Skip to main content

BioMagResBank (BMRB) as a Resource for Structural Biology

  • Protocol
  • First Online:
Structural Bioinformatics

Abstract

The Biological Magnetic Resonance Data Bank (BioMagResBank or BMRB), founded in 1988, serves as the archive for data generated by nuclear magnetic resonance (NMR) spectroscopy of biological systems. NMR spectroscopy is unique among biophysical approaches in its ability to provide a broad range of atomic and higher-level information relevant to the structural, dynamic, and chemical properties of biological macromolecules, as well as report on metabolite and natural product concentrations in complex mixtures and their chemical structures. BMRB became a core member of the Worldwide Protein Data Bank (wwPDB) in 2007, and the BMRB archive is now a core archive of the wwPDB. Currently, about 10% of the structures deposited into the PDB archive are based on NMR spectroscopy. BMRB stores experimental and derived data from biomolecular NMR studies. Newer BMRB biopolymer depositions are divided about evenly between those associated with structure determinations (atomic coordinates and supporting information archived in the PDB) and those reporting experimental information on molecular dynamics, conformational transitions, ligand binding, assigned chemical shifts, or other results from NMR spectroscopy. BMRB also provides resources for NMR studies of metabolites and other small molecules that are often macromolecular ligands and/or nonstandard residues. This chapter is directed to the structural biology community rather than the metabolomics and natural products community. Our goal is to describe various BMRB services offered to structural biology researchers and how they can be accessed and utilized. These services can be classified into four main groups: (1) data deposition, (2) data retrieval, (3) data analysis, and (4) services for NMR spectroscopists and software developers. The chapter also describes the NMR-STAR data format used by BMRB and the tools provided to facilitate its use. For programmers, BMRB offers an application programming interface (API) and libraries in the Python and R languages that enable users to develop their own BMRB-based tools for data analysis, visualization, and manipulation of NMR-STAR formatted files. BMRB also provides users with direct access tools through the NMRbox platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulrich EL, Akutsu H, Doreleijers JF et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408. https://doi.org/10.1093/nar/gkm957

    Article  CAS  PubMed  Google Scholar 

  2. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ladizhansky V (2017) Applications of solid-state NMR to membrane proteins. Biochim Biophys Acta Proteins Proteom 1865:1577–1586. https://doi.org/10.1016/j.bbapap.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  4. Sugiki T, Kobayashi N, Fujiwara T (2017) Modern technologies of solution nuclear magnetic resonance spectroscopy for three-dimensional structure determination of proteins open avenues for life scientists. Comput Struct Biotechnol J 15:328–339. https://doi.org/10.1016/j.csbj.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dashti H, Westler WM, Markley JL et al (2017) Unique identifiers for small molecules enable rigorous labeling of their atoms. Sci Data 4:170073. https://doi.org/10.1038/sdata.2017.73

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dashti H, Wedell JR, Westler WM et al (2018) Applications of parametrized NMR spin systems of small molecules. Anal Chem 90:10646–10649. https://doi.org/10.1021/acs.analchem.8b02660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wwpdb (2019) Protein data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 47:D520–D528. https://doi.org/10.1093/nar/gky949

    Article  CAS  Google Scholar 

  9. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980. https://doi.org/10.1038/nsb1203-980

    Article  CAS  PubMed  Google Scholar 

  10. Gifford LK, Carter LG, Gabanyi MJ et al (2012) The protein structure initiative structural biology knowledgebase technology portal: a structural biology web resource. J Struct Funct Genom 13:57–62. https://doi.org/10.1007/s10969-012-9133-7

    Article  CAS  Google Scholar 

  11. Maciejewski MW, Schuyler AD, Gryk MR et al (2017) NMRbox: a resource for biomolecular NMR computation. Biophys J 112:1529–1534. https://doi.org/10.1016/j.bpj.2017.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen Y, Lange O, Delaglio F et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A 105:4685–4690. https://doi.org/10.1073/pnas.0800256105

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shen Y, Vernon R, Baker D et al (2009) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78. https://doi.org/10.1007/s10858-008-9288-5

    Article  CAS  PubMed  Google Scholar 

  14. Chen VB, Arendall WB, Headd JJ et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66:12–21. https://doi.org/10.1107/S0907444909042073

    Article  CAS  PubMed  Google Scholar 

  15. Thain D, Tannenbaum T, Livny M (2005) Distributed computing in practice: the Condor experience. Concurrency Comput Pract Ex 17:323–356. https://doi.org/10.1002/cpe.938

    Article  Google Scholar 

  16. Young JY, Westbrook JD, Feng Z et al (2017) OneDep: unified wwPDB system for deposition, biocuration, and validation of macromolecular structures in the PDB archive. Structure 25:536–545. https://doi.org/10.1016/j.str.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ulrich EL, Baskaran K, Dashti H et al (2018) NMR-STAR: comprehensive ontology for representing, archiving and exchanging data from nuclear magnetic resonance spectroscopic experiments. J Biomol NMR 73:5–9. https://doi.org/10.1007/s10858-018-0220-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hall SR, Spadaccini N (1994) The Star File – detailed specifications. J Chem Inf Comput Sci 34:505–508. https://doi.org/10.1021/ci00019a005

    Article  CAS  Google Scholar 

  19. Westbrook JD, Fitzgerald PM (2003) The PDB format, mmCIF, and other data formats. Methods Biochem Anal 44:161–179

    CAS  PubMed  Google Scholar 

  20. Gutmanas A, Adams PD, Bardiaux B et al (2015) NMR Exchange Format: a unified and open standard for representation of NMR restraint data. Nat Struct Mol Biol 22:433–434. https://doi.org/10.1038/nsmb.3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doreleijers JF, Nederveen AJ, Vranken W et al (2005) BioMagResBank databases DOCR and FRED containing converted and filtered sets of experimental NMR restraints and coordinates from over 500 protein PDB structures. J Biomol NMR 32:1–12. https://doi.org/10.1007/s10858-005-2195-0

    Article  CAS  PubMed  Google Scholar 

  22. Hanson RM, Prilusky J, Renjian Z et al (2013) JSmol and the next-generation web-based representation of 3D molecular structure as applied to proteopedia. Isr J Chem 53:207–216. https://doi.org/10.1002/ijch.201300024

    Article  CAS  Google Scholar 

  23. Bahrami A, Assadi AH, Markley JL et al (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5:e1000307. https://doi.org/10.1371/journal.pcbi.1000307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696. https://doi.org/10.1002/prot.20449

    Article  CAS  PubMed  Google Scholar 

  25. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  CAS  Google Scholar 

  26. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327. https://doi.org/10.1093/bioinformatics/btu830

    Article  PubMed  Google Scholar 

  27. Dashti H, Tonelli M, Lee W et al (2016) Probabilistic validation of protein NMR chemical shift assignments. J Biomol NMR 64:17–25. https://doi.org/10.1007/s10858-015-0007-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee W, Kim JH, Westler WM et al (2011) PONDEROSA, an automated 3D-NOESY peak picking program, enables automated protein structure determination. Bioinformatics 27:1727–1728. https://doi.org/10.1093/bioinformatics/btr200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee W, Cornilescu G, Dashti H et al (2016) Integrative NMR for biomolecular research. J Biomol NMR 64:307–332. https://doi.org/10.1007/s10858-016-0029-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hafsa NE, Arndt D, Wishart DS (2015) CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts. Nucleic Acids Res 43:W370–W377. https://doi.org/10.1093/nar/gkv494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Norris M, Fetler B, Marchant J et al (2016) NMRFx Processor: a cross-platform NMR data processing program. J Biomol NMR 65:205–216. https://doi.org/10.1007/s10858-016-0049-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berjanskii MV, Wishart DS (2007) The RCI server: rapid and accurate calculation of protein flexibility using chemical shifts. Nucleic Acids Res 35:W531–W537. https://doi.org/10.1093/nar/gkm328

    Article  PubMed  PubMed Central  Google Scholar 

  33. Grishaev A, Steren CA, Wu B et al (2005) ABACUS, a direct method for protein NMR structure computation via assembly of fragments. Proteins 61:36–43. https://doi.org/10.1002/prot.20457

    Article  CAS  PubMed  Google Scholar 

  34. Tejero R, Snyder D, Mao B et al (2013) PDBStat: a universal restraint converter and restraint analysis software package for protein NMR. J Biomol NMR 56:337–351. https://doi.org/10.1007/s10858-013-9753-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han B, Liu Y, Ginzinger SW et al (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57. https://doi.org/10.1007/s10858-011-9478-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu XP, Case DA (2002) Probing multiple effects on N-15, C-13 alpha, C-13 beta, and C-13′ chemical shifts in peptides using density functional theory. Biopolymers 65:408–423. https://doi.org/10.1002/bip.10276

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Markley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Romero, P.R. et al. (2020). BioMagResBank (BMRB) as a Resource for Structural Biology. In: Gáspári, Z. (eds) Structural Bioinformatics. Methods in Molecular Biology, vol 2112. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0270-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0270-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0269-0

  • Online ISBN: 978-1-0716-0270-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics