Skip to main content

Cytoplasmic Male-Sterility and Nuclear Encoded Fertility Restoration

  • Chapter
  • First Online:
Plant Mitochondria

Part of the book series: Advances in Plant Biology ((AIPB,volume 1))

Abstract

Cytoplasmic male-sterility (CMS) is caused by mutations, rearrangements, or recombinations in the mitochondrial genome resulting in a CMS-inducing gene (or genes) leading to malfunctioning, but not mutated, nuclear genes causing abnormal or inhibited development of stamens or pollen. This trait is inherited via the mitochondria, i.e., CMS is by large maternally inherited. CMS has been observed in at least 150 different species, here exemplified by, e.g., the Zea mays CMS-T, Brassica napus (Ogu-INRA), and Nicotiana tabacum CMS systems. The CMS-associated genes studied so far have been chimeric and affect the nuclear genome through retrograde signaling, resulting in a male-sterile phenotype ranging from pollen abortion to homeotically converted stamens into carpeloid or petaloid structures or the lack of stamens. Male-fertility can be restored by nuclear encoded Restorer-of-fertility genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, J. O., Fauron, C. M., Minx, P., Roark, L., Oddiraju, S., Lin, G. N., Meyer, L., Sun, H., Kim, K., Wang, C., Du, F., Xu, D., Gibson, M., Cifrese, J., Clifton, S. W., Newton, K. J. 2007. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192.

    Article  PubMed  CAS  Google Scholar 

  • Angenent, G. C., Busscher, M., Franken, J., Mol, J. N. M., Tunen, A. J. V. 1992. Differential expression of two MADS box genes in wild-type and mutant Petunia flowers. Plant Cell 4:983–993.

    PubMed  CAS  Google Scholar 

  • Azhagiri, A. K., Maliga, P. 2007. Exceptional paternal inheritance of plastids in Arabidopsis ­suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant J 52:817–823.

    Google Scholar 

  • Balk, J., Leaver, C. J. 2001. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818.

    Google Scholar 

  • Banga, S. S., Deol, J. S., Banga, S. 2003. Alloplasmic male-sterile Brassica juncea with Enarthrocarpus lyratus cytoplasm and the introgression of gene(s) for fertility restoration from cytoplasm donor species. Theor Appl Genet 106:1390–1395.

    PubMed  CAS  Google Scholar 

  • Bannerot, H., Loulidard, L., Cauderon, Y., Tempe, J. 1974. Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. Cruciferae 1974 Eucarpia Meeting, Dundee, Scotland, pp. 52–54.

    Google Scholar 

  • Bellaoui, M., Grelon, M., Pelletier, G., Budar, F. 1999. The restorer Rfo gene acts post-translationally on the stability of the ORF138 Ogura CMS-associated protein in reproductive tissues of ­rapeseed cybrids. Plant Mol Biol 40:893–902.

    Article  PubMed  CAS  Google Scholar 

  • Bentolila, S., Alfonso, A. A., Hanson, M. R. 2002. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892.

    Article  PubMed  CAS  Google Scholar 

  • Bereterbide, A., Hernould, M., Castera, S., Mouras, A. 2001. Inhibition of cell proliferation, cell expansion and differentiation by the Arabidopsis SUPERMAN gene in transgenic tobacco plants. Planta 214:22–29.

    Article  PubMed  CAS  Google Scholar 

  • Bereterbide, A., Hernould, M., Farbos, I., Glimelius, K., Mouras, A. 2002. Restoration of stamen development and production of functional pollen in an alloplasmic CMS tobacco line by ectopic expression of the Arabidopsis thaliana SUPERMAN gene. Plant J 29:607–615.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, P., Edqvist, J., Farbos, I., Glimelius, K. 2000. Male-sterile tobacco displays abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol Biol 42:531–544.

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme, S., Budar, F., Férault, M., Pelletier, G. 1991. A 2.5 kb NcoI fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in Brassica cybrids. Curr Genet 19:121–127.

    Article  CAS  Google Scholar 

  • Bonhomme, S., Budar, F., Lancelin, D., Small, I., Defrance, M.-C., Pelletier, G. 1992. Sequence and transcription analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica hybrids. Mol Gen Genet 235:340–348.

    Article  PubMed  CAS  Google Scholar 

  • Bonnema, A. B., Castillo, C., Reiter, N., Cunningham, M., Adams, H. P., O’Connell, M. 1995. Molecular and ultrastructural analysis of a nonchromosomal variegated mutant. Plant Physiol 109:385–392.

    Article  PubMed  CAS  Google Scholar 

  • Bonnett, H. T., Djurberg, I., Fajardo, M., Glimelius, K. 1993. A mutation causing variegation and abnormal development in tobacco is associated with an altered mitochondrial DNA. Plant J 3:519–525.

    Article  CAS  Google Scholar 

  • Bonnett, H. T., Kofer, W., Håkansson, G., Glimelius, K. 1991. Mitochondrial involvement in petal and stamen development studied by sexual and somatic hybridization of Nicotiana species. Plant Sci 80:119–130.

    Article  CAS  Google Scholar 

  • Bowman, J. L., Smyth, D. R., Meyerowitz, E. M. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1:37–52.

    PubMed  CAS  Google Scholar 

  • Bowman, J. L., Smyth, D. R., Meyerowitz, E. M. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20.

    PubMed  CAS  Google Scholar 

  • Brown, G. G., Formanová, N., Jin, H., Wargachuk, R., Dendy, C., Patil, P., Laforest, M., Zhang, J., Cheung, W. Y., Landry, B. S. 2003. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272.

    Article  PubMed  CAS  Google Scholar 

  • Budar, F., Berthomé, R. 2007. Cytoplasmic male sterilities and mitochondrial gene mutations in plants. Logan, D. C., ed. In Plant mitochondria. Blackwell, Oxford, pp. 278–307.

    Chapter  Google Scholar 

  • Burk, L. G. 1967. An interspecific bridge-cross Nicotiana repanda through N. sylvestris to N. tabacum. J Hered 58:215–218.

    Google Scholar 

  • Burns, J. A., Gerstel, D. U., Sand, S. A. 1978. Cytoplasmic male sterility in Nicotiana, restoration of fertility, and the nucleolus. II. N. debneyi cytoplasm. Genetics 90:151–159.

    PubMed  CAS  Google Scholar 

  • Butow, R. A., Avadhani, N. G. 2004. Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, J. 2007 The mitochondrial influence on nuclear gene expression in cytoplasmic male-sterile Brassica napus. Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Carlsson, J., Lagercrantz, U., Sundström, J., Teixeira, R., Wellmer, F., Meyerowitz, E. M., Glimelius, K. 2007a. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male-sterile Brassica napus flowers. Plant J 49:452–462.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, J., Leino, M., Glimelius, K. 2007b. Mitochondrial genotypes with variable parts of Arabidopsis thaliana DNA affect development in Brassica napus lines. Theor Appl Genet 115:627–641.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, J., Leino, M., Sohlberg, J., Sundström, J. F., Glimelius, K. 2008. Mitochondrial regulation of flower development. Mitochondrion 8:74–86.

    Article  PubMed  CAS  Google Scholar 

  • Chase, C. D. 2007. Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. TRENDS in Genetics 23:81–90.

    Google Scholar 

  • Clifton, S. W., Minx, P., Fauron, C. M.-R., Gibson, M., Allen, J. O., Sun, H., Thompson, M., Barbazuk, W. B., Kanuganti, S., Tayloe, C., Meyer, L., Wilson, R. K., Newton, K. J. 2004. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E., Meyerowitz, E. M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37.

    Article  PubMed  CAS  Google Scholar 

  • Cui, X., Wise, R. P., Schnable, P. S. 1996. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334–1336.

    Article  PubMed  CAS  Google Scholar 

  • Delourme, R., Foisset, N., Horvais, R., Barret, P., Champagne, G., Cheung, W. Y., Landry, B. S., Renard, M. 1998. Characterisation of the radish introgression carrying the Rfo restorer gene for the I-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor Appl Genet 97:129–134.

    Article  CAS  Google Scholar 

  • Desloire, S., Gherbi, H., Laloui, W., Marhadour, S., Clouet, V., Cattolico, L., Falentin, C., Giancola, S., Renard, M., Budar, F., Small, I., Caboche, M., Delourme, R., Bendahmane, A. 2003. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide repeat protein family. EMBO Rep 4:588–594.

    Article  PubMed  CAS  Google Scholar 

  • Dill, C. L., Wise, R. P., Schnable, P. S. 1997. Rf8 and Rf* mediate unique T-urf13-transcript accumulation, revealing a conserved motif associated with RNA processing and restoration of pollen fertility in T-cytoplasm maize. Genetics 147:1367–1379.

    PubMed  CAS  Google Scholar 

  • Dufaÿ, M., Touzet, P., Maurice, S., Cuguen, J. 2007. Modelling the maintenance of male-fertile cytoplasm in a gynodioecious population. Heredity 99:349–356.

    Article  PubMed  CAS  Google Scholar 

  • Duroc, Y., Gaillard, C., Hiard, S., Defrance, M.-C., Pelletier, G., Budar, F. 2005. Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura ­cytoplasmic male sterility in Brassiceae. Biochimie 87:1089–1100.

    Article  PubMed  CAS  Google Scholar 

  • Edqvist, J., Bergman, P. 2002. Nuclear identity specifies transcriptional initiation in plant ­mitochondria. Plant Mol Biol 49:59–68.

    Article  PubMed  CAS  Google Scholar 

  • Elansary, H. O., Müller, K., Olson, M. S., Storchová, H. 2010. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris. BMC Plant Biology 10:11.

    Google Scholar 

  • Endo, T. R. 1980. Genetic constancy of the cytoplasm. Tsunewaki, K., ed. In Genetic diversity of the cytoplasm in Triticum and Aegilops. Japan Society for the Promotion of Science, Tokyo, pp. 13–48.

