Skip to main content
Log in

Predicting clinical outcome of 5-fluorouracil-based chemotherapy for colon cancer patients: is the CpG island methylator phenotype the 5-fluorouracilresponsive subgroup?

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

The CpG island methylator phenotype (CIMP+) of colorectal cancer (CRC) occurs predominantly in the proximal colon and is characterized by frequent hypermethylation of gene promoter regions. In this review, we present evidence suggesting CIMP+ represents the subgroup of colon cancers that are responsive to 5-fluorouracil (5-FU)-based treatments. CIMP+ has been associated with survival benefit from 5-FU in a clinical study of CRC, with additional evidence coming from studies on gastric cancer and tumor cell lines. Elevated concentrations of 5-10-methylene tetrahydrofolate (CH2FH4) occur in CIMP+ tumors and are probably due to low expression levels for γ-glutamyl hydrolase (GGH). Clinical and in vitro work has previously shown that high CH2FH4 and low GGH expression levels correlate with good response to 5-FU. Methylation-induced silencing of dihydropyrimidine dehydrogenase, the rate-limiting enzyme in 5-FU degradation, may also provide a link between CIMP+ and good response to 5-FU. The CIMP+-related phenotype referred to as microsatellite instability (MSI+) has been widely investigated as a predictive marker of response to 5-FU, with contradictory results. The interpretation of these studies is likely to be confounded by the fact that some MSI+ tumors occur in the background of CIMP+, but a significant proportion of others do not. Further studies on tumors from randomized clinical trials are required to confirm the value of CIMP+ and associated molecular features for the prediction of clinical outcome to 5-FU-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danenberg PV, Danenberg KD (1978) Effect of 5, 10-methylenetetrahydrofolate on the dissociation of 5-fluoro-2’-deoxyuridylate from thymidylate synthetase: evidence for an ordered mechanism. Biochemistry 17:4018–4024

    Article  PubMed  CAS  Google Scholar 

  2. Rustum YM, Trave F, Zakrzewski SF, et al. (1987) Biochemical and pharmacologic basis for potentiation of 5-fluorouracil action by leucovorin. NCI Monogr 5:165–170

    PubMed  Google Scholar 

  3. Thirion P, Michiels S, Pignon JP, et al. (2004) Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: an updated meta-analysis. J Clin Oncol 22:3766–3775

    Article  PubMed  CAS  Google Scholar 

  4. Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    Article  PubMed  CAS  Google Scholar 

  5. Graziano F, Cascinu S (2003) Prognostic molecular markers for planning adjuvant chemotherapy trials in Dukes’ B colorectal cancer patients: how much evidence is enough? Ann Oncol 14:1026–1038

    Article  PubMed  CAS  Google Scholar 

  6. Toyota M, Ahuja N, Ohe-Toyota M, et al. (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96:8681–8686

    Article  PubMed  CAS  Google Scholar 

  7. Hawkins N, Norrie M, Cheong K, et al. (2002) CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology 122:1376–1387

    Article  PubMed  CAS  Google Scholar 

  8. van Rijnsoever M, Grieu F, Elsaleh H, et al. (2002) Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut 51:797–802

    Article  PubMed  Google Scholar 

  9. Samowitz WS, Albertsen H, Herrick J, et al. (2005) Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 129:837–845

    Article  PubMed  CAS  Google Scholar 

  10. Weisenberger DJ, Siegmund KD, Campan M, et al. (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793

    Article  PubMed  CAS  Google Scholar 

  11. Ogino S, Kawasaki T, Kirkner GJ, et al. (2007) Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn 9:305–314

    Article  PubMed  CAS  Google Scholar 

  12. Jass JR (2007) Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50:113–130

    Article  PubMed  CAS  Google Scholar 

  13. Stein BN, Petrelli NJ, Douglass HO, et al. (1995) Age and sex are independent predictors of 5-fluorouracil toxicity. Analysis of a large scale phase III trial. Cancer 75:11–17

    Article  PubMed  CAS  Google Scholar 

  14. Zalcberg J, Kerr D, Seymour L, et al. (1998) Haematological and non-haematological toxicity after 5-fluorouracil and leucovorin in patients with advanced colorectal cancer is significantly associated with gender, increasing age and cycle number. Tomudex International Study Group. Eur J Cancer 34:1871–1875

    Article  PubMed  CAS  Google Scholar 

  15. Kawakami K, Ruszkiewicz A, Bennett G, et al. (2003) The folate pool in colorectal cancers is associated with DNA hypermethylation and with a polymorphism in methylenetetrahydrofolate reductase. Clin Cancer Res 9:5860–5865

    PubMed  CAS  Google Scholar 

  16. Kawakami K, Ruszkiewicz A, Bennett G, et al. (2006) DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br J Cancer 94:593–598

    Article  PubMed  CAS  Google Scholar 

  17. Xiao Y, Word B, Starlard-Davenport A, et al. (2008) Age and gender affect DNMT3a and DNMT3b expression in human liver. Cell Biol Toxicol 24:265–272

    Article  PubMed  CAS  Google Scholar 

  18. Van Triest B, Pinedo HM, Giaccone G, et al. (2000) Downstream molecular determinants of response to 5-fluorouracil and antifolate thymidylate synthase inhibitors. Ann Oncol 11:385–391

    Article  PubMed  Google Scholar 

  19. Van der Wilt CL, Backus HH, Smid K, et al. (2001) Modulation of both endogenous folates and thymidine enhances the therapeutic efficacy of thymidylate synthase inhibitors. Cancer Res 61:3675–3681

    PubMed  Google Scholar 

  20. Cheradame S, Etienne MC, Formento P, et al. (1997) Tumoralreduced folates and clinical resistance to fluorouracil-based treatment in head and neck cancer patients. J Clin Oncol 15:2604–2610

    PubMed  CAS  Google Scholar 

  21. Chazal M, Cheradame S, Formento JL, et al. (1997) Decreased folylpolyglutamate synthetase activity in tumors resistant to fluorouracil-folinic acid treatment: clinical data. Clin Cancer Res 3:553–557

    PubMed  CAS  Google Scholar 

  22. Wang FS, Aschele C, Sobrero A, et al. (1993) Decreased folylpolyglutamate synthetase expression: a novel mechanism of fluorouracil resistance. Cancer Res 53:3677–3680

    PubMed  CAS  Google Scholar 

  23. Cheradame S, Etienne MC, Chazal M, et al. (1997) Relevance of tumoral folylpolyglutamate synthetase and reduced folates for optimal 5-fluorouracil efficacy: experimental data. Eur J Cancer 33:950–959

    Article  PubMed  CAS  Google Scholar 

  24. Sohn KJ, Smirnakis F, Moskovitz DN, et al. (2004) Effects of folylpolyglutamate synthetase modulation on chemosensitivity of colon cancer cells to 5-fluorouracil and methotrexate. Gut 53:1825–1831

    Article  PubMed  CAS  Google Scholar 

  25. Sakamoto E, Tsukioka S, Oie S, et al. (2008) Folylpolyglutamate synthase and gamma-glutamyl hydrolase regulate leucovorin-enhanced 5-fluorouracil anticancer activity. Biochem Biophys Res Commun 365:801–807

    Article  PubMed  CAS  Google Scholar 

  26. Nakajima TE, Yamada Y, Shimoda T, et al. (2008) Combination of O6-methylguanine-DNA methyltransferase and thymidylate synthase for the prediction of fluoropyrimidine efficacy. Eur J Cancer 44:400–407

    Article  PubMed  CAS  Google Scholar 

  27. Kawakami K, Ooyama A, Ruszkiewicz A, et al. (2008) Low expression of gamma-glutamyl hydrolase mRNA in primary colorectal cancer with the CpG island methylator phenotype. Br J Cancer 98:1555–1561

    Article  PubMed  CAS  Google Scholar 

  28. Ferracin M, Gafà R, Miotto E, et al. (2008) The methylator phenotype in microsatellite stable colorectal cancers is charac terized by a distinct gene expression profile. J Pathol 214:594–602

    Article  PubMed  CAS  Google Scholar 

  29. Soong R, Diasio RB (2005) Advances and challenges in fluoropyrimidine pharmacogenomics and pharmacogenetics. Pharmacogenomics 6:835–847

    Article  PubMed  CAS  Google Scholar 

  30. Van Rijnsoever M, Elsaleh H, Joseph D, et al. (2003) CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clin Cancer Res 9:2898–2903

    PubMed  Google Scholar 

  31. Mitsuno M, Kitajima Y, Ide T, et al. (2007) Aberrant methylation of p16 predicts candidates for 5-fluorouracil-based adjuvant therapy in gastric cancer patients. J Gastroenterol 42:866–873

    Article  PubMed  CAS  Google Scholar 

  32. Sasaki S, Kobunai T, Kitayama J, et al. (2008) DNA methylation and sensitivity to antimetabolites in cancer cell lines. Oncol Rep 19:407–412

    PubMed  CAS  Google Scholar 

  33. Diasio RB, Johnson MR (1999) Dihydropyrimidine dehydrogenase: its role in 5-fluorouracil clinical toxicity and tumor resistance. Clin Cancer Res 5:2672–2673

    PubMed  CAS  Google Scholar 

  34. Noguchi T, Tanimoto K, Shimokuni T, et al. (2004) Aberrant methylation of DPYD promoter, DPYD expression, and cellular sensitivity to 5-fluorouracil in cancer cells. Clin Cancer Res 10:7100–7107

    Article  PubMed  CAS  Google Scholar 

  35. Zhang X, Soong R, Wang K, et al. (2007) Suppression of DPYD expression in RKO cells via DNA methylation in the regulatory region of the DPYD promoter: a potentially important epigenetic mechanism regulating DPYD expression. Biochem Cell Biol 85:337–346

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki M, Shinohara F, Nishimura K, et al. (2007) Epigenetic regulation of chemosensitivity to 5-fluorouracil and cisplatin by zebularine in oral squamous cell carcinoma. Int J Oncol 31:1449–1456

    PubMed  CAS  Google Scholar 

  37. Ezzeldin HH, Lee AM, Mattison LK, et al. (2005) Methylation of the DPYD promoter: an alternative mechanism for dihydropyrimidine dehydrogenase deficiency in cancer patients. Clin Cancer Res 11:8699–8705

    Article  PubMed  CAS  Google Scholar 

  38. Nagasaka T, Sharp GB, Notohara K, et al. (2003) Hypermethylation of O6-methylguanine-DNA methyltransferase promoter may predict nonrecurrence after chemotherapy in colorectal cancer cases. Clin Cancer Res 9:5306–5312

    PubMed  CAS  Google Scholar 

  39. Ogino S, Meyerhardt JA, Kawasaki T, et al. (2007) CpG island methylation, response to combination chemotherapy, and patient survival in advanced microsatellite stable colorectal carcinoma. Virchows Arch 450:529–537

    Article  PubMed  CAS  Google Scholar 

  40. Shen L, Catalano PJ, Benson AB 3rd, et al. (2007) Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin Cancer Res 13:6093–6098

    Article  PubMed  CAS  Google Scholar 

  41. Ogino S, Nosho K, Kirkner GJ, et al. (2008) CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut (in press)

  42. Elsaleh H, Powell B, McCaul K, et al. (2001) P53 alteration and microsatellite instability have predictive value for survival benefit from chemotherapy in stage III colorectal carcinoma. Clin Cancer Res 7:1343–1349

    PubMed  CAS  Google Scholar 

  43. Hemminki A, Mecklin JP, Järvinen H, et al. (2000) Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 119:921–928

    Article  PubMed  CAS  Google Scholar 

  44. Watanabe T, Wu TT, Catalano PJ, et al. (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344:1196–1206

    Article  PubMed  CAS  Google Scholar 

  45. Liang JT, Huang KC, Lai HS, et al. (2002) High-frequency microsatellite instability predicts better chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for stage IV sporadic colorectal cancer after palliative bowel resection. Int J Cancer 101:519–525

    Article  PubMed  CAS  Google Scholar 

  46. Brueckl WM, Moesch C, Brabletz T, et al. (2003) Relationship between microsatellite instability, response and survival in palliative patients with colorectal cancer undergoing first-line chemotherapy. Anticancer Res 23:1773–1777

    PubMed  CAS  Google Scholar 

  47. Kim GP, Colangelo LH, Wieand HS, et al. (2007) Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol 25:767–772

    Article  PubMed  CAS  Google Scholar 

  48. Ribic CM, Sargent DJ, Moore MJ, et al. (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257

    Article  PubMed  CAS  Google Scholar 

  49. Carethers JM, Smith EJ, Behling CA, et al. (2004) Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 126:394–401

    Article  PubMed  CAS  Google Scholar 

  50. Benatti P, Gafà R, Barana D, et al. (2005) Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 11:8332–8340

    Article  PubMed  CAS  Google Scholar 

  51. Jover R, Zapater P, Castells A, et al. (2006) Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut 55:848–855

    Article  PubMed  CAS  Google Scholar 

  52. Kane MF, Loda M, Gaida GM, et al. (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808–811

    PubMed  CAS  Google Scholar 

  53. Clark AJ, Barnetson R, Farrington SM, et al. (2004) Prognosis in DNA mismatch repair deficient colorectal cancer: are all MSI tumours equivalent? Fam Cancer 3:85–91

    Article  PubMed  CAS  Google Scholar 

  54. Iacopetta B, Watanabe T (2006) Predictive value of microsatellite instability for benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut 55:1671–1672

    PubMed  CAS  Google Scholar 

  55. Malkhosyan SR, Yamamoto H, Piao Z, et al. (2000) Late onset and high incidence of colon cancer of the mutator phenotype with hypermethylated hMLH1 gene in women. Gastroenterology 119:598

    PubMed  CAS  Google Scholar 

  56. Iacopetta B, Li WQ, Grieu F, et al. (2006) BRAF mutation and gene methylation frequencies of colorectal tumours with microsatellite instability increase markedly with patient age. Gut 55:1213–1214

    Article  PubMed  CAS  Google Scholar 

  57. Watanabe T, Kobunai T, Toda E, et al. (2006) Distal colorectal cancers with microsatellite instability (MSI) display distinct gene expression profiles that are different from proximal MSI cancers. Cancer Res 66:9804–9408

    Article  PubMed  CAS  Google Scholar 

  58. Boland CR (2007) Clinical uses of microsatellite instability testing in colorectal cancer: an ongoing challenge. J Clin Oncol 25:754–756

    Article  PubMed  CAS  Google Scholar 

  59. Carethers JM (2006) Prospective evaluation of fluorouracil chemotherapy based on the genetic makeup of colorectal cancer. Gut 55:1819

    Article  PubMed  CAS  Google Scholar 

  60. de Vos tot Nederveen Cappel WH, Meulenbeld HJ, Kleibeuker JH, et al. (2004) Survival after adjuvant 5-FU treatment for stage III colon cancer in hereditary nonpolyposis colorectal cancer. Int J Cancer 109:468–471

    Article  Google Scholar 

  61. Des Guetz G, Uzzan B, Nicolas P, et al. (2008) Microsatellite instability as a predictor of chemotherapy efficacy in colorectal cancer. Proc Am Soc Clin Oncol 26(May 20 Suppl): abstract 4117

    Google Scholar 

  62. Iacopetta B, Grieu F, Li W, et al. (2006) APC gene methylation is inversely correlated with features of the CpG island methylator phenotype in colorectal cancer. Int J Cancer 119:2272–2278

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Iacopetta.

About this article

Cite this article

Iacopetta, B., Kawakami, K. & Watanabe, T. Predicting clinical outcome of 5-fluorouracil-based chemotherapy for colon cancer patients: is the CpG island methylator phenotype the 5-fluorouracilresponsive subgroup?. Int J Clin Oncol 13, 498–503 (2008). https://doi.org/10.1007/s10147-008-0854-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-008-0854-3

Key words

Navigation