Skip to main content
Log in

Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics.

Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more than fivefold for untargeted profiling. HILIC hydrophilic interaction liquid chromatography

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haggarty J, Burgess KEV. Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome. Curr Opin Biotechnol. 2017;43:77–85. https://doi.org/10.1016/j.copbio.2016.09.006.

    Article  CAS  Google Scholar 

  2. Vinayavekhin N, Homan EA, Saghatelian A. Exploring disease through metabolomics. ACS Chem Biol. 2010;5:91–103. https://doi.org/10.1021/cb900271r.

    Article  CAS  Google Scholar 

  3. Weckwerth W. Metabolomics in systems biology. Annu Rev Plant Biol. 2003;54:669–89. https://doi.org/10.1146/annurev.arplant.54.031902.135014.

    Article  CAS  Google Scholar 

  4. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, et al. The human serum metabolome. PLoS One. 2011;6:e16957. https://doi.org/10.1371/journal.pone.0016957.

    Article  CAS  Google Scholar 

  5. Masson P, Alves AC, Ebbels TMD, Nicholson JK, Want EJ. Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Anal Chem. 2010;82:7779–86. https://doi.org/10.1021/ac101722e.

    Article  CAS  Google Scholar 

  6. Stanstrup J, Gerlich M, Dragsted LO, Neumann S. Metabolite profiling and beyond: approaches for the rapid processing and annotation of human blood serum mass spectrometry data. Anal Bioanal Chem. 2013;405:5037–48. https://doi.org/10.1007/s00216-013-6954-6.

    Article  CAS  Google Scholar 

  7. Benton HP, Ivanisevic J, Mahieu NG, Kurczy ME, Johnson CH, Franco L, et al. Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem. 2015;87:884–91. https://doi.org/10.1021/ac5025649.

    Article  CAS  Google Scholar 

  8. Nordström A, Want E, Northen T, Lehtiö J, Siuzdak G. Multiple ionization mass spectrometry strategy used To reveal the complexity of metabolomics. Anal Chem. 2008;80:421–9. https://doi.org/10.1021/ac701982e.

    Article  Google Scholar 

  9. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem. 2012;84:5035–9. https://doi.org/10.1021/ac300698c.

    Article  CAS  Google Scholar 

  10. Zeng Z, Liu X, Dai W, Yin P, Zhou L, Huang Q, et al. Ion fusion of high-resolution LC–MS-based metabolomics data to discover more reliable biomarkers. Anal Chem. 2014;86:3793–800. https://doi.org/10.1021/ac500878x.

    Article  CAS  Google Scholar 

  11. Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem. 2012;84:283–9. https://doi.org/10.1021/ac202450g.

    Article  CAS  Google Scholar 

  12. Daly R, Rogers S, Wandy J, Jankevics A, Burgess KEV, Breitling R. MetAssign: probabilistic annotation of metabolites from LC–MS data using a Bayesian clustering approach. Bioinformatics. 2014;30:2764–71. https://doi.org/10.1093/bioinformatics/btu370.

    Article  CAS  Google Scholar 

  13. Zhang W, Chang J, Lei Z, Huhman D, Sumner LW, Zhao PX. MET-COFEA: a liquid chromatography/mass spectrometry data processing platform for metabolite compound feature extraction and annotation. Anal Chem. 2014;86:6245–53. https://doi.org/10.1021/ac501162k.

    Article  CAS  Google Scholar 

  14. Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE. RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal Chem. 2014;86:6812–7. https://doi.org/10.1021/ac501530d.

    Article  CAS  Google Scholar 

  15. Yao C-H, Liu G-Y, Yang K, Gross RW, Patti GJ. Inaccurate quantitation of palmitate in metabolomics and isotope tracer studies due to plastics. Metabolomics. 2016;12:143. https://doi.org/10.1007/s11306-016-1081-y.

    Article  Google Scholar 

  16. Mahieu NG, Huang X, Chen Y-J, Patti GJ. Credentialing features: a platform to benchmark and optimize untargeted metabolomic methods. Anal Chem. 2014;86:9583–9. https://doi.org/10.1021/ac503092d.

    Article  CAS  Google Scholar 

  17. Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A. 2006;1125:76–88. https://doi.org/10.1016/j.chroma.2006.05.019.

    Article  CAS  Google Scholar 

  18. Contrepois K, Jiang L, Snyder M. Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)–mass spectrometry. Mol Cell Proteomics. 2015;14:1684–95. https://doi.org/10.1074/mcp.M114.046508.

    Article  CAS  Google Scholar 

  19. Zhang R, Watson DG, Wang L, Westrop GD, Coombs GH, Zhang T. Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites. J Chromatogr A. 2014;1362:168–79. https://doi.org/10.1016/j.chroma.2014.08.039.

    Article  CAS  Google Scholar 

  20. Patti GJ. Separation strategies for untargeted metabolomics. J Sep Sci. 2011;34:3460–9. https://doi.org/10.1002/jssc.201100532.

    Article  CAS  Google Scholar 

  21. Nikolskiy I, Mahieu NG, Chen Y-J, Tautenhahn R, Patti GJ. An untargeted metabolomic workflow to improve structural characterization of metabolites. Anal Chem. 2013;85:7713–9. https://doi.org/10.1021/ac400751j.

    Article  CAS  Google Scholar 

  22. Mahieu NG, Spalding JL, Patti GJ. Warpgroup: increased precision of metabolomic data processing by consensus integration bound analysis. Bioinformatics. 2016;32:268–75. https://doi.org/10.1093/bioinformatics/btv564.

    CAS  Google Scholar 

  23. Yu T, Park Y, Johnson JM, Jones DP. apLCMS—adaptive processing of high-resolution LC/MS data. Bioinformatics. 2009;25 https://doi.org/10.1093/bioinformatics/btp291.

  24. Conley CJ, Smith R, Torgrip RJO, Taylor RM, Tautenhahn R, Prince JT. Massifquant: open-source Kalman filter-based XC-MS isotope trace feature detection. Bioinformatics. 2014;30:2636–43. https://doi.org/10.1093/bioinformatics/btu359.

    Article  CAS  Google Scholar 

  25. Ivanisevic J, Zhu Z-J, Plate L, Tautenhahn R, Chen S, O’Brien PJ, et al. Toward ‘omic scale metabolite profiling: a dual separation–mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal Chem. 2013;85:6876–84. https://doi.org/10.1021/ac401140h.

    Article  CAS  Google Scholar 

  26. Yanes O, Tautenhahn R, Patti GJ, Siuzdak G. Expanding coverage of the metabolome for global metabolite profiling. Anal Chem. 2011;83:2152–61. https://doi.org/10.1021/ac102981k.

    Article  CAS  Google Scholar 

  27. Tufi S, Lamoree M, de Boer J, Leonards P. Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A. 2015;1395:79–87. https://doi.org/10.1016/j.chroma.2015.03.056.

    Article  CAS  Google Scholar 

  28. Keunchkarian S, Reta M, Romero L, Castells C. Effect of sample solvent on the chromatographic peak shape of analytes eluted under reversed-phase liquid chromatogaphic conditions. J Chromatogr A. 2006;1119:20–8. https://doi.org/10.1016/j.chroma.2006.02.006.

    Article  CAS  Google Scholar 

  29. Tautenhahn R, Böttcher C, Neumann S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics. 2008;9:504. https://doi.org/10.1186/1471-2105-9-504.

    Article  Google Scholar 

  30. Fekete S, Oláh E, Fekete J. Fast liquid chromatography: the domination of core–shell and very fine particles. J Chromatogr A. 2012;1228:57–71. https://doi.org/10.1016/j.chroma.2011.09.050.

    Article  CAS  Google Scholar 

  31. Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88:524–45. https://doi.org/10.1021/acs.analchem.5b04491.

    Article  CAS  Google Scholar 

  32. Cajka T, Fiehn O. Increasing lipidomic coverage by selecting optimal mobile-phase modifiers in LC–MS of blood plasma. Metabolomics. 2016;12:34. https://doi.org/10.1007/s11306-015-0929-x.

    Article  Google Scholar 

  33. Cappiello A, Famiglini G, Rossi L, Magnani M. Use of nonvolatile buffers in liquid chromatography/mass spectrometry: advantages of capillary-scale particle beam interfacing. Anal Chem. 1997;69:5136–41. https://doi.org/10.1021/ac970765y.

    Article  CAS  Google Scholar 

  34. Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 2015;21:891–7. https://doi.org/10.1016/j.cmet.2015.04.011.

    Article  CAS  Google Scholar 

  35. Cotter DG, Ercal B, Huang X, Leid JM, d’Avignon DA, Graham MJ, et al. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J Clin Investig. 2014;124:5175–90. https://doi.org/10.1172/JCI76388.

    Article  Google Scholar 

  36. Ivanisevic J, Epstein AA, Kurczy ME, Benton PH, Uritboonthai W, Fox HS, et al. Brain region mapping using global metabolomics. Chem Biol. 2014;21:1575–84. https://doi.org/10.1016/j.chembiol.2014.09.016.

    Article  CAS  Google Scholar 

  37. Zamboni N, Saghatelian A, Patti GJ. Defining the metabolome: size, flux, and regulation. Mol Cell. 2015;58:699–706. https://doi.org/10.1016/j.molcel.2015.04.021.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (grants R35 ES028365, R21 CA191097, R01 GM05698), the Alfred P. Sloan Foundation, the Camille & Henry Dreyfus Foundation, the Edward Mallinckrodt, Jr. Foundation, and the Pew Scholars Program in the Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Patti.

Ethics declarations

Conflict of interest

GJP is a scientific advisory board member for Cambridge Isotope Laboratories and a recipient of the Agilent Early Career Professor Award. The other authors declare that they no have competing financial interests. The authors declare that they have no nonfinancial conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 1.72 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naser, F.J., Mahieu, N.G., Wang, L. et al. Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome. Anal Bioanal Chem 410, 1287–1297 (2018). https://doi.org/10.1007/s00216-017-0768-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0768-x

Keywords

Navigation