    Google Scholar 

  • Fahleson, J., Dixelius, J., Sundberg, E., Glimelius, K. 1988. Correlation between flow cytometric determination of nuclear DNA content and chromosome number in somatic hybrids within Brassicaceae. Plant Cell Rep 7:74–77.

    Article  CAS  Google Scholar 

  • Farbos, I., Mouras, A., Bereterbide, A., Glimelius, K. 2001. Defective cell proliferation in the floral meristem of alloplasmic plants of Nicotiana tabacum leads to abnormal floral organ development and male sterility. Plant J 26:131–142.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan, C. A., Hu, Y., Ma, H. 1996. Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J 10:343–353.

    Article  PubMed  CAS  Google Scholar 

  • Forsberg, J., Dixelius, C., Lagercrantz, U., Glimelius, K. 1998a. UV dose-dependent DNA elimination in asymmetric somatic hybrids between Brassica napus and Arabidopsis thaliana. Plant Sci 131:65–76.

    Article  CAS  Google Scholar 

  • Forsberg, J., Lagercrantz, U., Glimelius, K. 1998b. Comparison of UV light, X-ray and restriction enzyme treatment as tools in production of asymmetric somatic hybrids between Brassica napus and Arabidopsis thaliana. Theor Appl Genet 96:1178–1185.

    Article  CAS  Google Scholar 

  • Forsberg, J., Landgren, M., Glimelius, K. 1994. Fertile somatic hybrids between Brassica napus and Arabidopsis thaliana. Plant Sci 95:213–223.

    Article  Google Scholar 

  • Gerstel, D. U., Burns, J. A., Burk, L. G. 1978. Cytoplasmic male sterility in Nicotiana, restoration of fertility, and the nucleolus. Genetics 89:157–169.

    PubMed  CAS  Google Scholar 

  • Glimelius, K. 1999. Somatic hybridization. Gómez-Campo, C., ed. In Biology of Brassica coenospecies. Elsevier Science B.V., Amsterdam, pp. 107–148.

    Chapter  Google Scholar 

  • González-Melendi, P., Uyttewaal, M., Morcillo, C. N., Mora, J. R. H., Fajardo, S., Budar, F., Lucas, M. M. 2008. A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). J Exp Bot 59:827–838.

    Article  PubMed  CAS  Google Scholar 

  • Goto, K., Meyerowitz, E. M. 1994. Function and regulation of the Arabidopsis floral homoetic gene PISTILLATA. Genes Dev 8:1548–1560.

    Article  PubMed  CAS  Google Scholar 

  • Gourret, J.-P., Delourme, R., Renard, M. 1992. Expression of ogu cytoplasmic male sterility in cybrids of Brassica napus. Theor Appl Genet 83:549–556.

    Article  Google Scholar 

  • Grelon, M., Budar, F., Bonhomme, S., Pelletier, G. 1994. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybirds. Mol Gen Genet 243:540–547.

    Article  PubMed  CAS  Google Scholar 

  • Gustavson-Brown, C., Savidge, B., Yanofsky, M. F. 1994. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76:131–143.

    Article  Google Scholar 

  • Gutierres, S., Sabar, M., Lelandais, C., Chetrit, P., Diolez, P., Degand, H., Botry, M., Vedel, F., de Kouchkovsky, Y., De Paepe, R. 1997. Lack of mitochondrial- and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial ­deletion mutants. Proc Natl Acad Sci U S A 94:3436–3441.

    Google Scholar 

  • Hama, E., Takumi, S., Ogihara, Y., Murai, K. 2004. Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta 218:712–720.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, M. R., Bentolila, S. 2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, M., Miyake, H., Sugita, M. 2007. A pentatricopeptide repeat protein is required for RNA processing of clpP pre-mRNA in moss chloroplasts. J Biol Chem 282:10773–10782.

    Article  PubMed  CAS  Google Scholar 

  • Havey, M. J. 2004. The use of cytoplasmic male sterility for hybrid seed production. Daniell, H., Chase, C., eds. In Molecular biology and biotechnology of plant organelles. Springer, Dordrecht, pp. 623–634.

    Chapter  Google Scholar 

  • Håkansson, G., Glimelius, K. 1991. Extensive nuclear influence on mitochondrial transcription and genome structure in male-fertile and male-sterile alloplasmic Nicotiana materials. Mol Gen Genet 229:380–388.

    Google Scholar 

  • Håkansson, G., van der Mark, F., Bonnett, H. T., Glimelius K. 1988. Variant mitochondrial protein and DNA patterns associated with cytoplasmic male-sterile lines of Nicotiana. Theor Appl Genet 76:431–437.

    Google Scholar 

  • Heath, D. W., Earle, E. D., Dickson, M. H. 1994. Introgressing cold-tolerant Ogura cytoplasm from rapeseed into pak choi and Chinese cabbage. Hort Sci 29:202–203.

    Google Scholar 

  • Hedgcoth, C., El-Shehawi, A. M., Wei, P., Clarkson, M., Tamalis, D. 2002. A chimeric open ­reading frame associated with cytoplasmic male sterility in alloplasmic wheat with Triticum timopheevi mitochondria are present in several Triticum and Aegilops species, barley, and rye. Curr Genet 41:357–365.

    Google Scholar 

  • Hernould, M., Bereterbide, A., Farbos, I., Glimelius, K., Mouras, A. 2002. Cytoplasmic male sterility in tobacco: a plant genetic disease curable by gene therapy. Flowering Newsl 34: 1–10.

    Google Scholar 

  • Hernould, M., Suharsono, Zabaleta, E., Carde, J. P., Litvak, S., Araya, A., Mouras, A. 1998. Impairment of tapetum and mitochondria in engineered male-sterile tobacco plants. Plant Mol Biol 36:499–508.

    Article  PubMed  CAS  Google Scholar 

  • Irish, V. F., Sussex, I. M. 1990. Function of the apetala-1 gene during Arabidopsis floral ­development. Plant Cell 2:741–753.

    PubMed  CAS  Google Scholar 

  • Iwabuchi, M., Koizuka, N., Fujimoto, H., Sakai, T., Imamura, J. 1999. Identification and expression of kosena radish (Raphanus sativus cv. Kosena) homologue of the ogura radish CMS-associated gene, orf138. Plant Mol Biol 39:183–188.

    Article  PubMed  CAS  Google Scholar 

  • Jack, T. 2004. Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17.

    Article  PubMed  CAS  Google Scholar 

  • Jack, T., Brockman, L. L., Meyerowitz, E. M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697.

    Article  PubMed  CAS  Google Scholar 

  • Jarl, C. I., Grinsven, M. Q. J. M. v., Mark, F. v. d. 1989. Correction of chlorophyll-defective ­male-sterile winter oilseed rape (Brassica napus) through organelle exchange: molecular analysis of the cytoplasm of parental fines and corrected progeny. Theor Appl Genet 77:135–141.

    Google Scholar 

  • Kaul, M. L. H. 1988. Male-sterility in higher plants. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Kirti, P. B., Banga, S. S., Prakash, S., Chopra, V. L. 1995. Transfer of Ogu cytoplasmic male-sterility to Brassica juncea and improvement of the male-sterile line through somatic cell fusion. Theor Appl Genet 91:517–521.

    Article  CAS  Google Scholar 

  • Klein, R. R., Klein, P. E., Mullet, J. E., Minx, P., Rooney, W. L., Schertz, K. F. 2005. Fertility restorer locus Rf1of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111:994–1012.

    Article  PubMed  CAS  Google Scholar 

  • Kofer, W., Glimelius, K., Bonnett, H. T. 1991. Modifications of mitochondrial DNA cause changes in floral development in homeotic-like mutants of tobacco. Plant Cell 3:759–769.

    PubMed  CAS  Google Scholar 

  • Koizuka, N., Imai, R., Fujimoto, H., Hayakawa, T., Kimura, Y., Kohno-Murase, J., Sakai, T., Kawasaki, S., Imamura, J. 2003. Genetic characterization of pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407–415.

    Article  PubMed  CAS  Google Scholar 

  • Koizuka, N., Imai, R., Iwabuchi, M., Sakai, T., Imamura, J. 2000. Genetic analysis of fertility restoration and accumulation of ORF125 mitochondrial protein in the kosena radish (Raphanus sativus cv. Kosena) and a Brassica napus restorer line. Theor Appl Genet 100:949–955.

    Article  CAS  Google Scholar 

  • Kotera, E., Tasaka, M., Shikanai, T. 2005. A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, E. M., Hall, J. C. 2005. Evolutionary dynamics of genes controlling floral development. Curr Opin Plant Biol 8:13–18.

    Article  PubMed  CAS  Google Scholar 

  • Krizek, B. A., Fletcher, J. C. 2005. Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698.

    Article  PubMed  CAS  Google Scholar 

  • Kunst, L., Klenz, J. E., Martinez-Zapater, J., Haughn, G. W. 1989. AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell 1:1195–1208.

    PubMed  Google Scholar 

  • Lee, S.-L. J., Warmke, H. E. 1979. Organelle size and number in fertile and T-cytoplasmic male-sterile corn. Am J Bot 66:141–148.

    Article  Google Scholar 

  • Leino, M., Landgren, M., Glimelius, K. 2005. Alloplasmic effects on mitochondrial transcriptional activity and RNA turnover result in accumulated transcripts of Arabidopsis orfs in cytoplasmic male-sterile Brassica napus. Plant J 42:469–480.

    Article  PubMed  CAS  Google Scholar 

  • Leino, M., Teixeira, R., Landgren, M., Glimelius, K. 2003. Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. Theor Appl Genet 106:1156–1163.

    PubMed  CAS  Google Scholar 

  • Leino, M., Thyselius, S., Landgren, M., Glimelius, K. 2004. Arabidopsis thaliana chromosome III restores fertility in a cytoplasmic male-sterile Brassica napus line with A. thaliana mitochondrial DNA. Theor Appl Genet 109:272–279.

    Article  PubMed  CAS  Google Scholar 

  • Li, X.-Q., Jean, M., Landry, B. S., Brown, G. G. 1998. Restorer genes for different forms of Brassica cytoplasmic male-sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes. Proc Natl Acad Sci USA 95:10032–10037.

    Article  PubMed  CAS  Google Scholar 

  • Liao, X., Butow, R. A. 1993. RTG1 and RTG2: two yeast genes required for a novel path of ­communication from the mitochondria to the nucleus. Cell 72:61–71.

    Article  PubMed  CAS  Google Scholar 

  • Linke, B., Nothnagel, T., Börner, T. 1999. Morphological characterization of modified flower morphology of three novel alloplasmic male-sterile carrot sources. Plant Breed 118:543–548.

    Article  Google Scholar 

  • Linke, B., Nothnagel, T., Börner, T. 2003. Flower development in carrot CMS plants: ­mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34:27–37.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F., Cui, X., Horner, H. T., Weiner, H., Schnable, P. S. 2001. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 13:1063–1078.

    PubMed  CAS  Google Scholar 

  • Livers, R. W. 1964. Fertility restoration and its inheritance in cytoplasmic male-sterile wheat. Science 144:420.

    Article  Google Scholar 

  • Lössl, A., Frei, U., Wenzel, G. 1994. Interaction between cytoplasmic composition and yield parameters in somatic hybrids of S. tuberosum L. Theor Appl Genet 89:873–878.

    Article  Google Scholar 

  • Lurin, C., Andrés, C., Aubourg, S., Bellaoui, M., Bitton, F., Bruyère, C., Caboche, M., Debast, C., Gualberto, J., Hoffman, B., Lecharny, A., Ret, M. L., Martin-Magniette, M.-L., Mireau, H., Peeters, N., Renou, J.-P., Szurek, B., Taconnat, L., Small, I. 2004. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103.

    Article  PubMed  CAS  Google Scholar 

  • Ma, H., Yanofsky, M. F., Meyerowitz, E. M. 1991. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495.

    Article  PubMed  CAS  Google Scholar 

  • Malcomber, S. T., Kellogg, E. A. 2005. SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10:427–435.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M. A., Gustavson-Brown, C., Savidge, B., Yanofsky, M. F. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277.

    Article  PubMed  CAS  Google Scholar 

  • McCauley, D. E., Olson, M. S. 2008. Do recent findings in plant mitochondrial molecular and population genetics have implications for the study of gynodioecy and cytonuclear conflict? Evolution 62:1013–1025.

    Article  PubMed  Google Scholar 

  • McCollum, G. D. 1979. Sterility in successive backcrosses of Raphanobrassica (2n = 4x = 36) with recurrent Brassica oleracea (2n = 2x = 18). Can J Genet Cytol 21:479–485.

    Google Scholar 

  • McCollum, G. D. 1981. Induction of an alloplasmic male-sterile Brassica oleracea by substituting cytoplasm from ‘Early Scarlet Globe’ radish (Raphanus sativus). Euphytica 30:855–859.

    Article  Google Scholar 

  • Meguro, A., Takumi, S., Ogihara, Y., Murai, K. 2003. WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod 15:221–230.

    CAS  Google Scholar 

  • Menczel, L., Morgan, A., Brown, S., Maliga, P. 1987. Fusion-mediated combination of Ogura-type cytoplasmic male-sterility with Brassica napus plastids using X-irradiated CMS protoplasts. Plant Cell Rep 6:98–101.

    Google Scholar 

  • Meur, G., Gaikwad, K., Bhat, S. R., Prakash, S., Kirti, P. B. 2006. Homeotic-like modifications of stamens to petals is associated with aberrant mitochondrial gene expression in cytoplasmic male-sterile Ogura Brassica juncea. J Genet 85:133–139.

    Article  PubMed  CAS  Google Scholar 

  • Mizukami, Y., Ma, H. 1992. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119–131.

    Article  PubMed  CAS  Google Scholar 

  • Mizumoto, K., Hatano, H., Hirabayashi, C., Murai, K., Takumi, S. 2009. Altered expression of wheat AINTEGUMENTA homolog, WANT-1, in pistil and pistil-like transformed stamen of an alloplasmic line with Aegilops crassa cytoplasm. Dev Genes Evol 219:175–187.

    Article  PubMed  CAS  Google Scholar 

  • Mukai, Y., Tsunewaki, K. 1976. Genetic diversity of the cytoplasm in Triticum and Aegilops IV. Distribution of the cytoplasm inducing variegation in common wheat. Theor Appl Genet 48:9–16.

    Article  Google Scholar 

  • Murai, K., Takumi, S., Koga, H., Ogihara, Y. 2002. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J 29:169–181.

    Article  PubMed  Google Scholar 

  • Murai, K., Tsunewaki, K. 1993. Photoperiod-sensitive cytoplasmic male-sterility in wheat with Aegilops crassa cytoplasm. Euphytica 67:41–48.

    Article  Google Scholar 

  • Murai, K., Tsunewaki, K. 1994. Genetic analysis on the fertility restoration by Triticum aestivum cv. Chinese Spring against photoperiod-sensitive cytoplasmic male-sterilty. Jpn J Genet 69:195–202.

    Article  Google Scholar 

  • Nagasawa, N., Miyoshi, M., Sano, Y., Satoh, H., Hirano, H., Sakai, H., Nagato, Y. 2003. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718.

    Article  PubMed  CAS  Google Scholar 

  • Newton, K. J., Coe, E. H. 1986. Mitochondrial DNA changes in abnormal growth (nonchromosomal stripe) mutants of maize. Proc Natl Acad Sci USA 83:7363–7366.

    Article  PubMed  CAS  Google Scholar 

  • Newton, K. J., Gabay-Laughnan, S., De Paepe, R. 2004. Mitochondrial mutations in plants. Day, D. A., Millar, A. H., Whelan, J., eds. In Plant mitochondria: from genome to function. Kluwer, Dordrecht, pp. 121–141.

    Google Scholar 

  • Nizampatnam, N. R., Doodhi, H., Narasimhan, Y. K., Mulpuri, S., Viswanathaswamy, D. K. 2009. Expression of sunflower cytoplasmic male-sterility-associated open reading frame, orfH522 induces male-sterility in transgenic tobacco plants. Planta 229:987–1001.

    Google Scholar 

  • Nothnagel, T., Straka, P., Linke, B. 2000. Male-sterility in populations of Daucus and the development of alloplasmic male-sterile lines of carrot. Plant Breed 119:145–152.

    Article  CAS  Google Scholar 

  • Ogihara, Y., Futami, K., Tshji, K., Murai, K. 1997. Alloplasmic wheats with Aegilops crassa cytoplasm which express photoperiod-sensitive homeotic transformations of anthers, show alterations in mitochondrial DNA structure and transcription. Mol Genet Genomics 255:45–53.

    Article  CAS  Google Scholar 

  • Ogihara, Y., Kurihara, Y., Futami, K., Tsuji, K., Murai, K. 1999. Photoperiod-sensitive ­cytoplasmic male-sterility in wheat: nuclear-mitochondrial incompatibility results in differential processing of the mitochondrial orf25 gene. Curr Genet 36:354–362.

    Article  PubMed  CAS  Google Scholar 

  • Ogura, H. 1968. Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6:39–78.

    Google Scholar 

  • Okuda, K., Nakamura, T., Sugita, M., Shimizu, T., Shikanai, T. 2006. A pentatricopeptide repeat protein is a site recognition factor in chloroplast RNA editing. J Biol Chem 281:37661–37667.

    Article  PubMed  CAS  Google Scholar 

  • Pathania, A., Bhat, S. R., Dinesh Kumar, V., Ashutosh, Kirti, P. B., Prakash, S., Chopra, V. L. 2003. Cytoplasmic male-sterility in alloplasmic Brassica juncea carrying Diplotaxis catholica cytoplasm: molecular characterization and genetics of fertility restoration. Theor Appl Genet 107:455–461.

    Article  PubMed  CAS  Google Scholar 

  • Patil, C., Walter, P. 2001. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–356.

    Article  PubMed  CAS  Google Scholar 

  • Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E., Yanofsky, M. F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203.

    Article  PubMed  CAS  Google Scholar 

  • Pellan-Delourme, R., Renard, M. 1988. Cytoplasmic male-sterility in rapeseed (Brassica napus L.): female fertility of restored rapeseed with “Ogura” and cybrid cytoplasms. Genome 30:234–238.

    Article  Google Scholar 

  • Pelletier, G., Primard, C., Vedel, F., Chetrit, P., Remy, R., Rousselle, Renard, M. 1983. Intergeneric cytoplasmic hybridization in cruciferae by protoplast fusion. Mol Gen Genet 191:244–250.

    Article  CAS  Google Scholar 

  • Pelletier, G., Primard, C., Vedel, F., Chetrit, P., Renard, M., Pellan-Delourme, R., Mesquida, J. 1987. Molecular, phenotypic and genetic characterization of mitochondrial recombinants in rapeseed. Paper presented at: Proceedings of the 7th International Rapeseed Conference, Poznan, Poland.

    Google Scholar 

  • Polowick, P. L., Sawhney, V. K. 1987. A scanning electron microscopic study on the influence of temperature on the expression of cytoplasmic male-sterility in Brassica napus. Can J Bot 65:807–814.

    Article  Google Scholar 

  • Prakash, S., Ahuja, I., Upreti, H. C., Dinesh Kumar, V., Bhat, S. R., Kirti, P. B., Chopra, V. L. 2001. Expression of male-sterility in alloplasmic Brassica juncea with Erucastrum canariense cytoplasm and the development of a fertility restoration system. Plant Breed 120:479–482.

    Article  Google Scholar 

  • Primard-Brisset, C., Poupard, J. P., Horvais, R., Eber, F., Pelletier, G., Renard, M., Delourme, R. 2005. A new recombined double low restorer line for the Ogu-INRA CMS in rapeseed (Brassica napus L.). Theor Appl Genet 111:736–746.

    Article  PubMed  CAS  Google Scholar 

  • Purugganan, M. D., Rounsley, S. D., Schmidt, R. J., Yanofsky, M. F. 1995. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356.

    PubMed  CAS  Google Scholar 

  • Rhoads, D. M., Subbaiah, C. C. 2007. Mitochondrial retrograde regulation in plants. Mitochondrion 7:177–194.

    Article  PubMed  CAS  Google Scholar 

  • Rhoads, D. M., Vanlerberghe, G. C. 2004. Mitochondria-nucleus interactions: evidence for mitochondrial retrograde communication in plant cells. Day, D. A., Millar, A. H., Whelan, J., eds. In Plant mitochondria: from genome to function. Kluwer, Dordrecht, pp. 83–106.

    Google Scholar 

  • Rodermel, S. 2001. Pathways of plastid-to-nucleus signalling. Trends Plant Sci 6:471–478.

    Article  PubMed  CAS  Google Scholar 

  • Rounsley, S. D., Ditta, G. S., Yanofsky, M. F. 1995. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269.

    PubMed  CAS  Google Scholar 

  • Sabar, M., De Paepe, R., de Kouchkowsky, Y. 2000. Complex I impairment, respiratory ­compensations, and mitochondrial male-sterile mutants of Nicotiana sylvestris. Plant Physiol 124:1239–1249.

    Google Scholar 

  • Sabar, M., Gagliardi, D., Balk, J., Leaver, C. J. 2003. ORFB is a subunit of F1F0-ATP synthase: insight into the basis of cytoplasmic male-sterility in sunflower. EMBO Rep 4:381–386.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, T., Liu, H. J., Iwabuchi, M., Kohno-Murase, J., Imamura, J. 1996. Introduction of a gene from fertility restored radish (Raphanus sativus) into Brassica napus by fusion of X-irradiated protoplasts from a radish restorer line and iodacetoamide-treated protoplasts from a cytoplasmic male-sterile cybrid of B. napus. Theor Appl Genet 93:373–379.

    Article  CAS  Google Scholar 

  • Sakamoto, W., Kondo, H., Murata, M., Motoyoshi, F. 1996. Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. Plant Cell 8:1377–1390.

    PubMed  CAS  Google Scholar 

  • Savidge, B., Rounsley, S. D., Yanofsky, M. F. 1995. Temporal relationship between the ­transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7:721–733.

    PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber, C., Williams-Carrier, R., Barkan, A. 2005. RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 59 region of mRNAs whose translation it activates. Plant Cell 17:2791–2804.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber, C., Williams-Carrier, R. E., Williams-Voelker, P. M., Kroeger, T. S., Vichas, A., Barkan, A. 2006. A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., Sommer, H. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936.

    Article  PubMed  CAS  Google Scholar 

  • Shumway, L. K., Bauman, L. F. 1967. Nonchromosomal stripe of maize. Genetics 55:33–38.

    PubMed  CAS  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Albert, V. A., Oppenheimer, D. G., dePamphilis, C. W., Ma, H., Frohlich, M. W., Theißen, G. 2002. Missing links: the genetic architecture of flower and floral diversification. Trends Plant Sci 7:22–31.

    Article  PubMed  CAS  Google Scholar 

  • Sundberg, E., Landgren, M., Glimelius, K. 1987. Fertility and chromosome stability in Brassica napus resynthesised by protoplast fusions. Theor Appl Genet 75:96–104.

    Article  Google Scholar 

  • Tang, H. V., Pring, D. R., Shaw, L. C., Salazar, R. A., Muza, F. R., Yan, B., Schertz, K. F. 1996. Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum. Plant J 10:123–133.

    Article  PubMed  CAS  Google Scholar 

  • Teixeira, R. T., Farbos, I., Glimelius, K. 2005a. Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica. Plant J 42:731–742.

    Article  PubMed  CAS  Google Scholar 

  • Teixeira, R. T., Knorpp, C., Glimelius, K. 2005b. Modified sucrose, starch, and ATP levels in two alloplasmic male-sterile lines of B. napus. J Exp Bot 56:1245–1253.

    Article  PubMed  CAS  Google Scholar 

  • Theißen, G. 2001. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85.

    Article  PubMed  Google Scholar 

  • Uyttewaal, M., Arnal, N., Quadrado, M., Martin-Canadell, A., Vrielynck, A., Hiard, S., Gherbi, H., Bendahmane, A., Budar, F., Mireau, H. 2008. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male-sterility. Plant Cell 20:3331–3345.

    Article  PubMed  CAS  Google Scholar 

  • Vedel, F., Chétrit, P., Mathieu, C., Pelletier, G., Primard, C. 1986. Several different mitochondrial DNA regions are involved in intergenomic recombination in Brassica napus cybrid plants. Curr Genet 11:17–24.

    Article  CAS  Google Scholar 

  • Wang, Z., Zou, Y., Li, X., Zhang, Q., Chen, L., Wu, H., Su, D., Chen, Y., Guo, J., Luo, D., Long, Y., Zhong, Y., Liua, Y.-G. 2006. Cytoplasmic male-sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687.

    Article  PubMed  CAS  Google Scholar 

  • Warmke, H. E., Lee, S.-L. J. 1977. Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers. J Hered 68:213–222.

    Google Scholar 

  • Wen, L., Chase, C. D. 1999. Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in male-fertile and S male-sterile maize. Curr Genet 35:521–526.

    Article  PubMed  CAS  Google Scholar 

  • Whipple, C. J., Ciceri, P., Padilla, C. M., Ambrose, B. A., Bandong, S. L., Schmidt, R. J. 2004. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131:6083–6091.

    Article  PubMed  CAS  Google Scholar 

  • Wise, R. P., Gobelman-Werner, K., Pei, D., Dill, C. L., Schnable, P. S. 1999. Mitochondrial ­transcript processing and restoration of male-fertility in T-cytoplasm maize. J Hered 90:380–385.

    Google Scholar 

  • Yamada, K., Saraike, T., Shitsukawa, N., Hirabayashi, C., Takumi, S., Murai, K. 2009. Class D and Bsister MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat (Triticum aestivum L.). Plant Mol Biol 71:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S., Terachi, T., Yamagishi, H. 2008. Inhibition of chalcone synthase expression in anthers of Raphanus sativus with Ogura male-sterile cytoplasm. Ann Bot 102:483–489.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., Meyerowitz, E. M. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription ­factors. Nature 346:35–39.

    Article  PubMed  CAS  Google Scholar 

  • Yui, R., Iketani, S., Mikami, T., Kubo, T. 2003. Antisense inhibition of mitochondrial pyruvate dehydrogenase E1α subunit in anther tapetum cause male-sterility. Plant J 34:57–66.

    Google Scholar 

  • Zhu, Y., Saraike, T., Yamamoto, Y., Hagita, H., Takumi, S., Murai, K. 2008. orf260 cra, a novel mitochondrial gene, is associated with the homeotic transformation of stamens into pistil-like structures (pistillody) in alloplasmic wheat. Plant Cell Physiol 49:1723–1733.

    Article  PubMed  CAS  Google Scholar 

  • Zubko, M. K., Zubko, E. I., Patskovsky, Y. V., Khvedynich, O. A., Fisahn, J., Gleba, Y. Y., Schieder, O. 1996. Novel “homeotic” CMS patterns generated in Nicotiana via cybridization with Hyoscyamus and Scopolia. J Exp Bot 47:1101–1110.

    Article  CAS  Google Scholar 

  • Zubko, M. K., Zubko, E. I., Ruban, A. V., Adler, K., Mock, H.-P., Misera, S., Gleba, Y. Y., Grimm, B. 2001. Extensive developmental and metabolic alterations in cybrids Nicotiana tabacum (+ Hyoscyamus niger) are caused by complex nucleo-cytoplasmic incompatibility. Plant J 25:627–693.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jens F. Sundström for exciting discussions and critically reading the manuscript. This work was supported by the NL-faculty at the Swedish University of Agricultural Sciences, SLU, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Glimelius .

Editor information

Editors and Affiliations

Glossary

Alloplasmic:

The nucleus from one line combined with the cytoplasm from another line. Often used for describing the genomic content of the offspring from sexual crosses between two different species.

CMS:

Short for cytoplasmic male-sterility. A type of male-sterility observed in plants caused by the influence of the mitochondria on nuclear encoded genes.

Gynodioecy:

The co-occurrence of females and hermaphrodites in a plant population.

Retrograde signaling:

The signaling processes from the mitochondria to the nucleus.

Rf:

Short for restorer-of-fertility. An Rf gene is a nuclear encoded gene (or set of genes) that can restore male-fertility in CMS-plants.

Ogu-INRA:

A well-known French CMS-system in Brassica napus, based on the Ogura-system.

Ogura:

A Japanese CMS system in Raphanus sativus. The Ogura CMS was first presented by H. Ogura in 1968, hence the name.

PPR:

Short for pentatricopeptide repeat. The PPR-family is a large gene family where the members have RNA-binding and modifying properties. Many PPR-genes are targeted to the chloroplasts or the mitochondria. Some PPR genes are Rf genes.

Somatic hybrid:

A hybrid generated from a protoplast fusion between two different lines, in general two different but related plant species.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carlsson, J., Glimelius, K. (2011). Cytoplasmic Male-Sterility and Nuclear Encoded Fertility Restoration. In: Kempken, F. (eds) Plant Mitochondria. Advances in Plant Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89781-3_18

Download citation

Publish with us

Policies and ethics