Skip to main content

A Protocol for Untargeted Metabolomic Analysis: From Sample Preparation to Data Processing

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2276))

Abstract

Untargeted metabolomics has rapidly become a profiling method of choice in many areas of research, including mitochondrial biology. Most commonly, untargeted metabolomics is performed with liquid chromatography/mass spectrometry because it enables measurement of a relatively wide range of physiochemically diverse molecules. Specifically, to assess energy pathways that are associated with mitochondrial metabolism, hydrophilic interaction liquid chromatography (HILIC) is often applied before analysis with a high-resolution accurate mass instrument. The workflow produces large, complex data files that are impractical to analyze manually. Here, we present a protocol to perform untargeted metabolomics on biofluids such as plasma, urine, and cerebral spinal fluid with a HILIC separation and an Orbitrap mass spectrometer. Our protocol describes each step of the analysis in detail, from preparation of solvents for chromatography to selecting parameters during data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  CAS  PubMed  Google Scholar 

  2. Cho K, Mahieu NG, Johnson SL, Patti GJ (2014) After the feature presentation: technologies bridging untargeted metabolomics and biology. Curr Opin Biotechnol 28:143–148

    Article  CAS  PubMed  Google Scholar 

  3. Wishart DS (2019) Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev 99:1819–1875

    Article  CAS  PubMed  Google Scholar 

  4. Tebani A, Bekri S (2019) Paving the way to precision nutrition through metabolomics. Front Nutr 6:41

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nikolskiy I, Siuzdak G, Patti GJ (2015) Discriminating precursors of common fragments for large-scale metabolite profiling by triple quadrupole mass spectrometry. Bioinformatics 31:2017–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patti GJ (2011) Separation strategies for untargeted metabolomics. J Sep Sci 34:3460–3469

    Article  CAS  PubMed  Google Scholar 

  7. Ivanisevic J, Want EJ (2019) From samples to insights into metabolism: uncovering biologically relevant information in LC-HRMS metabolomics data. Meta 9(12):308

    CAS  Google Scholar 

  8. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  CAS  PubMed  Google Scholar 

  10. Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, Barupal DK, Showalter MR, Arita M, Fiehn O (2017) Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev 37(4):513–532

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24(4):285–294

    Article  CAS  Google Scholar 

  12. Mahieu NG, Genenbacher JL, Patti GJ (2016) A roadmap for the XCMS family of software solutions in metabolomics. Curr Opin Chem Biol 30:87–93

    Article  CAS  PubMed  Google Scholar 

  13. Olivon F, Grelier G, Roussi F, Litaudon M, Touboul D (2017) MZmine 2 data-preprocessing to enhance molecular networking reliability. Anal Chem 89:7836–7840

    Article  CAS  PubMed  Google Scholar 

  14. Lommen A, Kools HJ (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726

    Article  CAS  PubMed  Google Scholar 

  15. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL (2011) Systems level studies of mammalian metabolomes: the role of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40:387–426

    Article  CAS  PubMed  Google Scholar 

  16. Uppal K, Soltow QA, Strobel FH, Pittard WS, Gernert KM, Yu T, Jones DP (2013) xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinformatics 14:15

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schwaiger M, Schoeny H, El Abiead Y, Hermann G, Rampler E, Koellensperger K (2019) Merging metabolomics and lipidomics into one analytical run. Analyst 144:220–229

    Article  CAS  Google Scholar 

  18. Naser FJ, Mahieu NG, Wang L, Spalding JL, Johnson SL, Patti GJ (2018) Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome. Anal Bioanal Chem 410(4):1287–1297

    Article  CAS  PubMed  Google Scholar 

  19. Contrepois K, Jiang L, Snyder M (2015) Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)-mass spectrometry. Mol Cell Proteomics 14(6):1684–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ivanisevic J, Zhu ZJ, Plate L, Tautenhahn R, Chen S, O’Brien PJ, Johnson CH, Marletta MA, Patti GJ, Siuzdak G (2013) Toward ‘omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal Chem 85(14):6876–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roberts LD, Souza AL, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol 98(1):1–34

    Article  Google Scholar 

  22. Snyder NW, Khezam M, Mesaros CA, Worth A, Blair IA (2013) Untargeted metabolomics from biological sources using ultraperformance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). J Vis Exp 75:1–8

    Google Scholar 

  23. Want EJ (2018) LC-MS untargeted analysis. In: Theodoridis AG, Gika HG, Wilson ID (eds) Metabolic profiling, methods and protocols. Humana, New York, NY, pp 99–116

    Chapter  Google Scholar 

  24. University of California San Diego. Metabolomics workbench, general protocols. https://www.metabolomicsworkbench.org/protocols/general.php. Accessed 12 Jan 2019

  25. European Molecular Biology Laboratory (2019) Metabolomics core facility, protocols used for LC-MS analysis. https://www.embl.de/mcf/metabolomics-core-facility/protocols/. Accessed 12 Jan 2019

  26. Saigusa D, Okamura Y, Motoike IN, Katoh Y, Kurosawa Y, Saijyo R, Koshiba S, Yasuda J, Motohashi H, Sugawara J, Tanabe O, Kinoshita K, Yamamoto M (2016) Establishment of protocols for global metabolomics by LC-MS for biomarker discovery. PLoS One 11(8):e0160555

