brain” or “chemo fog”. These accounts have come primarily from patients undergoing treatment for breast cancer who report symptoms including confusion and memory impairment, which can last for months to years. Psychometric studies of patients have suffered from confounding variables, which has led to the use of rodent models to assess the cognitive effects of this drug. Researchers have used behavioral and physiological tests including the Morris water maze, novel object location/recognition tests, shock motivated T-maze, sensory gating and conditioning, to investigate the effect of this drug on cognition. The variety of cognitive tests and the difference in dosing and administration of 5-FU has led to varied results, possibly due to the different brain regions associated with each test and the subtlety of the drug’s effect, but overall these studies indicates that 5-FU has a negative effect on memory, executive function and sensory gating. 5-FU has also been demonstrated to have biochemical and structural changes on specific regions of the brain. Evidence shows it can induce apoptosis and depress cell proliferation in the neurogenic regions of the adult brain including the sub granular zone (SGZ) within the hippocampus and in oligodendrocyte precursor populations within white matter tracts. Furthermore, investigations indicate levels of doublecortin, a marker for newly formed neurons and brain derived neurotrophic factor, a cell survival modulator, are also reduced by 5-FU in the SGZ. Thus, 5-FU appears to have a lasting negative impact on cognition and to affect cellular and biochemical markers in various brain regions. Further work is needed to understand the exact mechanisms involved and to devise strategies for the prevention or recovery from these symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heidelberger C, Chaudhuri NK, Danneberg P et al. Fluorinated pyrimidines, a new class of tumourinhibitory compounds. Nature 1957; 179(4561):663–666.

    Article  CAS  PubMed  Google Scholar 

  2. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3(5):330–338.

    Article  CAS  PubMed  Google Scholar 

  3. Backus HH, Rustum YM, van Groeningen CJ et al. Chemotherapeutic strategies for treatment of colorectal cancer: present and future developments. Clin Colorectal Cancer 2001; 1(2):121–127.

    Article  CAS  PubMed  Google Scholar 

  4. Iacopetta B, Kawakami K, Watanabe T. Predicting clinical outcome of 5-fluorouracil-based chemotherapy for colon cancer patients: is the CpG island methylator phenotype the 5-fluorouracil-responsive subgroup? Int J Clin Oncol 2008; 13(6):498–503.

    Article  CAS  PubMed  Google Scholar 

  5. Parker WB, Cheng YC. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol Ther 1990; 48(3):381–395.

    Article  CAS  PubMed  Google Scholar 

  6. Pinedo HM, Peters GF. Fluorouracil: biochemistry and pharmacology. J Clin Oncol 1988; 6(10):1653–1664.

    CAS  PubMed  Google Scholar 

  7. Chu E, Callender MA, Farrell MP et al. Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother Pharmacol 2003; 52(Suppl 1):S80–89.

    Article  CAS  PubMed  Google Scholar 

  8. Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet 1989; 16(4):215–237.

    Article  CAS  PubMed  Google Scholar 

  9. Celio LA, DiGregorio GJ, Ruch E et al. 5-Fluorouracil concentrations in rat plasma, parotid saliva and bile and protein binding in rat plasma. J Pharm Sci 1983; 72(6):597–599.

    Article  CAS  PubMed  Google Scholar 

  10. Kubota T. 5-fluorouracil and dihydropyrimidine dehydrogenase. Int J Clin Oncol 2003; 8(3):127–131.

    Article  CAS  PubMed  Google Scholar 

  11. Kamm YJ, Peters GJ, Hull WE et al. Correlation between 5-fluorouracil metabolism and treatment response in two variants of C26 murine colon carcinoma. Br J Cancer 2003; 89(4):754–762.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. van der Wilt CL, Marinelli A, Pinedo HM et al. The effect of different routes of administration of 5-fluorouracil on thymidylate synthase inhibition in the rat. Eur J Cancer 1995; 31A(5):754–760.

    Article  PubMed  Google Scholar 

  13. DeAngelis LM, Posner JB. Neurologic complications of cancer. 2nd ed. Oxford University Press, 2009.

    Google Scholar 

  14. Guarneri V, Frassoldati A, Giovannelli S et al. Primary systemic therapy for operable breast cancer: a review of clinical trials and perspectives. Cancer Lett 2007; 248(2):175–185.

    Article  CAS  PubMed  Google Scholar 

  15. Guarneri V, Conte PF. The curability of breast cancer and the treatment of advanced disease. Eur J Nucl Med Mol Imaging 2004; 31(Suppl 1):S149–161.

    Article  PubMed  Google Scholar 

  16. Kerr IG, Zimm S, Collins JM et al. Effect of intravenous dose and schedule on cerebrospinal fluid pharmacokinetics of 5-fluorouracil in the monkey. Cancer Res 1984; 44(11):4929–4932.

    CAS  PubMed  Google Scholar 

  17. Bourke RS, West CR, Chheda G et al. Kinetics of entry and distribution of 5-fluorouracil in cerebrospinal fluid and brain following intravenous injection in a primate. Cancer Res 1973; 33(7):1735–1746.

    CAS  PubMed  Google Scholar 

  18. Scherwath A, Mehnert A, Schleimer B et al. Neuropsychological function in high-risk breast cancer survivors after stem-cell supported high-dose therapy versus standard-dose chemotherapy: evaluation of long-term treatment effects. Ann Oncol 2006; 17(3):415–423.

    Article  CAS  PubMed  Google Scholar 

  19. Schagen SB, van Dam FS, Muller MJ et al. Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer 1999; 85(3):640–650.

    Article  CAS  PubMed  Google Scholar 

  20. Falleti MG, Sanfilippo A, Maruff P et al. The nature and severity of cognitive impairment associated with adjuvant chemotherapy in women with breast cancer: a meta-analysis of the current literature. Brain Cogn 2005; 59(1):60–70.

    Article  PubMed  Google Scholar 

  21. Brezden CB, Phillips KA, Abdolell M et al. Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 2000; 18(14):2695–2701.

    CAS  PubMed  Google Scholar 

  22. Greenwald ES. Letter: Organic mental changes with fluorouracil therapy. Jama 1976; 235(3):248–249.

    Article  CAS  PubMed  Google Scholar 

  23. Lynch HT, Droszcz CP, Albano WA et al. “Organic brain syndrome” secondary to 5-fluorouracil toxicity. Dis Colon Rectum 1981; 24(2):130–131.

    Article  CAS  PubMed  Google Scholar 

  24. Atkins JN, Muss HB, Case D et al. High-dose 24-hour infusion of 5-fluorouracil in metastatic prostate cancer. A phase II trial of the Piedmont Oncology Association. Am J Clin Oncol 1991; 14(6):526–529.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson-Hanley C, Sherman ML, Riggs R et al. Neuropsychological effects of treatments for adults with cancer: a meta-analysis and review of the literature. J Int Neuropsychol Soc 2003; 9(7):967–982.

    Article  PubMed  Google Scholar 

  26. Peterson CC, Johnson CE, Ramirez LY et al. A meta-analysis of the neuropsychological sequelae of chemotherapy-only treatment for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 2008; 51(1):99–104.

    Article  PubMed  Google Scholar 

  27. Stewart A, Bielajew C, Collins B et al. A meta-analysis of the neuropsychological effects of adjuvant chemotherapy treatment in women treated for breast cancer. Clin Neuropsychol 2006; 20(1):76–89.

    Article  PubMed  Google Scholar 

  28. Collins B, Mackenzie J, Stewart A et al. Cognitive effects of chemotherapy in postmenopausal breast cancer patients 1 year after treatment. Psychooncology 2009; 18(2):134–143.

    Article  PubMed  Google Scholar 

  29. Wefel JS, Lenzi R, Theriault R et al. ‘Chemobrain’ in breast carcinoma?: a prologue. Cancer 2004; 101(3):466–475.

    Article  PubMed  Google Scholar 

  30. Dere E, Huston JP, De Souza Silva MA. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 2007; 31(5):673–704.

    Article  CAS  PubMed  Google Scholar 

  31. Ennaceur A, Meliani K. A new one-trial test for neurobiological studies of memory in rats. III. Spatial vs nonspatial working memory. Behav Brain Res 1992; 51(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  32. D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 2001; 36(1):60–90.

    Article  PubMed  Google Scholar 

  33. Deacon RM, Rawlins JN. T-maze alternation in the rodent. Nat Protoc 2006; 1(1):7–12.

    Article  PubMed  Google Scholar 

  34. Tannock IF, Ahles TA, Ganz PA et al. Cognitive impairment associated with chemotherapy for cancer: report of a workshop. J Clin Oncol 2004; 22(11):2233–2239.

    Article  PubMed  Google Scholar 

  35. Lee I, Hunsaker MR, Kesner RP. The role of hippocampal subregions in detecting spatial novelty. Behav Neurosci 2005; 119(1):145–153.

    Article  PubMed  Google Scholar 

  36. Mustafa S, Walker A, Bennett G et al. 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci 2008; 28(2):323–330.

    Article  PubMed  Google Scholar 

  37. Gandal MJ, Ehrlichman RS, Rudnick ND et al. A novel electrophysiological model of chemotherapy-induced cognitive impairments in mice. Neuroscience 2008; 157(1):95–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Winocur G, Vardy J, Binns MA et al. The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacol Biochem Behav 2006; 85(1):66–75.

    Article  CAS  PubMed  Google Scholar 

  39. Lee GD, Longo DL, Wang Y et al. Transient improvement in cognitive function and synaptic plasticity in rats following cancer chemotherapy. Clin Cancer Res 2006; 12(1):198–205.

    Article  CAS  PubMed  Google Scholar 

  40. Mayer AR, Hanlon FM, Franco AR et al. The neural networks underlying auditory sensory gating. Neuroimage 2009; 44(1):182–189.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kreukels BP, Schagen SB, Ridderinkhof KR et al. Electrophysiological correlates of information processing in breast-cancer patients treated with adjuvant chemotherapy. Breast Cancer Res Treat 2005; 94(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  42. Foley JJ, Raffa RB, Walker EA. Effects of chemotherapeutic agents 5-fluorouracil and methotrexate alone and combined in a mouse model of learning and memory. Psychopharmacology (Berl) 2008; 199(4):527–538.

    Article  CAS  Google Scholar 

  43. Ponnusamy R, Poulos AM, Fanselow MS. Amygdala-dependent and amygdala-independent pathways for contextual fear conditioning. Neuroscience 2007; 147(4):919–927.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Huff NC, Rudy JW. The amygdala modulates hippocampus-dependent context memory formation and stores cue-shock associations. Behav Neurosci 2004; 118(1):53–62.

    Article  PubMed  Google Scholar 

  45. Malin EL, McGaugh JL. Differential involvement of the hippocampus, anterior cingulate cortex and basolateral amygdala in memory for context and footshock. Proc Natl Acad Sci USA 2006; 103(6):1959–1963.

    Article  CAS  PubMed  Google Scholar 

  46. Rudy JW, Huff NC, Matus-Amat P. Understanding contextual fear conditioning: insights from a two-process model. Neurosci Biobehav Rev 2004; 28(7):675–685.

    Article  CAS  PubMed  Google Scholar 

  47. Imayoshi I, Sakamoto M, Ohtsuka T et al. Continuous neurogenesis in the adult brain. Dev Growth Differ 2009.

    Google Scholar 

  48. Jessberger S, Clark RE, Broadbent NJ et al. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem 2009; 16(2):147–154.

    Article  PubMed  Google Scholar 

  49. Lledo PM, Merkle FT, Alvarez-Buylla A. Origin and function of olfactory bulb interneuron diversity. Trends Neurosci 2008; 31(8):392–400.

    Article  CAS  PubMed  Google Scholar 

  50. Han R, Yang YM, Dietrich J et al. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol 2008; 7(4):12.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Cho KH, Choi SM, Kim BC et al. 5-fluorouracil-induced oligodendrocyte death and inhibitory effect of cycloheximide, Trolox and Z-VAD-FMK in murine cortical culture. Cancer 2004; 100(7):1484–1490.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132(4):645–660.

    Article  CAS  PubMed  Google Scholar 

  53. Mignone RG, Weber ET. Potent inhibition of cell proliferation in the hippocampal dentate gyrus of mice by the chemotherapeutic drug thioTEPA. Brain Res 2006; 1111(1):26–29.

    Article  CAS  PubMed  Google Scholar 

  54. Lipsky RH, Marini AM. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 2007; 1122:130–143.

    Article  CAS  PubMed  Google Scholar 

  55. Abraham J, Haut MW, Moran MT et al. Adjuvant chemotherapy for breast cancer: effects on cerebral white matter seen in diffusion tensor imaging. Clin Breast Cancer 2008; 8(1):88–91.

    Article  PubMed  Google Scholar 

  56. Tha KK, Terae S, Sugiura M et al. Diffusion-weighted magnetic resonance imaging in early stage of 5-fluorouracil-induced leukoencephalopathy. Acta Neurol Scand 2002; 106(6):379–386.

    Article  CAS  PubMed  Google Scholar 

  57. Seigers R, Schagen SB, Beerling W et al. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res 2008; 186(2):168–175.

    Article  CAS  PubMed  Google Scholar 

  58. Dietrich J, Han R, Yang Y et al. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 2006; 5(7):22.

    Article  Google Scholar 

  59. Antoni MH, Lechner S, Diaz A et al. Cognitive behavioral stress management effects on psychosocial and physiological adaptation in women undergoing treatment for breast cancer. Brain Behav Immun 2008.

    Google Scholar 

  60. Lynch G, Rex CS, Chen LY et al. The substrates of memory: defects, treatments and enhancement. Eur J Pharmacol 2008; 585(1):2–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ferguson RJ, Ahles TA, Saykin AJ et al. Cognitive-behavioral management of chemotherapy-related cognitive change. Psychooncology 2007; 16(8):772–777.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Chamberlain SR, Muller U, Robbins TW et al. Neuropharmacological modulation of cognition. Curr Opin Neurol 2006; 19(6):607–612.

    Article  CAS  PubMed  Google Scholar 

  63. Barton D, Loprinzi C. Novel approaches to preventing chemotherapy-induced cognitive dysfunction in breast cancer: the art of the possible. Clin Breast Cancer 2002; 3(Suppl 3):S121–127.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Wigmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wigmore, P.M., Mustafa, S., El-Beltagy, M., Lyons, L., Umka, J., Bennett, G. (2010). Effects of 5-FU. In: Raffa, R.B., Tallarida, R.J. (eds) Chemo Fog. Advances in Experimental Medicine and Biology, vol 678. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6306-2_20

Download citation

Publish with us

Policies and ethics