Skip to main content

The Muscle Satellite Cell: The Story of a Cell on the Edge!

  • Chapter
Skeletal Muscle Repair and Regeneration

Part of the book series: Advances in Muscle Research ((ADMR,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allbrook D (1962) An electron microscopic study of regenerating skeletal muscle. J Anat 96:137–152

    PubMed  CAS  Google Scholar 

  • Armand O, Boutineau AM, Mauger A, Pautou MP, Kieny M (1983) Origin of satellite cells in avian skeletal muscles. Arch Anat Microsc Morphol Exp 72:163–181

    PubMed  CAS  Google Scholar 

  • Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159:123–134

    Article  PubMed  CAS  Google Scholar 

  • Bader CR, Bertrand D, Cooper E, Mauro A (1988) Membrane currents of rat satellite cells attached to intact skeletal muscle fibers. Neuron 1:237–240

    Article  PubMed  CAS  Google Scholar 

  • Baroffio A, Hamann M, Bernheim L, Bochaton-Piallat ML, Gabbiani G, Bader CR (1996) Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation 60:47–57

    Article  PubMed  CAS  Google Scholar 

  • Basson MD, Carlson BM (1980) Myotoxicity of single and repeated injections of mepivacaine (Carbocaine) in the rat. Anesth Analg 59:275–282

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144:1113–1122

    Article  PubMed  CAS  Google Scholar 

  • Bintliff S, Walker BE (1960) Radioautographic study of skeletal muscle regeneration. Am J Anat 106:233–245

    Article  CAS  Google Scholar 

  • Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–139

    Article  PubMed  CAS  Google Scholar 

  • Bischoff R (1975) Regeneration of single skeletal muscle fibers in vitro. Anat Rec 182:215–235

    Article  PubMed  CAS  Google Scholar 

  • Bischoff R (1994). The satellite cell and muscle regeneration. In: Engel AG, Franzini-Armstrong C (eds) Myology, vol. 1. McGraw-Hill, Inc., New York

    Google Scholar 

  • Blaveri K, Heslop L, Yu DS, Rosenblatt JD, Gross JG, Partridge TA, Morgan JE (1999) Patterns of repair of dystrophic mouse muscle: studies on isolated fibers. Dev Dyn 216:244–256

    Article  PubMed  CAS  Google Scholar 

  • Bonner PH, Hauschka SD (1974) Clonal analysis of vertebrate myogenesis. I. Early developmental events in the chick limb. Dev Biol 37:317–328

    Article  PubMed  CAS  Google Scholar 

  • Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM (1973) The regeneration of skeletal muscle. A review. Am J Anat 137:119–149

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM (1968) Regeneration research in the Soviet Union. Anat Rec 160:665–674

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Lin G, Slack JM (2006) Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development 133:2303–2313

    Article  PubMed  CAS  Google Scholar 

  • Church JCT, Noronha RFX, Allbrook DB (1966) Satellite cells and skeletal muscle regeneration. Br J Surg 53:638–642

    Article  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  PubMed  CAS  Google Scholar 

  • Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25:885–894

    Article  PubMed  CAS  Google Scholar 

  • Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    Article  PubMed  CAS  Google Scholar 

  • Cooper WG, Konigsberg IR (1961) Dynamics of myogenesis in vitro. Anat Rec 140:195–205

    Article  PubMed  CAS  Google Scholar 

  • Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239:79–94

    Article  PubMed  CAS  Google Scholar 

  • Cornelison DD, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18:2231–2236

    Article  PubMed  CAS  Google Scholar 

  • Cossu G, Molinaro M, Pacifici M (1983) Differential response of satellite cells and embryonic myoblasts to a tumor promoter. Dev Biol 98:520–524

    Article  PubMed  CAS  Google Scholar 

  • Cousins JC, Woodward KJ, Gross JG, Partridge TA, Morgan JE (2004) Regeneration of skeletal muscle from transplanted immortalised myoblasts is oligoclonal. J Cell Sci 117:3259–3269

    Article  PubMed  CAS  Google Scholar 

  • Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni, Z (2007) Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 304:246–259

    Article  PubMed  CAS  Google Scholar 

  • De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147:869–878

    Article  PubMed  Google Scholar 

  • Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666–673

    Article  PubMed  CAS  Google Scholar 

  • Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA (2006) Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve 33:242–253