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gika HG, Zisi C, Theodoridis G, Wilson ID (2016) Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS. J Chromatogr B Anal Technol Biomed Life Sci 1008:15–25

    Article  CAS  Google Scholar 

  28. Knee JM, Rzezniczak TZ, Barsch A, Guo KZ, Merritt TJS (2013) A novel ion pairing LC/MS metabolomics protocol for study of a variety of biologically relevant polar metabolites. J Chromatogr B Anal Technol Biomed Life Sci 936:63–73

    Article  CAS  Google Scholar 

  29. Esterhuizen K, van der Westhuizen FH, Louw R (2017) Metabolomics of mitochondrial disease. Mitochondrion 35:97–110

    Article  CAS  PubMed  Google Scholar 

  30. Barshop BA (2004) Metabolomic approaches to mitochondrial disease: correlation of urine organic acids. Mitochondrion 4:521–527

    Article  CAS  PubMed  Google Scholar 

  31. Shaham O, Slate NG, Goldberger O, Xu Q, Ramanathan A, Souza AL, Clish CB, Sims KB, Mootha VK (2010) A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc Natl Acad Sci U S A 107(4):1571–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leoni V, Strittmatter L, Zorzi G, Zibordi F, Dusi S, Garavaglia B, Venco P, Caccia C, Souza AL, Deik A, Clish CB, Rimoldi M, Ciusani E, Bertini E, Nardocci N, Mootha VK, Tiranti V (2012) Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Mol Genet Metab 105(3):463–471

    Article  CAS  PubMed  Google Scholar 

  33. Yao CH, Wang R, Wang Y, Kung CP, Weber JD, Patti GJ (2019) Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. Elife 8:pii:e41351

    Article  Google Scholar 

  34. Mandal R, Chamot D, Wishart DS (2018) The role of the Human Metabolome Database in inborn errors of metabolism. J Inherit Metab Dis 41:329–336

    Article  CAS  PubMed  Google Scholar 

  35. Feuchtbaum L, Carter J, Dowray S, Currier RJ, Lorey F (2012) Birth prevalence of disorders detectable through newborn screening by race/ethnicity. Genet Med 14:937–945

    Article  PubMed  Google Scholar 

  36. Thermo Fisher Scientific, Exactive Series Operating Manual, BRE0012255, Revision A, April 2017. https://assets.thermofisher.com/TFS-Assets/CMD/manuals/man-bre0012255-exactive-series-manbre0012255-en.pdf. Accessed 16 Feb 2019

  37. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W486–W494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mahieu NG, Spalding J, Patti GJ (2015) Warpgroup: increased precision of metabolomic data processing by consensus integration bound analysis. Bioinformatics 32:268–275

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blazenovic I, Kind T, Ji J, Fiehn O (2018) Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Meta 8(2):31

    Google Scholar 

  41. Stanstrup J, Broeckling CD, Helmus R, Hoffmann N, Mathe E, Naake T, Nicolotti L, Peters K, Rainer J, Salek RM, Schulze T, Schymanski EL, Stravs MA, Thevenot EA, Treutler H, Weber RJM, Willighagen E, Witting M, Neumann S (2019) The metaRbolomics toolbox in bioconductor and beyond. Meta 9(10):200

    CAS  Google Scholar 

  42. Souza A, Tautenhan R (2018) Features or compounds? A data reduction strategy for untargeted metabolomics to generate meaningful data (Report no. TN65204-EN 0418S). Thermo Fisher Scientific. https://assets.thermofisher.com/TFS-Assets/CMD/Technical-Notes/tn-65204-lc-ms-untargeted-metabolomics-tn65204-en.pdf. Accessed 16 Feb 2020

  43. Mahieu NG, Patti GJ (2017) Systems-level annotation of a metabolomics data set reduces 25000 features to fewer than 1000 unique metabolites. Anal Chem 89:10397–10406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fiehn O, Robertson D, Griffin J, van der Werf M, Nikolau B, Morrison N, Sumner LW, Goodacre R, Hardy NW, Taylor C, Fostel J, Kristal B, Kaddurah-Daouk R, Mendes P, van Ommen B, Lindon JC, Sansone S (2007) The metabolomics standards initiative (MSI). Metabolomics 3:175–178

    Article  CAS  Google Scholar 

  45. Sumner LW, Amberg A, Barrett D, Beale MH, Beger RD, Daykin CA, Fan T, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy NW, Harnly J, Higashi RM, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden J, Viant M (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:231–241

    Article  Google Scholar 

  46. Souza A, Ntai I, Tautenhan R (2018) Accelerated unknown compound annotation with confidence: from spectra to structure in untargeted metabolomics experiments (Report no. AN65362-EN 1218M). Thermo Fisher Scientific. https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/an-65362-ms-compound-annotation-an65362-en.pdf. Accessed 16 Feb 2020

Download references

Acknowledgments

The authors would like to thank Dr. Clary Clish (Broad Institute of Harvard and MIT) for discussion and insights that helped develop this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda L. Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Souza, A.L., Patti, G.J. (2021). A Protocol for Untargeted Metabolomic Analysis: From Sample Preparation to Data Processing. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2276. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1266-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1266-8_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1265-1

  • Online ISBN: 978-1-0716-1266-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics