Skip to main content
Log in

Anchorage-dependent control of muscle-specific gene expression in C2C12 mouse myoblasts

  • Growth, Differentiation and Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Our previous studies have demonstrated that expression of growth-associated genes is regulated by the adhesive state of the cell. To understand the role of cell adhesion in regulating the switch from growth to differentiation, we are studying the differentiation of mouse myoblasts into multinucleated contractile myotubes. In this report, we describe a novel means of culturing C2C12 myoblasts that permits an analysis of the role of cell adhesion in regulating the sequential induction of muscle-specific genes that control myogenesis. Suspension of an asynchronous, proliferating population of myoblasts in a viscous gel of methylcellulose dissolved in medium containing 20% serum induces growth arrest in G0 phase of the cell cycle without a concomitant induction of muscle-specific genes. Reattachment to a solid substratum in 20% serum, 0.5nM bFGF, or 10 nM IGF-1 rapidly activates entry of the quiescent cells into G1 followed by a synchronous progression of the cell population through into S phase. bFGF or IGF-1 added separately facilitate only one passage through the cell cycle, whereas 20% serum or the two growth factors added together support multiple cell divisions. Adhesion of suspended cells in DMEM alone or with 3 nM IGF-1 induces myogenesis as evidenced by the synthesis of myogenin and myosin heavy chain (MHC) proteins followed by fusion into myotubes. bFGF completely inhibits this differentiation process even in the presence of myogenic doses of IGF-1. Addition of 3 nM IGF-1 to quiescent myoblasts maintained in suspension culture in serum-free conditions does not induce myogenin or MHC expression. Thus, adhesion is a requirement for the induction of muscle gene expression in mouse myoblasts. The development of a muscle cell culture environment in which proliferating myoblasts can be growth arrested in G0 without activating muscle-specific gene expression provides a means of analyzing the synchronous activation of either the myogenic or growth programs and how adhesion affects each process, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abercrombie, M.; Heaysman, J. E. Observations of cells in tissue culture. Exp. Cell Res. 5:111–118 1953.

    Article  PubMed  CAS  Google Scholar 

  2. Adams, J. C.; Watt, F. M. Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature (Lond.) 340:307–309; 1989.

    Article  CAS  Google Scholar 

  3. Adams, J. C.; Watt, F. M. Regulation of development and differentiation by the extracellular matrix. Development (Camb.) 117:1183–1198; 1993.

    CAS  Google Scholar 

  4. Bader, D.; Masaki, T.; Fischman, D. A. Immunochemical analysis of myosin heavy chain during avian myogenesisin vivo andin vitro. J. Biochem. (Tokyo) 95:763–770; 1982.

    CAS  Google Scholar 

  5. Bauer, K. D.; Dethlefsen, L. A. Total cellular RNA content: correlation between flow cytometry and ultraviolet spectroscopy. J. Histochem. Cytochem. 28:493–499; 1980.

    PubMed  CAS  Google Scholar 

  6. Benya, P. D.; Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30;215–224; 1982.

    Article  PubMed  CAS  Google Scholar 

  7. Bissell, D. M.; Arenson, D. M. Maher, J. J., et al. Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J. Clin. Invest. 79:801–812; 1987.

    PubMed  CAS  Google Scholar 

  8. Blau, H. M.; Pavlath, G. K.; Hardeman, E. C., et al. Plasticity of the differentiated state. Science (Wash. DC). 230:758–766; 1985.

    Article  CAS  Google Scholar 

  9. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Clegg, C. H.; Linkhart, T. A.; Olwin, B. B., et al. Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J. Cell Biol. 105:949–956; 1987.

    Article  PubMed  CAS  Google Scholar 

  11. Coulson, P. B.; Bishop, A. O.; Lenarduzzi, R. Quantitation of cellular deoxyribonucleic acid by flow microfluorometry. J. Histochem. Cytochem. 25:1147–1153; 1977.

    PubMed  CAS  Google Scholar 

  12. Darzynkiewicz, Z. Differential staining of DNA and RNA in intact and isolated cell nuclei with acridine organge. Methods Cell Biol. 33:285–298; 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Dhawan, J.; Farmer, S. R. Regulation of alpha 1(I)-collagen gene expression in response to cell adhesion in Swiss 3T3 fibroblasts. J. Biol. Chem. 265;9015–9021; 1990.

    PubMed  CAS  Google Scholar 

  14. Dhawan, J.; Lichtler, A. C.; Rowe, D. W., et al. Cell adhesion regulates pro-alpha 1(I) collagen mRNA stability and transcription in mouse fibroblasts. J. Biol. Chem. 266:8470–8475; 1991.

    PubMed  CAS  Google Scholar 

  15. Dike, L. E.; Farmer, S. R. Cell adhesion induces, expression of growth-associated genes in suspension-arrested fibroblasts. Proc. Natl. Acad. Sci. USA 85:6792–6796; 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Edmondson, D. G.; Cheng, T. C.; Cserjesi, P., et al. Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol. Cell. Biol. 12;3665–3677; 1992.

    PubMed  CAS  Google Scholar 

  17. Farmer, S. R.; Dike, L. E. Cell shape and growth control: role of cytoskeleton-extracellular matrix interactions. In: Stein, W. D.; Bronner, F., eds. Cell shape: determinants, regulation, and regulatory role. San Diego, CA: Academic Press; 1989;173–202.

    Google Scholar 

  18. Florini, J. R.; Ewton, D. Z.; Magri, K. A. Hormones, growth factors, and myogenic differentiation. Annu. Rev. Physiol. 53:201–216; 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Goodrich, D. W.; Wang, N. P.; Qian, Y. W., et al. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67:293–302; 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Grounds, M. D. Towards understanding skeletal muscle regeneration. Pathol. Res. Pract. 187:1–22; 1991.

    PubMed  CAS  Google Scholar 

  21. Grounds, M. D.; Garrett, K. L.; Lai, M. C., et al. Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res. 267:99–104; 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Gu, W.; Schneider, J. W.; Condorelli, G. et al. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72:309–324; 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Guadagno, T. M.; Assoian, R. K. G1/S control of anchorage-independent growth in the fibroblast cell cycle. J. Cell Biol. 115;1419–1425; 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Gulati, A. K. Basement membrane component changes in skeletal muscle transplants undergoing regeneration or rejection. J. Cell. Biochem. 27:337–346; 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Hansen, L. K.; Mooney, D. J.; Vacanti, J. P., et al. Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol. Biol. Cell. 5:967–975; 1994.

    PubMed  CAS  Google Scholar 

  26. Kornberg, L. J.; Earp, H. S.; Turner, C. E., et al. Signal transduction by integrins: increased protein phosphorylation caused by clustering of beta 1 integrins. Proc. Natl. Acad. Sci. USA 88:8392–8396; 1991.

    Article  PubMed  CAS  Google Scholar 

  27. Li, M. L.; Aggeler, J.; Farson, D. A., et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84:136–140; 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Lin, C. Q.; Bissell, M. J. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J. 7:737–743; 1993.

    PubMed  CAS  Google Scholar 

  29. MacPherson, I.; Montagnier, L. Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology 23:291–294; 1964.

    Article  PubMed  CAS  Google Scholar 

  30. Menko, A. S.; Boettiger, D. Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation. Cell 51:51–57; 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Ontell, M. Neonatal muscle: an electron microscopic study. Anat. Rec. 189:669–690; 1977.

    Article  PubMed  CAS  Google Scholar 

  32. Pairault, J.; Green, H. A study of adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as a differentiation marker. Proc. Natl. Acad. Sci. USA 76:5138–5142; 1979.

    Article  PubMed  CAS  Google Scholar 

  33. Rana, B.; Mischoulon, D.; Xie, Y., et al. Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors. Mol. Cell. Biol. 14:5858–5869; 1994.

    PubMed  CAS  Google Scholar 

  34. Rosenthal, N. Muscle cell differentiation. Curr. Opin. Cell Biol. 1:1094–1101; 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Rudnicki, M. A.; Schnegelsberg, P. N.; Stead, R. H., et al. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359; 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press; 1989; Cold Spring Harbor, NY.

    Google Scholar 

  37. Schumperli, D. Cell-cycle regulation of histone gene expression. Cell 45:471–472; 1986.

    Article  PubMed  CAS  Google Scholar 

  38. Schwartz, M. A.; Lechene, C.; Ingber, D. E. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. Proc. Natl. Acad. Sci. USA 88:7849–7853; 1991.

    Article  PubMed  CAS  Google Scholar 

  39. Shin, S.; Freedman, V. H.; Risser, R., et al. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc. Natl. Acad. Sci. USA 72:4435–4439; 1975.

    Article  PubMed  CAS  Google Scholar 

  40. Stoker, M.; O'Neill, C.; Berryman, S., et al. Anchorage and growth regulation in normal and virus-transformed cells. Int. J. Cancer 3:683–693; 1968.

    Article  PubMed  CAS  Google Scholar 

  41. Tapscott, S. J.; Weintraub, H. MyoD and the regulation of myogenesis by helix-loop-helix proteins. J. Clin. Invest. 87:1133–1138; 1991.

    Article  PubMed  CAS  Google Scholar 

  42. Wittelsberger, S. C.; Kleene, K.; Penman, S. Progressive loss of shaperesponsive metabolic controls in cells with increasingly transformed phenotype. Cell 24:859–866; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by training grant T32-HL07035

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milasincic, D.J., Dhawan, J. & Farmer, S.R. Anchorage-dependent control of muscle-specific gene expression in C2C12 mouse myoblasts. In Vitro Cell.Dev.Biol.-Animal 32, 90–99 (1996). https://doi.org/10.1007/BF02723040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723040

key words

Navigation