    Article  PubMed  Google Scholar 

  • Dreyfus PA, Chretien F, Chazaud B, Kirova Y, Caramelle P, Garcia L, Butler-Browne G, Gherardi RK (2004) Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am J Pathol 164:773–779

    PubMed  Google Scholar 

  • Feldman JL, Stockdale FE (1992) Temporal appearance of satellite cells during myogenesis. Dev Biol 153:217–226

    Article  PubMed  CAS  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  PubMed  CAS  Google Scholar 

  • Fuchtbauer EM, Westphal H (1992) MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn 193:34–39

    PubMed  CAS  Google Scholar 

  • Fukada S, Higuchi S, Segawa M, Koda K, Yamamoto Y, Tsujikawa K, Kohama Y, Uezumi A, Imamura M, Miyagoe-Suzuki Y, Takeda S, Yamamoto H (2004) Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 296:245–255

    Article  PubMed  CAS  Google Scholar 

  • Garry DJ, Meeson A, Elterman J, Zhao Y, Yang P, Bassel-Duby R, Williams RS (2000) Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. Proc Natl Acad Sci U S A 97:5416–5421

    Article  PubMed  CAS  Google Scholar 

  • Garry DJ, Yang Q, Bassel-Duby R, Williams RS (1997) Persistent expression of MNF identifies myogenic stem cells in postnatal muscles. Dev Biol 188:280–294

    Article  PubMed  CAS  Google Scholar 

  • Gross JG, Bou-Gharios G, Morgan JE (1999) Potentiation of myoblast transplantation by host muscle irradiation is dependent on the rate of radiation delivery. Cell Tissue Res 298:371–375

    Article  PubMed  CAS  Google Scholar 

  • Gross JG, Morgan JE (1999) Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury. Muscle Nerve 22:174–185

    Article  PubMed  CAS  Google Scholar 

  • Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW (1992) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267:99–104

    Article  PubMed  CAS  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  • Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R, Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn 231:489–502

    Article  PubMed  CAS  Google Scholar 

  • Hartley RS, Bandman E, Yablonka-Reuveni Z (1992) Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev Biol 153:206–216

    Article  PubMed  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  • Hay ED (1959) Electron microscopic observations of muscle dedifferentiation in regenerating ambystoma limbs. Dev Biol 1:555–585

    Article  Google Scholar 

  • Heslop L, Beauchamp JR, Tajbakhsh S, Buckingham ME, Partridge TA, Zammit PS (2001) Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the Myf5nlacZl+ mouse. Gene Ther 8:778–783

    Article  PubMed  CAS  Google Scholar 

  • Heslop L, Morgan JE, Partridge TA (2000) Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J Cell Sci 113(Pt 12):2299–2308

    PubMed  CAS  Google Scholar 

  • Horst D, Ustanina S, Sergi C, Mikuz G, Juergens H, Braun T, Vorobyov E (2006) Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis. Int J Dev Biol 50:47–54

    Article  PubMed  CAS  Google Scholar 

  • Illa I, Leon-Monzon M, Dalakas MC (1992) Regenerating and denervated human muscle fibers and satellite cells express neural cell adhesion molecule recognized by monoclonal antibodies to natural killer cells. Ann Neurol 31:46–52

    Article  PubMed  CAS  Google Scholar 

  • Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A (1994) Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 199:326–337

    PubMed  CAS  Google Scholar 

  • Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DD, Fedorov YV, Olwin BB (2005) The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169:105–116

    Article  PubMed  CAS  Google Scholar 

  • Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431:466–471

    Article  PubMed  CAS  Google Scholar 

  • Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48:1079–1096

    PubMed  CAS  Google Scholar 

  • Katz B (1961) The terminations of the afferent nerve fibre in the muscle spindle of the frog. Philos Trans Royal Soc Lond [Biol] 243:221–240

    Article  Google Scholar 

  • Kelly R, Alonso S, Tajbakhsh S, Cossu G, Buckingham M (1995) Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol 129:383–396

    Article  PubMed  CAS  Google Scholar 

  • Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJ, Fernandez A (1998) The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142:1447–1459

    Article  PubMed  CAS  Google Scholar 

  • Konigsberg UR, Lipton BH, Konigsberg IR (1975) The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol 45:260–275

    Article  PubMed  CAS  Google Scholar 

  • Knapp JR, Davie JK, Myer A, Meadows E, Olson EN, Klein WH (2006) Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development 133:601–610

    Article  PubMed  CAS  Google Scholar 

  • Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–113

    Article  PubMed  CAS  Google Scholar 

  • LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    Article  PubMed  CAS  Google Scholar 

  • Lamey TM, Koenders A, Ziman M (2004) Pax genes in myogenesis: alternate transcripts add complexity. Histol Histopathol 19:1289–1300

    PubMed  CAS  Google Scholar 

  • Lapidos KA, Chen YE, Earley JU, Heydemann A, Huber JM, Chien M, Ma A, McNally EM (2004) Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J Clin Invest 114:1577–1585

    Article  PubMed  CAS  Google Scholar 

  • Lash JW, Holtzer H, Swift H (1957) Regeneration of mature skeletal muscle. Anat Rec 128:679–697

    Article  PubMed  CAS  Google Scholar 

  • Le Gros Clark WE (1946) An experimental study of the regeneration of mammalian striped muscle. J Anat 80:24–36

    Google Scholar 

  • Lee HJ, Goring W, Ochs M, Muhlfeld C, Steding G, Paprotta I, Engel W, Adham IM (2004) Sox15 is required for skeletal muscle regeneration. Mol Cell Biol 24:8428–8436

    Article  PubMed  CAS  Google Scholar 

  • Lewis WH, Lewis MR (1917) Behaviour of cross striated muscle in tissue cultures. Am J Anat 22: 169–194

    Article  Google Scholar 

  • Lipton BH, Schultz E (1979) Developmental fate of skeletal muscle satellite cells. Science 205: 1292–1294

    Article  PubMed  CAS  Google Scholar 

  • Luz MA, Marques MJ, Santo Neto H (2002) Impaired regeneration of dystrophin-deficient muscle fibers is caused by exhaustion of myogenic cells. Braz J Med Biol Res 35:691–695

    Article  PubMed  CAS  Google Scholar 

  • Macconnachie HF, Enesco M, Leblond CP (1964) The mode of increase in the number of skeletal muscle nuclei in the postnatal rat. Am J Anat 114:245–253

    Article  PubMed  CAS  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  CAS  Google Scholar 

  • Mazanet R, Franzini-Armstrong C (1986) The Satellite Cell. In: Engel RG, Banker BQ (eds) Myology. McGraw-Hill, New York, pp. 285–307

    Google Scholar 

  • McGeachie JK, Grounds MD (1987) Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res 248:125–130

    Article  PubMed  CAS  Google Scholar 

  • Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10:1173–1183

    Article  PubMed  CAS  Google Scholar 

  • Milasincic DJ, Dhawan J, Farmer SR (1996) Anchorage-dependent control of muscle-specific gene expression in C2C12 mouse myoblasts. In Vitro Cell Dev Biol Anim 32:90–99

    Article  PubMed  CAS  Google Scholar 

  • Molnar G, Ho ML, Schroedl NA (1996) Evidence for multiple satellite cell populations and a non-myogenic cell type that is regulated differently in regenerating and growing skeletal muscle. Tissue Cell 28:547–556

    Article  PubMed  CAS  Google Scholar 

  • Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  PubMed  CAS  Google Scholar 

  • Morgan JE, Beauchamp JR, Pagel CN, Peckham M, Ataliotis P, Jat PS, Noble MD, Farmer K, Partridge TA (1994) Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: a model system for the derivation of tissue-specific and mutation-specific cell lines. Dev Biol 162: 486–498

    Article  PubMed  CAS  Google Scholar 

  • Morrison JI, Loof S, He P, Simon A (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172:433–440

    Article  PubMed  CAS  Google Scholar 

  • Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435

    Article  PubMed  CAS  Google Scholar 

  • Moss FP, Leblond CP (1970) Nature of dividing nuclei in skeletal muscle of growing rats. J Cell Biol 44:459–462

    Article  PubMed  CAS  Google Scholar 

  • Muir AR, Kanji AH, Allbrook D (1965) The structure of the satellite cells in skeletal muscle. J Anat 99:435–444

    PubMed  CAS  Google Scholar 

  • Nagata Y, Kobayashi H, Umeda M, Ohta N, Kawashima S, Zammit PS, Matsuda R (2006a) Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells. J Histochem Cytochem 54:375–384

    Article  CAS  Google Scholar 

  • Nagata Y, Partridge TA, Matsuda R, Zammit PS (2006b) Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. J Cell Biol 174:245–253

    Article  CAS  Google Scholar 

  • Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275:375–388

    Article  PubMed  CAS  Google Scholar 

  • Olivera A, Kohama T, Edsall L, Nava V, Cuvillier O, Poulton S, Spiegel S (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147:545–558

    Article  PubMed  CAS  Google Scholar 

  • Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557–560

    Article  PubMed  CAS  Google Scholar 

  • Ontell M, Kozeka K (1984) The organogenesis of murine striated muscle: a cytoarchitectural study. Am J Anat 171:133–148

    Article  PubMed  CAS  Google Scholar 

  • Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. Embo J 23:3430–3439

    Article  PubMed  CAS  Google Scholar 

  • Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337:176–179

    Article  PubMed  CAS  Google Scholar 

  • Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113:841–852

    Article  PubMed  CAS  Google Scholar 

  • Price HM, Howes EL, Jr., Blumberg JM (1964) Ultrastructural alterations in skeletal muscle fibers injured by cold. Ii. Cells on the sarcolemmal tube: Observations on “Discontinuous” regeneration and myofibril formation. Lab Invest 13:1279–1302

    PubMed  CAS  Google Scholar 

  • Quinn LS, Holtzer H, Nameroff M (1985) Generation of chick skeletal muscle cells in groups of 16 from stem cells. Nature 313:692–694

    Article  PubMed  CAS  Google Scholar 

  • Quinn LS, Nameroff M, Holtzer H (1984) Age-dependent changes in myogenic precursor cell compartment sizes. Evidence for the existence of a stem cell. Exp Cell Res 154:65–82

    Article  PubMed  CAS  Google Scholar 

  • Rantanen J, Hurme T, Lukka R, Heino J, Kalimo H (1995) Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest 72:341–347

    PubMed  CAS  Google Scholar 

  • Reimann J, Brimah K, Schroder R, Wernig A, Beauchamp JR, Partridge TA (2004) Pax7 distribution in human skeletal muscle biopsies and myogenic tissue cultures. Cell Tissue Res 315:233–242

    Article  PubMed  Google Scholar 

  • Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102

    Article  PubMed  CAS  Google Scholar 

  • Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA (1999) Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol 144: 631–643

    Article  PubMed  CAS  Google Scholar 

  • Sachidanandan C, Sambasivan R, Dhawan J (2002) Tristetraprolin and LPS-inducible CXC chemokine are rapidly induced in presumptive satellite cells in response to skeletal muscle injury. J Cell Sci 115:2701–2712

    PubMed  CAS  Google Scholar 

  • Sadeh M, Czyewski K, Stern LZ (1985) Chronic myopathy induced by repeated bupivacaine injections. J Neurol Sci 67:229–238

    Article  PubMed  CAS  Google Scholar 

  • Schmidt K, Glaser G, Wernig A, Wegner M, Rosorius O (2003) Sox8 is a specific marker for muscle satellite cells and inhibits myogenesis. J Biol Chem 278:29769–29775

    Article  PubMed  CAS  Google Scholar 

  • Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175:84–94

    Article  PubMed  CAS  Google Scholar 

  • Schultz E (1976) Fine structure of satellite cells in growing skeletal muscle. Am J Anat 147:49–70

    Article  PubMed  CAS  Google Scholar 

  • Schultz E, Chamberlain C, McCormick KM, Mozdziak PE (2006) Satellite cells express distinct patterns of myogenic proteins in immature skeletal muscle. Dev Dyn 235:3230–3239

    Article  PubMed  CAS  Google Scholar 

  • Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456

    Article  PubMed  CAS  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  PubMed  CAS  Google Scholar 

  • Shafiq SA, Gorycki MA (1965) Regeneration in skeletal muscle of mouse: some electron-microscope observations. J Pathol Bacteriol 90:123–127

    Article  PubMed  CAS  Google Scholar 

  • Shafiq SA, Gorycki MA, Mauro A (1968) Mitosis during postnatal growth in skeletal and cardiac muscle of the rat. J Anat 103:135–141

    PubMed  CAS  Google Scholar 

  • Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol 187:73–80

    Article  PubMed  CAS  Google Scholar 

  • Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66

    Article  PubMed  CAS  Google Scholar 

  • Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL, Wagers AJ (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119:543–554

    Article  PubMed  CAS  Google Scholar 

  • Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S (2006) Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 8:677–687

    Article  PubMed  CAS  Google Scholar 

  • Shu X, Wu W, Mosteller RD, Broek D (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22:7758–7768

    Article  PubMed  CAS  Google Scholar 

  • Snow MH (1978) An autoradiographic study of satellite cell differentiation into regenerating myotubes following transplantation of muscles in young rats. Cell Tissue Res 186:535–540

    Article  PubMed  CAS  Google Scholar 

  • Snow MH (1977) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study. Anat Rec 188:181–200

    Article  PubMed  CAS  Google Scholar 

  • Snow MH (1977a) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. Anat Rec 188:201–217

    Article  CAS  Google Scholar 

  • Speidel CC (1938) Studies in living muscles 1. Growth, injury and repair of striated muscle, as revealed by prolonged observations of individual fibers in living frog tadpoles. Am J Anat 62:179–235

    Article  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE, Holtzer H (1961) DNA synthesis and myogenesis. Exp Cell Res 24:508–520

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE, Nikovits W, Jr., Christ B (2000) Molecular and cellular biology of avian somite development. Dev Dyn 219:304–321

    Article  PubMed  CAS  Google Scholar 

  • Studitsky AN (1964) Free Auto- and Homografts of Muscle Tissue in Experiments on Animals. Ann N Y Acad Sci 120:789–801

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, Roy RR, Edgerton VR (2002) Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 157:571–577

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Allen RE (2004) Active hepatocyte growth factor is present in skeletal muscle extracellular matrix. Muscle Nerve 30:654–658

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128

    Article  PubMed  CAS  Google Scholar 

  • Venable JH (1966) Morphology of the cells of normal, testosterone deprived and testosterone-stimulated levator ani muscles. Am J Anat 119:271–302

    Article  PubMed  CAS  Google Scholar 

  • Volonte D, Liu Y, Galbiati F (2005) The modulation of caveolin-1 expression controls satellite cell activation during muscle repair. Faseb J 19:237–239

    PubMed  CAS  Google Scholar 

  • Wakeford S, Watt DJ, Partridge TA (1991) X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve 14:42–50

    Article  PubMed  CAS  Google Scholar 

  • Watt DJ, Lambert K, Morgan JE, Partridge TA, Sloper JC (1982) Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci 57:319–331

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, et al. (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766

    Article  PubMed  CAS  Google Scholar 

  • Wernig G, Janzen V, Schafer R, Zweyer M, Knauf U, Hoegemeier O, Mundegar RR, Garbe S, Stier S, Franz T, Wernig M, Wernig A (2005) The vast majority of bone-marrow-derived cells integrated into mdx muscle fibers are silent despite long-term engraftment. Proc Natl Acad Sci U S A 102: 11852–11857

    Article  PubMed  CAS  Google Scholar 

  • Whalen RG, Harris JB, Butler-Browne GS, Sesodia S (1990) Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Dev Biol 141:24–40

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni Z, Rivera AJ (1994) Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol 164:588–603

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999a) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210:440–455

    Article  CAS  Google Scholar 

  • Yablonka-Reuveni Z, Seger R, Rivera AJ (1999b) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47:23–42

    CAS  Google Scholar 

  • Yao SN, Kurachi K (1993) Implanted myoblasts not only fuse with myofibers but also survive as muscle precursor cells. J Cell Sci 105 (Pt 4):957–963

    PubMed  Google Scholar 

  • Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y (1998) Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates “reserve cells”. J Cell Sci 111 (Pt 6):769–779

    PubMed  CAS  Google Scholar 

  • Yusuf I, Fruman DA (2003) Regulation of quiescence in lymphocytes. Trends Immunol 24:380–386

    Article  PubMed  CAS  Google Scholar 

  • Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357

    Google Scholar 

  • Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, Beauchamp JR, Partridge TA (2002) Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 281:39–49

    Article  PubMed  CAS  Google Scholar 

  • Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006a) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    Article  CAS  Google Scholar 

  • Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR (2006b) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832

    Article  CAS  Google Scholar 

  • Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S (1991) Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114:155–167

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zammit, P.S. (2008). The Muscle Satellite Cell: The Story of a Cell on the Edge!. In: Skeletal Muscle Repair and Regeneration. Advances in Muscle Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6768-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6768-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6767-9

  • Online ISBN: 978-1-4020-6768-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics