Skip to main content

Multifunctional Water-Soluble Polymers for Drug Delivery

  • Chapter
Multifunctional Pharmaceutical Nanocarriers

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 4))

Water-soluble polymer–drug conjugates are multifunctional nanomedicines at the interface of polymer chemistry and biomedical sciences. Advances in chemistry and applied biology have provided scientists with powerful and flexible tools to tailor the features of synthetic polymers and design functions according to their ultimate usage. The techniques used to synthesize polymer conjugates (copolymerization of polymerizable bioactive compounds and polymeranalogous reactions) afford a vast variety of designs to match their ultimate applications. Incorporation of hydrophilic groups confers polymers with water solubility and improved biocompatibility. Charged groups or hydrophobic groups can be introduced into polymers to endow them with special interactions, or environmental response abilities. Targeting moieties bestow biorecognizability; attachment of drug(s) provides specific pharmaceutical properties. Reporter (labeling) groups are frequently incorporated into the structure to permit the evaluation of the fate of the conjugate. The possibility to insert multiple functions into one macromolecule gives the scientists the opportunity to mimic natural functional macromolecules (Torchilin, 2006a). Multifunctional polymer–drug conjugates have abilities to store inactive drugs as prodrugs or pro-enzymes, protect drugs that do not reach the target place, direct drugs to the proper site by passive or active targeting, activate the drugs at a suitable site, have impact on cellular signaling pathways, block or prompt reactions, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akhlynina, T.V., Rosenkranz, A.A., Jans, D.A., and Sobolev, A.S. 1995. Insulin-mediated intracellular targeting enhances the photodynamic activity of chlorin e6. Cancer Res. 55: 1014–1019.

    PubMed  CAS  Google Scholar 

  • Akinc, A., Anderson, D.G., Lynn, D.M., and Langer, R. 2003. Synthesis of poly(beta-amino ester) s optimized for highly effective gene delivery. Bioconjug. Chem. 14: 979–988.

    Article  PubMed  CAS  Google Scholar 

  • Akita, H., Ito, R., Khalil, I.A., Futaki, S., and Harashima, H. 2004. Quantitative three-dimensional analysis of the intracellular trafficking of plasmid DNA transfected by a nonviral gene delivery system using confocal laser scanning microscopy. Mol. Ther. 9: 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Alakhov, V.Y. and Kabanov, A.V. 1998. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin. Investig. Drugs 7: 1453–1473.

    Article  PubMed  CAS  Google Scholar 

  • Allen, T.M. 2002. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2: 750–763.

    Article  PubMed  CAS  Google Scholar 

  • Allen, L.A. and Aderem, A. 1996. Mechanisms of phagocytosis. Curr. Opin. Immunol. 8: 36–40.

    Article  PubMed  CAS  Google Scholar 

  • Al-Shamkhani, A. and Duncan, R. 1995. Synthesis, controlled release properties and antitumour activity of alginate-cis-aconityl-daunomycin conjugates. Int. J. Pharm. 122: 107–119.

    Article  CAS  Google Scholar 

  • Amyere, M., Mettlen, M., Van Der Smissen, P., Platek, A., Payrastre, B., Veithen, A., and Courtoy, P.J. 2002. Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int. J. Med. Microbiol. 291: 487–494.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D.G., Lynn, D.M., and Langer, R. 2003. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. Engl. 42: 3153–3158.

    Article  PubMed  CAS  Google Scholar 

  • Arcaro, A. and Wymann, M.P. 1993. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3, 4, 5-trisphosphate in neutrophil responses. Biochem. J. 296 (Pt 2): 297–301.

    PubMed  CAS  Google Scholar 

  • Arefjev, D.V., Domnina, N.S., Komarova, E.A., and Bilibin, A.Y. 1999. Sterically hindered phenol-dextran conjugates: synthesis and radical scavenging activity. Eur. Polym. J. 35: 279–284.

    Article  CAS  Google Scholar 

  • Arunachalam, B., Phan, U.T., Geuze, H.J., and Creswell, P. 2000. Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc. Natl. Acad. Sci. USA 97: 745–750.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Beigelman, L., McSwiggen, J.A., Draper, K.G., Gonzalez, C., Jensen, K., Karpeisky, A.M., Modak, A.S., Matulic-Adamic, J., DiRenzo, A.B., Haeberli, P., Sweedler, D., Tracz, D., Grimm, S., Wincott, F.E., Thackray, V.G., and Usman, N. 1995. Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J. Biol. Chem. 270: 25702–25708.

    Article  PubMed  CAS  Google Scholar 

  • Bhatt, R., de Vries, P., Tulinsky, J., Bellamy, G., Baker, B., Singer, J.W., and Klein, P. 2003. Synthesis and in vivo antitumor activity of poly(L-glutamic acid) conjugates of 20S-camptothecin. J. Med. Chem. 46: 190–193.

    Article  PubMed  CAS  Google Scholar 

  • Bilim, V. 2003. Technology evaluation: PK1, Pfizer/Cancer Research UK. Curr. Opin. Mol. Ther. 5: 326–330.

    PubMed  CAS  Google Scholar 

  • Bissett, D., Cassidy, J., de Bono, J.S., Muirhead, F., Main, M., Robson, L., Fraier, D., Magne, M.L., Pellizzoni, C., Porro, M.G., Spinelli, R., Speed, W., and Twelves, C. 2004. Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT). Br. J. Cancer 91: 50–55.

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield, V.A. 1996. DNA condensation. Curr. Opin. Struct. Biol. 6: 334–341.

    Article  PubMed  CAS  Google Scholar 

  • Bohdanecký, M., Bažilová, H., and Kopeček, J. 1974. Poly[N-(2-hydroxypropyl) methacrylamide]. II. Hydrodynamic properties of diluted polymer solutions. Eur. Polym. J. 10: 405–410.

    Article  Google Scholar 

  • Bonomi, P., Paz-Ares, L., and Langer, C.J. 2006. XYOTAX vs. docetaxel for the second-line treatment of non-small cell lung canceer: the STELLAR 2 phase III study. Lung Cancer S35.

    Google Scholar 

  • Boulikas, T. 1993. Nuclear localization signals (NLS). Crit. Rev. Eukaryot. Gene Expr. 3: 193–227.

    PubMed  CAS  Google Scholar 

  • Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., and Behr, J.P. 1995. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92: 7297–7301.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Bremner, K.H., Seymour, L.W., and Pouton, C.W. 2001. Harnessing nuclear localization pathways for transgene delivery. Curr. Opin. Mol. Ther. 3: 170–177.

    PubMed  CAS  Google Scholar 

  • Brömme, D. and Okamoto, K. 1995. Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol. Chem. Hoppe-Seyler 376: 379–384.

    PubMed  Google Scholar 

  • Brooks, H., Lebleu, B., and Vives, E. 2005. Tat peptide-mediated cellular delivery: back to basics. Adv. Drug. Deliv. Rev. 57: 559–577.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.P., McGarraugh, G.V., Parkinson, T.M., Wingard, R.E., Jr., and Onderdonk, A.B. 1983. A polymeric drug for treatment of inflammatory bowel disease. J. Med. Chem. 26: 1300–1307.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.D., Gray, A.I., Tetley, L., Santovena, A., Rene, J., Schätzlein, A.G., and Uchegbu, I.F. 2003. In vitro and in vivo gene transfer with poly(amino acid) vesicles. J. Control. Release 93: 193–211.

    Article  PubMed  CAS  Google Scholar 

  • Brownlie, A., Uchegbu, I.F., and Schätzlein, A.G. 2004. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int. J. Pharm. 274: 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Bulmus, V., Woodward, M., Lin, L., Murthy, N., Stayton, P., and Hoffman, A. 2003. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control. Release 93: 105–120.

    Article  PubMed  CAS  Google Scholar 

  • Burmeister, P.E., Lewis, S.D., Silva, R.F., Preiss, J.R., Horwitz, L.R., Pendergrast, P.S., McCauley, T.G., Kurz, J.C., Epstein, D.M., Wilson, C., and Keefe, A.D. 2005. Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem. Biol. 12: 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, J. and Kopeček, J. 2006. Semitelechelic HPMA copolymers functionalized with triphenylphosphonium as drug carriers for membrane transduction and mitochondrial localization. Biomacromolecules 7: 2347–2356.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, J., Kopečková, P., and Kopeček, J. 2008. To be submitted.

    Google Scholar 

  • Campone, M., Rademaker-Lakhai, J.M., Bennouna, J., Howell, S.B., Nowotnik, D.P., Beijnen, J.H., Schellens, J.H. 2007. Phase I and pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate, administered weekly for three out of every 4 weeks to advanced solid tumor patients. Cancer Chemotherapy Pharmacol. 60: 523–533.

    Article  CAS  Google Scholar 

  • Carl, P.L., Chakravarty, P.K., and Katzenellenbogen, J.A. 1981. A novel connector linkage applicable in prodrug design. J. Med. Chem. 24: 479–480.

    Article  PubMed  CAS  Google Scholar 

  • Cartlidge, S.A., Duncan, R., Lloyd, J.B., Kopečková-Rejmanova, P., and Kopeček, J. 1987a. Soluble crosslinked N-(2-hydroxypropyl) methacrylamide copolymers as potential drug carriers. 2. Effect of molecular weight on blood clearance and body distribution in the rat after intravenous administration. Distribution of unfractionated copolymer after intraperitoneal, subcutaneous or oral administration. J. Control. Release 4: 253–264.

    Article  CAS  Google Scholar 

  • Cartlidge, S.A., Duncan, R., Lloyd, J.B., Kopečková-Rejmanova, P., and Kopeček, J. 1987b. Soluble, crosslinked N-(2-hydroxypropyl) methacrylamide copolymers as potential drug carriers. 3. Targeting by incorporation of galactosamine residues. Effect of route of administration. J. Control. Release 4: 265–278.

    Article  CAS  Google Scholar 

  • Chang, Y. and McCormick, C.L. 1993. Water-soluble copolymers. 49. Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl (2-acrylamidoethyl) ammonium bromide on the solution behavior of associating acrylamide copolymers. Macromolecules 26: 6121–6126.

    Article  ADS  CAS  Google Scholar 

  • Chang, Y. and Mccormick, C.L. 1994. Water-soluble copolymers. 57. Amphiphilic cyclocopolymers of diallylalkoxybenzyl-methylammonium chloride and diallyldimethylammonium chloride. Polymer 35: 3503–3512.

    Article  CAS  Google Scholar 

  • Cheremisinoff, N. 1997. Handbook of Engineering Polymeric Materials. Marcel Dekker, New York.

    Google Scholar 

  • Chiu, H.-C., Koňák, Č., Kopečková, P., and Kopeček, J. 1994. Enzymatic degradation of poly(ethylene glycol) modified dextrans. J. Bioact. Compat. Polym. 9: 388–410.

    Article  CAS  Google Scholar 

  • Chiu, H.C., Kopečková, P., Deshmane, S.S., and Kopeček, J. 1997. Lysosomal degradability of poly(alpha-amino acids). J. Biomed. Mater. Res. 34: 381–392.

    Article  PubMed  CAS  Google Scholar 

  • Cho, K.C., Kim, S.H., Jeong, J.H., and Park, T.G. 2005. Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(L-lysine) conjugate. Macromol. Biosci. 5: 512–519.

    Article  PubMed  CAS  Google Scholar 

  • Choe, Y.H., Conover, C.D., Wu, D., Royzen, M., Gervacio, Y., Borowski, V., Mehlig, M., and Greenwald, R.B. 2002a. Anticancer drug delivery systems: multi-loaded N4-acyl poly(ethylene glycol) prodrugs of ara-C. II. Efficacy in ascites and solid tumors. J. Control. Release 79: 55–70.

    Article  PubMed  CAS  Google Scholar 

  • Choe, Y.H., Conover, C.D., Wu, D., Royzen, M., and Greenwald, R.B. 2002b. Anticancer drug delivery systems: N4-acyl poly(ethyleneglycol) prodrugs of ara-C. I. Efficacy in solid tumors. J. Control. Release 79: 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Choi, W.-M., Kopečková, P., Minko, T., and Kopeček, J. 1999. Synthesis of HPMA copolymer containing adriamycin bound via an acid-labile spacer and its activity toward human ovarian carcinoma cells. J. Bioact. Compat. Polym. 14: 447–456.

    CAS  Google Scholar 

  • Christophe, D., Christophe-Hobertus, C., and Pichon, B. 2000. Nuclear targeting of proteins: how many different signals? Cell Signal 12: 337–341.

    Article  PubMed  CAS  Google Scholar 

  • Chytil, P., Etrych, T., Koňák, Č., Šírová, M., Mrkvan, T., Říhová, B., and Ulbrich, K. 2006. Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: Effect of polymer chain modification. J. Control. Release 115: 26–36.

    Article  PubMed  CAS  Google Scholar 

  • Chytrý, V., Vrána, A., and Kopeček, J. 1978. Synthesis and activity of a polymer which contains insulin covalently bound on a copolymer of N-(2-hydroxypropyl) methacrylamide and N-methacryloylglycylglycine 4-nitrophenyl ester. Makromol. Chem. 179: 329–336.

    Article  Google Scholar 

  • Coessens, V., Schacht, E., and Domurado, D. 1996. Synthesis of polyglutamine and dextran conjugates of streptomycin with an acid-sensitive drug-carrier linkage. J. Control. Release 38: 141–150.

    Article  CAS  Google Scholar 

  • Collas, P. and Alestrom, P. 1996. Nuclear localization signal of SV40 T antigen directs import of plasmid DNA into sea urchin male pronuclei in vitro. Mol. Reprod. Dev. 45: 431–438.

    Article  PubMed  CAS  Google Scholar 

  • Collas, P., Husebye, H., and Alestrom, P. 1996. The nuclear localization sequence of the SV40 T antigen promotes transgene uptake and expression in zebrafish embryo nuclei. Transgenic Res. 5: 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Conner, S.D. and Schmid, S.L. 2003. Regulated portals of entry into the cell. Nature 422: 37–44.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Coulter, C.V., Kelso, G.F., Lin, T.K., Smith, R.A., and Murphy, M.P. 2000. Mitochondrially targeted antioxidants and thiol reagents. Free Radic. Biol. Med. 28: 1547–1554.

    Article  PubMed  CAS  Google Scholar 

  • Cuchelkar, V. and Kopeček, J. 2006. Polymer-drug conjugates. In: Polymers in Drug Delivery, I.F. Uchegbu, A.G. Schätzlein, Eds., CRC Press, Boca Raton, Florida, 2006, pp. 155–182.

    Google Scholar 

  • Cuchelkar, V., Kopečková, P., and Kopeček, J. 2008. To be submitted.

    Google Scholar 

  • Dahlheimer, P., Engler, A.J., Parthasarathy, R., and Discher, D.E. 2004. Targeted worm micelles. Biomacromolecules 5: 1714–1719.

    Article  CAS  Google Scholar 

  • Dang, C.V. and Lee, W.M. 1988. Identification of the human c-myc protein nuclear translocation signal. Mol. Cell Biol. 8: 4048–4054.

    PubMed  CAS  Google Scholar 

  • Danhauser-Riedl, S., Hausmann, E., Schick, H.D., Bender, R., Dietzfelbinger, H., Rastetter, J., and Hanauske, A.R. 1993. Phase I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (AD-70, DOX-OXD). Invest. New Drugs 11: 187–195.

    Article  PubMed  CAS  Google Scholar 

  • de Groot, F.M., Loos, W.J., Koekkoek, R., van Berkom, L.W., Busscher, G.F., Seelen, A.E., Albrecht, C., de Bruijn, P., and Scheeren, H.W. 2001. Elongated multiple electronic cascade and cyclization spacer systems in activatible anticancer prodrugs for enhanced drug release. J. Org. Chem. 66: 8815–8830.

    Article  PubMed  CAS  Google Scholar 

  • Derycke, A.S. and De Witte, P.A. 2002. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int. J. Oncol. 20: 181–187.

    PubMed  CAS  Google Scholar 

  • Ding, H., Prodinger, W.M., and Kopeček, J. 2006a. Identification of CD21-binding peptides with phage display and investigation of binding properties of HPMA copolymer-peptide conjugates. Bioconjug. Chem. 17: 514–523.

    Article  PubMed  CAS  Google Scholar 

  • Ding, H., Prodinger, W.M., and Kopeček, J. 2006b. Two-step fluorescence screening of CD21-binding peptides with one-bead one-compound library and investigation of binding properties of N-(2-hydroxypropyl) methacrylamide copolymer-peptide conjugates. Biomacromolecules 7: 3037–3046.

    Article  PubMed  CAS  Google Scholar 

  • Ding, H., Kopečková, P., and Kopeček, J. 2007. Self-association properties of HPMA copolymers containing an amphipathic heptapeptide. J. Drug Target. 15: 465–475.

    Article  PubMed  CAS  Google Scholar 

  • Discher, D.E. and Ahmed, F. 2006. Polymersomes. Annu. Rev. Biomed. Eng. 8: 323–341.

    Article  PubMed  CAS  Google Scholar 

  • Drake, F.H., Dodds, R.A., James, I.E., Connor, J.R., Debouck, C., Richardson, S., Lee-Rykaczewski, E., Coleman, L., Rieman, D., Barthlow, R., Hastings, G., and Gowen, M. 1996. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J. Biol. Chem. 271: 12511–12516.

    Article  PubMed  CAS  Google Scholar 

  • Drobník, J., Kopeček, J., Labský, J., Rejmanová, P., Exner, J., Saudek, V., and Kálal, J. 1976. Enzymatic cleavage of side-chains of synthetic water-soluble polymers. Makromol. Chem. 177: 2833–2848.

    Article  Google Scholar 

  • D’Souza, A.J. and Topp, E.M. 2004. Release from polymeric prodrugs: linkages and their degradation. J. Pharm. Sci. 93: 1962–1979.

    Article  PubMed  CAS  Google Scholar 

  • Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fisher, R., Brock, R. 2007. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8: 848–866.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, R. 2003. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2: 347–360.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, R. 2006. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6: 688–701.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, R., Lloyd, J.B., and Kopeček, J. 1980. Degradation of side chains of N-(2-hydroxypropyl) methacrylamide copolymers by lysosomal enzymes. Biochem. Biophys. Res. Commun. 94: 284–290.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, R., Kopeček, J., Rejmanová, P., and Lloyd, J.B. 1983. Targeting of N-(2-hydroxypropyl) methacrylamide copolymers to liver by incorporation of galactose residues. Biochim. Biophys. Acta 755: 518–521.

    PubMed  CAS  Google Scholar 

  • Duncan, R., Cable, H.C., Rejmanová, P., Kopeček, J., and Lloyd, J.B. 1984. Tyrosinamide residues enhance pinocytic capture of N-(2-hydroxypropyl) methacrylamide copolymers. Biochim. Biophys. Acta 799: 1–8.

    PubMed  CAS  Google Scholar 

  • Duncan, R., Seymour, L.C., Scarlett, L., Lloyd, J.B., Rejmanová, P., and Kopeček, J. 1986. Fate of N-(2-hydroxypropyl) methacrylamide copolymers with pendent galactosamine residues after intravenous administration to rats. Biochim. Biophys. Acta 880: 62–71.

    PubMed  CAS  Google Scholar 

  • Duncan, R., Gac-Breton, S., Keane, R., Musila, R., Sat, Y.N., Satchi, R., and Searle, F. 2001. Polymer-drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic. J. Control. Release 74: 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Dvořák, M., Kopečková, P., and Kopeček, J. 1999. High-molecular weight HPMA copolymer-adriamycin conjugates. J. Control. Release 60: 321–332.

    Article  PubMed  Google Scholar 

  • Eaton, B. 2005. The joys of in vitro selection: chemically dressing oligonucleotides to satiate protein targets. Curr. Opin. Chem. Biol. 1: 10–16.

    Article  Google Scholar 

  • Edidin, M. 2001a. Membrane cholesterol, protein phosphorylation, and lipid rafts. Sci. STKE 2001: PE1.

    Google Scholar 

  • Edidin, M. 2001b. Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell. Biol. 11: 492–496.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, G. and O’Hare, P. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88: 223–233.

    Article  PubMed  CAS  Google Scholar 

  • Esfand, R. and Tomalia, D.A. 2001. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6: 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Eyetech Study Group. 2002. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22: 143–152.

    Article  Google Scholar 

  • Eyetech Study Group. 2003. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology 110: 979–986.

    Article  Google Scholar 

  • Fang, J., Sawa, T., and Maeda, H. 2003. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv. Exp. Med. Biol. 519: 29–49.

    Article  PubMed  CAS  Google Scholar 

  • Farokhzad, O.C., Jon, S., Khademhosseini, A., Tran, T.N., Lavan, D.A., and Langer, R. 2004. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Clin. Cancer Res. 64: 7668–7672.

    CAS  Google Scholar 

  • Farokhzad, O.C., Cheng, J., Teply, B.A., Sherifi, I., Jon, S., Kantoff, P.W., Richie, J.P., and Langer, R. 2006. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 103: 6315–6320.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Fernandez-Carneado, J., Van Gool, M., Martos, V., Castel, S., Prados, P., de Mendoza, J., and Giralt, E. 2005. Highly efficient, nonpeptidic oligoguanidinium vectors that selectively internalize into mitochondria. J. Am. Chem. Soc. 127: 869–874.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, A., Pellegrini, V., Arcangeli, C., Fittipaldi, A., Giacca, M., and Beltram, F. 2003. Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol. Ther. 8: 284–294.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, K.D., Stallwood, Y., Green, N.K., Ulbrich, K., Mautner, V., and Seymour, L.W. 2001. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8: 341–348.

    Article  PubMed  CAS  Google Scholar 

  • Fittipaldi, A., Ferrari, A., Zoppe, M., Arcangeli, C., Pellegrini, V., Beltram, F., and Giacca, M. 2003. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem. 278: 34141–34149.

    Article  PubMed  CAS  Google Scholar 

  • Frank, R. 2002. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications. J. Immunol. Methods 267: 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Frankel, A.D. and Pabo, C.O. 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189–1193.

    Article  PubMed  CAS  Google Scholar 

  • Frankel, A.E., Powell, B.L., Hall, P.D., Case, L.D., and Kreitman, R.J. 2002. Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin. Cancer Res. 8: 1004–1013.

    PubMed  CAS  Google Scholar 

  • Fujita, M., Khazenzon, N.M., Ljubimov, A.V., Lee, B.S., Virtanen, I., Holler, E., Black, K.L., and Ljubimova, J.Y. 2006. Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 9: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Gabizon, A., Horowitz, A.T., Goren, D., Tzemach, D., Mandelbaum-Shavit, F., Qazen, M.M., and Zalipsky, S. 1999. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug. Chem. 10: 289–298.

    Article  PubMed  CAS  Google Scholar 

  • Gao, S.Q., Lu, Z.R., Petri, B., Kopečková, P., and Kopeček, J. 2006a. Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1, 6-elimination spacer. J. Control. Release 110: 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Gao S.Q., Kopečková P., Sun Y., Lu Z.-R., Peterson C.M., and Kopeček J. 2006b. Activity of a polymer-bound 9-aminocamptothecin in a colon cancer model. Eur. J. Clin. Invest. 36(Suppl 1): 52–53.

    Google Scholar 

  • Gao, S.Q., Lu, Z.R., Kopečková, P., and Kopeček, J. 2007. Biodistribution and pharmacokinetics of colon-specific HPMA copolymer–9-aminocamptothecin conjugate in mice. J. Control. Release 117: 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Garnett, M.C. 2001. Targeted drug conjugates: principles and progress. Adv. Drug Deliv. Rev. 53: 171–216.

    Article  PubMed  CAS  Google Scholar 

  • Gautier, S., Boustta, M., and Vert, M. 1997. Poly (L-Lysine Citramide), a water-soluble bioresorbable carrier for drug delivery: Aqueous solution properties of hydrophobized derivatives. J. Bioact. Compat. Polym. 12: 77–98.

    CAS  Google Scholar 

  • Gebhart, C.L., Sriadibhatla, S., Vinogradov, S., Lemieux, P., Alakhov, V., and Kabanov, A.V. 2002. Design and formulation of polyplexes based on pluronic-polyethyleneimine conjugates for gene transfer. Bioconjug. Chem. 13: 937–944.

    Article  PubMed  CAS  Google Scholar 

  • Gijsens, A. and De Witte, P. 2000. [Targeting of chlorine E6 by EGF increasing its photodynamic activity in selective ways]. Verh. K. Acad. Geneeskd. Belg. 62: 329–352.

    PubMed  CAS  Google Scholar 

  • Godbey, W.T., Wu, K.K., and Mikos, A.G. 1999a. Poly(ethylenimine) and its role in gene delivery. J. Control. Release 60: 149–160.

    Article  PubMed  CAS  Google Scholar 

  • Godbey, W.T., Wu, K.K., and Mikos, A.G. 1999b. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res. 45: 268–275.

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb, D.S., Gariépy, J., Schoolnik, G., and Kornberg, R.D. 1986. Synthetic peptides as nuclear localization signals. Nature 322: 641–644.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Görlich, D. and Mattaj, I.W. 1996. Nucleocytoplasmic transport. Science 271: 1513–1518.

    Article  PubMed  ADS  Google Scholar 

  • Gottesman, M.M., Fojo, T., and Bates, S.E. 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2: 48–58.

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk, S., Sparrow, J.T., Hauer, J., Mims, M.P., Leland, F.E., Woo, S.L., and Smith, L.C. 1996. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene Ther. 3: 448–457.

    PubMed  CAS  Google Scholar 

  • Graham, M.L. 2003. Pegaspargase: a review of clinical studies. Adv. Drug Deliv. Rev. 55: 1293–1302.

    Article  PubMed  CAS  Google Scholar 

  • Greco, F., Vicent, M.J., Penning, N.A., Nicholson, R.I., and Duncan, R. 2005. HPMA copolymer-aminoglutethimide conjugates inhibit aromatase in MCF-7 cell lines. J. Drug Target. 13: 459–470.

    Article  PubMed  CAS  Google Scholar 

  • Greco, F., Vicent, M.J., Gee, S., Jones, A.T., Gee, J., Nicholson, R.I., and Duncan, R. 2007. Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J. Control. Release 117: 28–39.

    Article  PubMed  CAS  Google Scholar 

  • Green, N.K., Herbert, C.W., Hale, S.J., Hale, A.B., Mautner, V., Harkins, R., Hermiston, T., Ulbrich, K., Fisher, K.D., and Seymour, L.W. 2004. Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther. 11: 1256–1263.

    Article  PubMed  CAS  Google Scholar 

  • Greenwald, R.B., Conover, C.D., and Choe, Y.H. 2000a. Poly(ethylene glycol) conjugated drugs and prodrugs: a comprehensive review. Crit. Rev. Ther. Drug Carrier Syst. 17: 101–161.

    PubMed  CAS  Google Scholar 

  • Greenwald, R.B., Choe, Y.H., Conover, C.D., Shum, K., Wu, D., and Royzen, M. 2000b. Drug delivery systems based on trimethyl lock lactonization: poly(ethylene glycol) prodrugs of amino-containing compounds. J. Med. Chem. 43: 475–487.

    Article  PubMed  CAS  Google Scholar 

  • Greenwald, R.B., Choe, Y.H., McGuire, J., and Conover, C.D. 2003. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55: 217–250.

    Article  PubMed  CAS  Google Scholar 

  • Gref, R., Couvreur, P., Barratt, G., and Mysiakine, E. 2003. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials 24: 4529–4537.

    Article  PubMed  CAS  Google Scholar 

  • Greish, K., Fang, J., Inutsuka, T., Nagamitsu, A., and Maeda, H. 2003. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin. Pharmacokinet. 42: 1089–1105.

    Article  PubMed  CAS  Google Scholar 

  • Grim, Y. and Kopeček, J. 1991. Bioadhesive water-soluble polymeric drug carriers for site-specific oral drug delivery. Synthesis, characterization and release of 5-aminosalicylic acid by Streptococcum faecium in vitro. New Polym. Mater. 3: 49–59.

    CAS  Google Scholar 

  • Gupta, B. and Torchilin, V.P. 2006. Transactivating transcriptional activator-mediated drug delivery. Expert Opin. Drug Deliv. 3: 177–190.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, B., Levchenko, T.S., and Torchilin, V.P. 2005. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug. Deliv. Rev. 57: 637–651.

    Article  PubMed  CAS  Google Scholar 

  • Hama, S., Akita, H., Ito, R., Mizuguchi, H., Hayakawa, T., and Harashima, H. 2006. Quantitative comparison of intracellular trafficking and nuclear transcription between adenoviral and lipoplex systems. Mol. Ther. 13: 786–794.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J.M. and Chess, R.B. 2003. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2: 214–221.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J., Werling, D., Hope, J.C., Taylor, G., and Howard, C.J. 2002a. Caveolae and caveolin in immune cells: distribution and functions. Trends Immunol. 23: 158–164.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J., Werling, D., Koss, M., Monaghan, P., Taylor, G., and Howard, C.J. 2002b. Expression of caveolin by bovine lymphocytes and antigen-presenting cells. Immunology 105: 190–195.

    Article  PubMed  CAS  Google Scholar 

  • Hegazy, A.K., Barakat, H.N., and Kabiel, H.F. 2006. Anatomical significance of the hygrochastic movement in Anastatica hierochuntica. Ann. Bot. (Lond.) 97: 47–55.

    Article  Google Scholar 

  • Henry, S.M., El-Sayed, M.E., Pirie, C.M., Hoffman, A.S., and Stayton, P.S. 2006. pH-responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules 7: 2407–2414.

    Article  PubMed  CAS  Google Scholar 

  • Hersel, U., Dahmen, C., and Kessler, H. 2003. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24: 4385–4415.

    Article  PubMed  CAS  Google Scholar 

  • Hewlett, L.J., Prescott, A.R., and Watts, C. 1994. The coated pit and macropinocytic pathways serve distinct endosome populations. J. Cell Biol. 124: 689–703.

    Article  PubMed  CAS  Google Scholar 

  • Hodel, M.R., Corbett, A.H., and Hodel, A.E. 2001. Dissection of a nuclear localization signal. J. Biol. Chem. 276: 1317–1325.

    Article  PubMed  CAS  Google Scholar 

  • Hong, C.Y. and Pan, C.Y. 2006. Direct synthesis of biotinylated stimuli-responsive polymer and diblock copolymer by RAFT polymerization using biotinylated trithiocarbonate as RAFT agent. Macromolecules 39: 3517–3524.

    Article  ADS  CAS  Google Scholar 

  • Hoste, K., De Winne, K., and Schacht, E. 2004. Polymeric prodrugs. Int. J. Pharm. 277: 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Hrubý, M., Etrych, T., Kučka, J., Forsterová, M., and Ulbrich, K. 2006. Hydroxybisphosphonate-containing polymeric drug-delivery systems designed for targeting into bone tissue. J. Appl. Polym. Sci. 101: 3192–3201.

    Article  CAS  Google Scholar 

  • Hudson, P.J. and Souriau, C. 2003. Engineered antibodies. Nat. Med. 9: 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R.O. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25.

    Article  PubMed  CAS  Google Scholar 

  • Jain, R.K. 1989. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl. Cancer Inst. 81: 570–576.

    Article  PubMed  CAS  Google Scholar 

  • Jatzkewitz, H. 1955. Peptamin (glycyl-L-leucyl-mescaline) bound to blood plasma expander (polyvinylpyrrolidone) as a new depot form of a biologically active primary amine (mescaline). Z. Naturforsch 10b: 27–31.

    Google Scholar 

  • Jelínková, M., Strohalm, J., Etrych, T., Ulbrich, K., and Říhová, B. 2003. Starlike vs. classic macromolecular prodrugs: two different antibody-targeted HPMA copolymers of doxorubicin studied in vitro and in vivo as potential anticancer drugs. Pharm. Res. 20: 1558–1564.

    Article  PubMed  Google Scholar 

  • Jensen, K.D., Kopečková, P., and Kopeček, J. 2002. Antisense oligonucleotides delivered to the lysosome escape and actively inhibit the hepatitis B virus. Bioconjug. Chem. 13: 975–984.

    Article  PubMed  CAS  Google Scholar 

  • Kabanov, A.V., Batrakova, E.V., and Alakhov, V.Y. 2002. Pluronic block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev. 54: 759–779.

    Article  PubMed  CAS  Google Scholar 

  • Kafienah, W., Brömme, D., Buttle, D.J., Croucher, L.J., and Hollander, A.P. 1998. Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem. J. 331 (Pt 3): 727–732.

    PubMed  CAS  Google Scholar 

  • Kakudo, T., Chaki, S., Futaki, S., Nakase, I., Akaji, K., Kawakami, T., Maruyama, K., Kamiya, H., and Harashima, H. 2004. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artifical viral-like delivery system. Biochemistry 43: 5618–5628.

    Article  PubMed  CAS  Google Scholar 

  • Kale, A.A. and Torchilin, V.P. 2007. Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug. Chem. 18: 363–370.

    Article  PubMed  CAS  Google Scholar 

  • Kamei, S. and Kopeček, J. 1995. Prolonged blood circulation in rats of nanospheres surface-modified with semitelechelic poly[N-(2-hydroxypropyl) methacrylamide]. Pharm. Res. 12: 663–668.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, I.M., Wadia, J.S., and Dowdy, S.F. 2005. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release 102: 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Kasuya, Y., Lu, Z.R., Kopečková, P., Minko, T., Tabibi, S.E., and Kopeček, J. 2001. Synthesis and characterization of HPMA copolymer-aminopropylgeldanamycin conjugates. J. Control. Release 74: 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Kasuya, Y., Lu, Z.R., Kopečková, P., Tabibi, S.E., and Kopeček, J. 2002. Influence of the structure of drug moieties on the in vitro efficacy of HPMA copolymer-geldanamycin derivative conjugates. Pharm. Res. 19: 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, S., Hattori, Y., Lu, Y., Higuchi, Y., Yamashita, F., and Hashida, M. 2004. Effect of cationic charge on receptor-mediated transfection using mannosylated cationic liposome/plasmid DNA complexes following the intravenous administration in mice. Pharmazie 59: 405–408.

    PubMed  CAS  Google Scholar 

  • Kelso, G.F., Porteous, C.M., Hughes, G., Ledgerwood, E.C., Gane, A.M., Smith, R.A., and Murphy, M.P. 2002. Prevention of mitochondrial oxidative damage using targeted antioxidants. Ann. N. Y. Acad. Sci. 959: 263–274.

    PubMed  CAS  Google Scholar 

  • Khalil, I.A., Kogure, K., Akita, H., and Harashima, H. 2006. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58: 32–45.

    Article  PubMed  CAS  Google Scholar 

  • Khandare, J. and Minko, T. 2006. Polymer-drug conjugates: progress in polymeric prodrugs. Prog. Polym. Sci. 31: 359–397.

    Article  CAS  Google Scholar 

  • Khandare, J.J., Chandna, P., Wang, Y., Pozharov, V.P., and Minko, T. 2006a. Novel polymeric prodrug with multivalent components for cancer therapy. J. Pharmacol. Exp. Ther. 317: 929–937.

    Article  PubMed  CAS  Google Scholar 

  • Khandare, J.J., Jayant, S., Singh, A., Chandna, P., Wang, Y., Vorsa, N., and Minko, T. 2006b. Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug. Chem. 17: 1464–1472.

    Article  PubMed  CAS  Google Scholar 

  • Kirkham, M. and Parton, P.G. 2005. Clathrin-independent endocytosis: new insight into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta 1746: 350–363.

    Article  CAS  Google Scholar 

  • Kishore, B.K., Lambricht, P., Laurent, G., Maldague, P., Wagner, R., and Tulkens, P.M. 1990. Mechanism of protection afforded by polyaspartic acid against gentamicin-induced phospholipidosis. II. Comparative in vitro and in vivo studies with poly-L-aspartic, poly-L-glutamic and poly-D-glutamic acids. J. Pharmacol. Exp. Ther. 255: 875–885.

    PubMed  CAS  Google Scholar 

  • Kleinschmidt, J.A. and Seiter, A. 1988. Identification of domains involved in nuclear uptake and histone binding of protein N1 of Xenopus laevis. EMBO J. 7: 1605–1614.

    PubMed  CAS  Google Scholar 

  • Köhler, G. and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.

    Article  PubMed  ADS  Google Scholar 

  • Kolb, H.C., Finn, M.G., and Sharpless, K.B. 2001. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40: 2004–2021.

    Article  PubMed  CAS  Google Scholar 

  • Koňák, Č., Ganchev, B., Teodorescu, M., Matyjaszewski, K., Kopečková, P., and Kopeček, J. 2002. Poly[N-(2-hydroxypropyl) methacrylamide-block-n-butyl acrylate] micelles in water/DMF mixed solvents. Polymer 43: 3735–3741.

    Article  Google Scholar 

  • Kopeček, J. 1977. Soluble biomedical polymers. Polim. Med. 7: 191–221.

    PubMed  Google Scholar 

  • Kopeček, J. 1984. Controlled biodegradability of polymers–a key to drug delivery systems. Biomaterials 5: 19–25.

    Article  PubMed  Google Scholar 

  • Kopeček, J. 2003. Smart and genetically engineered biomaterials and drug delivery systems. Eur. J. Pharm. Sci. 20: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Kopeček, J. and Kopečková, P. 2003. Macromolecular therapeutics: state-of-the-art and future potential. Bull. Tech. Gattefossé 96: 9–21.

    Google Scholar 

  • Kopeček, J. and Rejmanová, P. 1983. Enzymatically degradable bonds in synthetic polymers. In: Controlled Drug Delivery, S.D. Bruck, Ed., CRC Press, Boca Raton, Florida, pp. 81–124.

    Google Scholar 

  • Kopeček, J., Cífková, I., Rejmanová, P., Strohalm, J., Obereigner, B., and Ulbrich, K. 1981a. Polymers containing enzymatically degradable bonds. 4. Preliminary experiments in vivo. Makromol. Chem. 182: 2941–2949.

    Article  Google Scholar 

  • Kopeček, J., Rejmanová, P., and Chytrý, V. 1981b. Polymers containing enzymatically degradable bonds 1. Chymotrypsin catalyzed hydrolysis of p-nitroanilides of phenylalanine and tyrosine attached to side-chains of copolymers of N-(2-hydroxypropyl) methacrylamide. Makromol. Chem. 182: 799–809.

    Article  Google Scholar 

  • Kopeček, J., Kopečková, P., Minko, T., and Lu, Z. 2000. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur. J. Pharm. Biopharm. 50: 61–81.

    Article  PubMed  Google Scholar 

  • Kopečková, P., Rathi, R.C., Takada, S., Říhová, B., Berenson, M.M., and Kopeček, J. 1994. Bioadhesive N-(2-hydroxypropyl) methacrylamide copolymers for colon-specific drug delivery. J. Control. Release 28: 211–222.

    Article  Google Scholar 

  • Kovář, M., Strohalm, J., Etrych, T., Ulbrich, K., and Říhová, B. 2002a. Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: a novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect. Bioconjug. Chem. 13: 206–215.

    Article  PubMed  CAS  Google Scholar 

  • Kovář, M., Strohalm, J., Ulbrich, K., and Říhová, B. 2002b. In vitro and in vivo effect of HPMA copolymer-bound doxorubicin targeted to transferrin receptor of B-cell lymphoma 38C13. J. Drug Target. 10: 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Kovář, M., Mrkvan, T., Strohalm, J., Etrych, T., Ulbrich, K., Štastný, M., and Říhová, B. 2003. HPMA copolymer-bound doxorubicin targeted to tumor-specific antigen of BCL1 mouse B cell leukemia. J. Control. Release 92: 315–330.

    Article  PubMed  CAS  Google Scholar 

  • Kratz, F., Beyer, U., and Schutte, M.T. 1999. Drug-polymer conjugates containing acid-cleavable bonds. Crit. Rev. Ther. Drug Carrier Syst. 16: 245–288.

    PubMed  CAS  Google Scholar 

  • Krinick, N.L., Sun, Y., Joyner, D., Spikes, J.D., Straight, R.C., and Kopeček, J. 1994. A polymeric drug delivery system for the simultaneous delivery of drugs activatable by enzymes and/or light. J. Biomat. Sci., Polym. Ed. 5: 303–324.

    Article  CAS  Google Scholar 

  • Kulkarni, S., Schilli, C., Grin, B., Muller, A.H., Hoffman, A.S., and Stayton, P.S. 2006. Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique. Biomacromolecules 7: 2736–2741.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, P., Wu, H., McBride, J.L., Jung, K.E., Kim, M.H., Davidson, B.L., Lee, S.K., Shankar, P., Manjunath, N., 2007. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448: 39–43.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kumazawa, E. and Ochi, Y. 2004. DE-310, a novel macromolecular carrier system for the camptothecin analog DX-8951f: potent antitumor activities in various murine tumor models. Cancer Sci. 95: 168–175.

    Article  PubMed  CAS  Google Scholar 

  • Kunath, K., Kopečková, P., Minko, T., and Kopeček, J. 2000. HPMA copolymer-anticancerdrug-OV-TL16 antibody conjugates. 3. The effect of free and polymer-bound adriamycin on the expression of some genes in the OVCAR-3 human ovarian carcinoma cell line. Eur. J. Pharm. Biopharm. 49: 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Lääne, A., Aaviksaar, A., Haga, M, Chytrý, V., and Kopeček, J. 1985. Preparation of polymer-modified enzymes of prolonged circulation times. Poly[N-(2-hydroxypropyl) methacrylamide] bound acetylcholinesterase. Makromol. Chem., Suppl. 9: 35–42.

    Article  Google Scholar 

  • Lacey, J.V., Mink, P.J., Lubin, J.H., Sherman, M.E., Troisi, R., Hartge, P., Schatzkin, A., and Schairer, C. 2002a. Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA 288: 334–341.

    Article  PubMed  CAS  Google Scholar 

  • Lacey, J.V., Mink, R., Lubin, J.H., Sherman, M.E., Troisi, R., Hartge, P., Schatzkin, A., and Schairer, C. 2002b. Estrogen replacement therapy and risk of ovarian cancer in postmenopausal women. JAMA 288: 2539–2539.

    Article  Google Scholar 

  • Lackey, C.A., Press, O.W., Hoffman, A.S., and Stayton, P.S. 2002. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug. Chem. 13: 996–1001.

    Article  PubMed  CAS  Google Scholar 

  • Ladmiral, V., Mantovani, G., Clarkson, G.J., Cauet, S., Irwin, J.L., and Haddleton, D.M. 2006. Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization. J. Am. Chem. Soc. 128: 4823–4830.

    Article  PubMed  CAS  Google Scholar 

  • Lam, K.S., Lehman, A.L., Song, A., Doan, N., Enstrom, A.M., Maxwell, J., and Liu, R. 2003. Synthesis and screening of “one-bead one-compound” combinatorial peptide libraries. Methods Enzymol. 369: 298–322.

    Article  PubMed  CAS  Google Scholar 

  • Lamaze, C. and Schmid, S.L. 1995. The emergence of clathrin-independent pinocytic pathways. Curr. Opin. Cell Biol. 7: 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Lamaze, C., Dujeancourt, A., Baba, T., Lo, C.G., Benmerah, A., and Dautry-Varsat, A. 2001. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell 7: 661–671.

    Article  PubMed  CAS  Google Scholar 

  • Lammers, T., Kuhnlein, R., Kissel, M., Šubr, V., Etrych, T., Pola, R., Pechar, M., Ulbrich, K., Storm, G., Huber, P., and Peschke, P. 2005. Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. J. Control. Release 110: 103–118.

    Article  PubMed  CAS  Google Scholar 

  • Lanciotti, J., Song, A., Doukas, J., Sosnowski, B., Pierce, G., Gregory, R., Wadsworth, S., and O’Riordan, C. 2003. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol. Ther. 8: 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Lanford, R.E., Kanda, P., and Kennedy, R.C. 1986. Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46: 575–582.

    Article  PubMed  CAS  Google Scholar 

  • Langer, C.J. 2004a. CT-2103: a novel macromolecular taxane with potential advantages compared with conventional taxanes. Clin. Lung Cancer 6 (Suppl 2): S85–S88.

    Article  PubMed  CAS  Google Scholar 

  • Langer, C.J. 2004b. CT-2103: emerging utility and therapy for solid tumours. Expert. Opin. Investig. Drugs 13: 1501–1508.

    Article  PubMed  CAS  Google Scholar 

  • Langer, C.J., Socinski, M.A., Ross, H., and O’Byrne, K.J. 2005. Paclitaxel poliglumex (PPX)/carboplatin vs. paclitaxel/carboplatin for the treatment of PS2 patients with chemotherapy-naïve advanced non-small cell lung cancer (NSCLC): a phase III study. J. Clin. Oncol. 23: 7011, 2005 ASCO Annual Meeting Proceedings.

    Google Scholar 

  • Langer, C.J., Socinski, M.A., and O’Byrne, K.J. 2006. Paclitaxel poliglumex (PPX/carboplatin vs. paclitaxel/carboplatin for the treatment of PS2 patients with chemotherapy-naïve advanced non-small cell lung cancer: a phase III study. Proc. Am. Soc. Clin. Oncol. 23: 623s.

    Google Scholar 

  • Larsen, A.K., Escargueil, A.E., and Skladanowski, A. 2000. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther. 85: 217–229.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B.S., Fujita, M., Khazenzon, N.M., Wawrowsky, K.A., Wachsmann-Hogiu, S., Farkas, D.L., Black, K.L., Ljubimova, J.Y., and Holler, E. 2006. Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(beta-L-malic acid) for drug delivery. Bioconjug. Chem. 17: 317–326.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.J. and Huang, L. 1996. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J. Biol. Chem. 271: 8481–8487.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.W. and Sullenger, B.A. 1997. Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies. Nat. Biotechnol. 15: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Levy, Y., Hershfield, M.S., Fernandez-Mejia, C., Polmar, S.H., Scudiery, D., Berger, M., and Sorensen, R.U. 1988. Adenosine deaminase deficiency with late onset of recurrent infections: response to treatment with polyethylene glycol-modified adenosine deaminase. J. Pediatr. 113: 312–317.

    Article  PubMed  CAS  Google Scholar 

  • Li, C. 2002. Poly(L-glutamic acid)–anticancer drug conjugates. Adv. Drug Deliv. Rev. 54: 695–713.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., Yu, D.F., Newman, R.A., Cabral, F., Stephens, L.C., Hunter, N., Milas, L., and Wallace, S. 1998. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Clin. Cancer Res. 58: 2404–2409.

    CAS  Google Scholar 

  • Lin, J.J., Silas, J.A., Bermudez, H., Milam, V.T., Bates, F.S., and Hammer, D.A. 2004. The effect of polymer chain length and surface density on the adhesiveness of functionalized polymersomes. Langmuir 20: 5493–5500.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z.R., Kopečková, P., Wu, Z., and Kopeček, J. 1998. Functionalized semitelechelic poly[N-(2-hydroxypropyl) methacrylamide] for protein modification. Bioconjug. Chem. 9: 793–804.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J.M., Peterson, C.M., Guo-Shiah, J., Gu, Z.W., Peterson, C.A., Straight, R.C., and Kopeček, J. 1999a. Cooperativity between free and N-(2-hydroxypropyl) methacrylamide copolymer bound adriamycin and meso-chlorin e6 monoethylene diamine induced photodynamic therapy in human epithelial ovarian carcinoma in vitro. Int. J. Oncol. 15: 5–16.

    PubMed  CAS  Google Scholar 

  • Lu, Z.R., Kopečková, P., and Kopeček, J. 1999b. Polymerizable Fab’ antibody fragments for targeting of anticancer drugs. Nat. Biotechnol. 17: 1101–1104.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z.R., Shiah, J.G., Kopečková, P., and Kopeček, J. 2001. Preparation and biological evaluation of polymerizable antibody Fab’ fragment targeted polymeric drug delivery system. J. Control. Release 74: 263–268.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z.R., Shiah, J.G., Kopečková, P., and Kopeček, J. 2003. Polymerizable Fab’ antibody fragment targeted photodynamic cancer therapy in nude mice. STP Pharm. Sci. 13: 69–75.

    CAS  Google Scholar 

  • Lynn, D.M., Anderson, D.G., Putnam, D., and Langer, R. 2001. Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J. Am. Chem. Soc. 123: 8155–8156.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, H. 2001a. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41: 189–207.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, H. 2001b. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev. 46: 169–185.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, H., Ueda, M., Morinaga, T., and Matsumoto, T. 1985. Conjugation of poly(styrene-comaleic acid) derivatives to the antitumor protein neocarzinostatin: pronounced improvements in pharmacological properties. J. Med. Chem. 28: 455–461.

    Article  PubMed  CAS  Google Scholar 

  • Mahat, R.I., Monera, O.D., Smith, L.C., and Rolland, A. 1999. Peptide-based gene delivery. Curr. Opin. Mol. Ther. 1: 226–243.

    PubMed  CAS  Google Scholar 

  • Malik, N., Wiwattanapatapee, R., Klopsch, R., Lorenz, K., Frey, H., Weener, J.W., Meijer, E.W., Paulus, W., and Duncan, R. 2000. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 65: 133–148.

    Article  PubMed  CAS  Google Scholar 

  • Malkoch, M., Vestberg, R., Gupta, N., Mespouille, L., Dubois, P., Mason, A.F., Hedrick, J.L., Liao, Q., Frank, C.W., Kingsbury, K., and Hawker, C.J. 2006. Synthesis of well-defined hydrogel networks using click chemistry. Chem. Commun. 26: 2774–2776.

    Article  CAS  Google Scholar 

  • Mann, J.S., Huang, J.C., and Keana, J.F. 1992. Molecular amplifiers: synthesis and functionalization of a poly(aminopropyl) dextran bearing a uniquely reactive terminus for univalent attachment to biomolecules. Bioconjug. Chem. 3: 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Markman, M. 2004. Improving the toxicity profile of chemotherapy for advanced ovarian cancer: a potential role for CT-2103. J. Exp. Ther. Oncol. 4: 131–136.

    PubMed  CAS  Google Scholar 

  • Martinez-Fong, D., Navarro-Quiroga, I., Ochoa, I., Alvarez-Maya, I., Meraz, M.A., Luna, J., and Arias-Montano, J.A. 1999. Neurotensin-SPDP-poly-L-lysine conjugate: a nonviral vector for targeted gene delivery to neural cells. Brain Res. Mol. Brain Res. 69: 249–262.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, Y. and Maeda, H. 1986. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46: 6387–6392.

    PubMed  CAS  Google Scholar 

  • Matveev, S., Li, X., Everson, W., and Smart, E.J. 2001. The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Adv. Drug Deliv. Rev. 49: 237–250.

    Article  PubMed  CAS  Google Scholar 

  • Maxfield, F.R. and McGraw, T.E. 2004. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5: 121–132.

    Article  PubMed  CAS  Google Scholar 

  • Meerum Terwogt, J.M., ten Bokkel Huinink, W.W., Schellens, J.H., Schot, M., Mandjes, I.A., Zurlo, M.G., Rocchetti, M., Rosing, H., Koopman, F.J., and Beijnen, J.H. 2001. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs 12: 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Mehvar, R. 2000. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Release 69: 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Mehvar, R. and Hoganson, D.A. 2000. Dextran-methylprednisolone succinate as a prodrug of methylprednisolone: immunosuppressive effects after in vivo administration to rats. Pharm. Res. 17: 1402–1407.

    Article  PubMed  CAS  Google Scholar 

  • Meier, O. and Greber, U.F. 2003. Adenovirus endocytosis. J. Gene Med. 5: 451–462.

    Article  PubMed  CAS  Google Scholar 

  • Merdan, T., Kunath, K., Fischer, D., Kopeček, J., and Kissel, T. 2002. Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharm. Res. 19: 140–146.

    Article  PubMed  CAS  Google Scholar 

  • Midoux, P. and Monsigny, M. 1999. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug. Chem. 10: 406–411.

    Article  PubMed  CAS  Google Scholar 

  • Minko, T., Kopečková, P., and Kopeček, J. 1999. Chronic exposure to HPMA copolymer-bound adriamycin does not induce multidrug resistance in a human ovarian carcinoma cell line. J. Control. Release 59: 133–148.

    Article  PubMed  CAS  Google Scholar 

  • Minko, T., Kopečková, P., and Kopeček, J. 2000. Efficacy of the chemotherapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma. Int. J. Cancer 86: 108–117.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, A., Coleman, T., Borgman, M., Nan, A., Ghandehari, H., and Line, B.R. 2006. Polymeric conjugates of mono- and bi-cyclic alphaVbeta3 binding peptides for tumor targeting. J. Control. Release 114: 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Molineux, G. 2004. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr. Pharm. Des. 10: 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  • Mrkvan, T., Šírová, M., Etrych, T., Chytil, P., Strohalm, J., Plocová, D., Ulbrich, K., and Říhová, B. 2005. Chemotherapy based on HPMA copolymer conjugates with pH-controlled release of doxorubicin triggers anti-tumor immunity. J. Control. Release 110: 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, A., Monson, J.P., Jonsson, P.J., Trainer, P.J., and Shalet, S.M. 2003. Seeking the optimal target range for insulin-like growth factor I during the treatment of adult growth hormone disorders. J. Clin. Endocrinol. Metab. 88: 5865–5870.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, S., Ghosh, R.N., and Maxfield, F.R. 1997. Endocytosis. Physiol. Rev. 77: 759–803.

    PubMed  CAS  Google Scholar 

  • Nagayama, T., Hashidzume, A., and Morishima, Y. 2002. Characterization of self-association in water of polycations hydrophobically modified with hydrocarbon and siloxane chains. Langmuir 18: 6775–6782.

    Article  CAS  Google Scholar 

  • Nakanishi, T., Fukushima, S., Okamoto, K., Suzuki, M., Matsumura, Y., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K. 2001. Development of the polymer micelle carrier system for doxorubicin. J. Control. Release 74: 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Nakase, I., Niwa, M., Takeuchi, T., Sonomura, K., Kawabata, N., Koike, Y., Takehashi, M., Tanaka, S., Ueda, K., Simpson, J.C., Jones, A.T., Sugiura, Y., and Futaki, S. 2004. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. 10: 1011–1022.

    Article  PubMed  CAS  Google Scholar 

  • Nan, A., Ghandehari, H., Hebert, C., Siavash, H., Nikitakis, N., Reynolds, M., and Sauk, J.J. 2005. Water-soluble polymers for targeted drug delivery to human squamous carcinoma of head and neck. J. Drug Target. 13: 189–197.

    Article  PubMed  CAS  Google Scholar 

  • Nigg, E.A. 1997. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386: 779–787.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Nimjee, S.M., Rusconi, C.P., and Sullenger, B.A. 2005. Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56: 555–583.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, N. and Kataoka, K. 2006. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112: 630–648.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, N., Nori, A., Malugin, A., Kasuya, Y., Kopečková, P., and Kopeček, J. 2003. Free and N-(2-hydroxypropyl) methacrylamide copolymer-bound geldanamycin derivative induce different stress responses in A2780 human ovarian carcinoma cells. Cancer Res. 63: 7876–7882.

    PubMed  CAS  Google Scholar 

  • Nori, A. and Kopeček, J. 2005. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug. Deliv. Rev. 57: 609–636.

    Article  PubMed  CAS  Google Scholar 

  • Nori, A., Jensen, K.D., Tijerina, M., Kopečková, P., and Kopeček, J. 2003a. Subcellular trafficking of HPMA copolymer-Tat conjugates in human ovarian carcinoma cells. J. Control. Release 91: 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Nori, A., Jensen, K.D., Tijerina, M., Kopečková, P., and Kopeček, J. 2003b. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug. Chem. 14: 44–50.

    Article  PubMed  CAS  Google Scholar 

  • Obereigner, B., Burešová, M., Vrána, A., and Kopeček, J. 1979. Preparation of polymerizable derivatives of N-(4-aminobenzenesulfonyl)-N’-butylurea. J. Polym. Sci., Polym. Symp. 66: 41–52.

    Article  CAS  Google Scholar 

  • Ohkawa, K., Hatano, T., Yamada, K., Joh, K., Takada, K., Tsukada, Y., and Matsuda, M. 1993. Bovine serum albumin-doxorubicin conjugate overcomes multidrug resistance in a rat hepatoma. Cancer Res. 53: 4238–4242.

    PubMed  CAS  Google Scholar 

  • Okuno, S., Harada, M., Yano, T., Yano, S., Kiuchi, S., Tsuda, N., Sakamura, Y., Imai, J., Kawaguchi, T., and Tsujihara, K. 2000. Complete regression of xenografted human carcinomas by camptothecin analogue-carboxymethyl dextran conjugate (T-0128). Cancer Res. 60: 2988–2995.

    PubMed  CAS  Google Scholar 

  • Omelyanenko, V., Gentry, C., Kopečková, P., and Kopeček, J. 1998. HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. Int. J. Cancer 75: 600–608.

    Article  PubMed  CAS  Google Scholar 

  • Pan, H., Kopečková, P., Wang, D., Yang, J., Miller, S., and Kopeček, J. 2006. Water-soluble HPMA copolymer–prostaglandin E1 conjugates containing a cathepsin K sensitive spacer. J. Drug Target. 14: 425–435.

    Article  PubMed  CAS  Google Scholar 

  • Panarin, E.F. and Ushakov, S.N. 1968. Synthesis of polymer salts and amidopenicillines (in Russian). Khim. Pharm. Zhur. 2: 28–31.

    CAS  Google Scholar 

  • Parrish, B. and Emrick, T. 2007. Soluble camptothecin derivatives prepared by click cycloaddition chemistry on functional aliphatic polyesters. Bioconjug. Chem. 18: 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Parrish, B., Breitenkamp, R.B., and Emrick, T. 2005. PEG- and peptide-grafted aliphatic polyesters by click chemistry. J. Am. Chem. Soc. 127: 7404–7410.

    Article  PubMed  CAS  Google Scholar 

  • Parton, R.G., Joggerst, B., and Simons, K. 1994. Regulated internalization of caveolae. J. Cell Biol. 127: 1199–1215.

    Article  PubMed  CAS  Google Scholar 

  • Pasut, G., Scaramuzza, S., Schiavon, O., Mendichi, R., and Veronese, F.M. 2005. PEG-epirubicin conjugates with high drug loading. J. Bioact. Compat. Polym. 20: 213–230.

    Article  CAS  Google Scholar 

  • Paul, A., Vicent, M.J., and Duncan, R. 2007. Using small-angle neutron scattering to study the solution conformation of N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin conjugates. Biomacromolecules 8: 1573–1579.

    Article  PubMed  CAS  Google Scholar 

  • Pechar, M., Braunová, A., Ulbrich, K., Jelínková, M., and Říhová, B. 2005. Poly(ethylene glycol)–Doxorubicin conjugates with pH-controlled activation. J. Bioact. Compat. Polym. 20: 319–341.

    Article  CAS  Google Scholar 

  • Pedone, E., Li, X.W., Koseva, N., Alpar, O., and Brocchini, S. 2003. An information rich biomedical polymer library. J. Mater. Chem. 13: 2825–2837.

    Article  CAS  Google Scholar 

  • Pelkmans, L. and Helenius, A. 2002. Endocytosis via caveolae. Traffic 3: 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans, L., Puntener, D., and Helenius, A. 2002. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296: 535–539.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Peterson, C.M., Lu, J.M., Sun, Y., Peterson, C.A., Shiah, J.G., Straight, R.C., and Kopeček, J. 1996. Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl) methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice. Cancer Res. 56: 3980–3985.

    PubMed  CAS  Google Scholar 

  • Phan, U.T., Arunachalam, B., and Creswell, P. 2000. Gamma-interferon-inducible lysosomal thiol reductase (GILT). Maturation, activity, and mechanism of action. J. Biol. Chem. 275: 25907–25914.

    Article  PubMed  CAS  Google Scholar 

  • Pichon, C., Goncalves, C., and Midoux, P. 2001. Histidine-rich peptides and polymers for nucleic acids delivery. Adv. Drug Deliv. Rev. 53: 75–94.

    Article  PubMed  CAS  Google Scholar 

  • Pieken, W.A., Olsen, D.B., Benseler, F., Aurup, H., and Eckstein, F. 1991. Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253: 314–317.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Poujol, S., Pinguet, F., Bressole, F., Boustta, M., and Vert, M. 2000. Molecular microencapsulation: paclitaxel formations in aqueous medium using hydrophobized poly(L-lysine citramide imide). J. Bioact. Compat. Polym. 15: 99–114.

    Article  CAS  Google Scholar 

  • Putnam, D. and Kopeček, J. 1995a. Polymer conjugates with anticancer activity. Adv. Polym. Sci. 122: 55–123.

    CAS  Google Scholar 

  • Putnam, D. and Kopeček, J. 1995b. Enantioselective release of 5-fluorouracil from HPMA based copolymers via lysosomal enzymes. Bioconjug. Chem. 6: 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Putnam, D., Gentry, C.A., Pack, D.W., and Langer, R. 2001. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. USA. 98: 1200–1205.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Putnam, D., Zelikin, A.N., Izumrudov, V.A., and Langer, R. 2003. Polyhistidine-PEG:DNA nanocomposites for gene delivery. Biomaterials 24: 4425–4433.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, L.Y. and Bae, Y.H. 2006. Polymer architecture and drug delivery. Pharm. Res. 23: 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Rademaker-Lakhai, J.M., Terret, C., Howell, S.B., Baud, C.M., De Boer, R.F., Pluim, D., Beijnen, J.H., Schellens, J.H., and Droz, J.P. 2004. A phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin. Cancer Res. 10: 3386–3395.

    Article  PubMed  CAS  Google Scholar 

  • Rajender Reddy, K., Modi, M.W., and Pedder, S. 2002. Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Deliv. Rev. 54: 571–586.

    Article  PubMed  CAS  Google Scholar 

  • Rask, R., Rasmussen, J.M., Hansen, H.V., Bysted, P., and Svehag, S.E. 1988. Complement C3d, g/Epstein-Barr virus receptor density on human B-lymphocytes estimated by immunoenzymatic assay and immunocytochemistry. J. Clin. Lab. Immunol. 25: 153–156.

    PubMed  CAS  Google Scholar 

  • Rathi, R.C., Kopečková, P., Říhová, B., and Kopeček, J. 1991. N-(2-Hydroxypropyl) methacrylamide copolymers containing pendant saccharide moieties. Synthesis and bioadhesive properties. J. Polym. Sci. [A1] 29: 1895–1902.

    CAS  Google Scholar 

  • Read, M.L., Singh, S., Ahmed, Z., Stevenson, M., Briggs, S.S., Oupický, D., Barrett, L.B., Spice, R., Kendall, M., Berry, M., Preece, J.A., Logan, A., and Seymour, L.W. 2005. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33: e86.

    Article  PubMed  CAS  Google Scholar 

  • Rejman, J., Bragonzi, A., and Conese, M. 2005. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol. Ther. 12: 468–474.

    Article  PubMed  CAS  Google Scholar 

  • Rejmanová, P., Labský, J., and Kopeček, J. 1977. Aminolyses of monomeric and polymeric p-nitrophenyl esters of methacryloylated amino acids. Makromol. Chem. 178: 2159–2168.

    Article  Google Scholar 

  • Rejmanová, P., Obereigner, B., and Kopeček, J. 1981. Polymers containing enzymatically degradable bonds. 2. Poly[N-(2-hydroxypropyl) methacrylamide] chains connected by oligopeptide sequences cleavable by chymotrypsin. Makromol. Chem. 182: 1899–1915.

    Article  Google Scholar 

  • Rejmanová, P., Pohl, J., Baudyš, M., Kostka, V., and Kopeček, J. 1983. Polymers containing enzymatically degradable bonds. 8. Degradation of oligopeptide sequences in N-(2-hydroxypropyl) methacrylamide copolymers by bovine spleen cathepsin B. Makromol. Chem. 184: 2009–2020.

    Article  Google Scholar 

  • Rejmanová, P., Kopeček, J., Duncan, R., and Lloyd, J.B. 1985. Stability in rat plasma and serum of lysosomally degradable oligopeptide sequences in N-(2-hydroxypropyl) methacrylamide copolymers. Biomaterials 6: 45–48.

    Article  PubMed  Google Scholar 

  • Rensberger, K.L., Hoganson, D.A., and Mehvar, R. 2000. Dextran-methylprednisolone succinate as a prodrug of methylprednisolone: in vitro immunosuppressive effects on rat blood and spleen lymphocytes. Int. J. Pharm. 207: 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Ringsdorf, H. 1975. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Symp. 51: 135–153.

    CAS  Google Scholar 

  • Robbins, J., Dilworth, S.M., Laskey, R.A., and Dingwall, C. 1991. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64: 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues, P.C., Beyer, U., Schumacher, P., Roth, T., Fiebig, H.H., Unger, C., Messori, L., Orioli, P., Paper, D.H., Mülhaupt, R., Kratz, F. 1999. Acid-sensitive polyethylene glycol conjugates of doxorubicin: preparation, in vitro efficacy and intracellular distribution. Bioorg. Med. Chem. 7: 2517–2524.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues, P.C, Scheuermann, K., Stockmar, C., Maier, G., Fiebig, H., Unger, C., Mülhaupt, R., and Kratz, F. 2003. Synthesis and in vitro efficacy of acid-sensitive poly(ethylene glycol) paclitaxel conjugates. Bioorg. Med. Chem. Lett. 13: 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues, P.C., Roth, T., Fiebig, H.H., Unger, C., Mülhaupt, R., and Kratz, F. 2006. Correlation of the acid-sensitivity of polyethylene glycol daunorubicin conjugates with their in vitro antiproliferative activity. Bioorg. Med. Chem. 14: 4110–4117.

    Article  PubMed  CAS  Google Scholar 

  • Rowinsky, E.K., Rizzo, J., Ochoa, L., Takimoto, C.H., Forouzesh, B., Schwartz, G., Hammond, L.A., Patnaik, A., Kwiatek, J., Goetz, A., Denis, L., McGuire, J., Tolcher, A.W. 2003. A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J. Clin. Oncol. 21: 148–157.

    Article  PubMed  CAS  Google Scholar 

  • Rusconi, C.P., Scardino, E., Layzer, J., Pitoc, G.A., Ortel, T.L., Monroe, D., and Sullenger, B.A. 2002. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419: 90–94.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Sabbatini, P., Aghajanian, C., Dizon, D., Anderson, S., Dupont, J., Brown, J.V., Peters, W.A., Jacobs, A., Mehdi, A., Rivkin, S., Eisenfeld, A.J., Spriggs, D. 2004. Phase II study of CT-2103 in patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. J. Clin. Oncol. 22: 4523–4531.

    Article  PubMed  CAS  Google Scholar 

  • Saito, G., Swanson, J.A., and Lee, K.D. 2003. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev. 55: 199–215.

    Article  PubMed  CAS  Google Scholar 

  • Sakuma, S., Lu, Z.R., Kopečková, P., and Kopeček, J. 2001. Biorecognizable HPMA copolymerdrug conjugates for colon-specific delivery of 9-aminocamptothecin. J. Control. Release 75: 365–379.

    Article  PubMed  CAS  Google Scholar 

  • Sarapa, N., Britto, M.R., Speed, W., Jannuzzo, M., Breda, M., James, C.A., Porro, M., Rocchetti, M., Wanders, A., Mahteme, H., and Nygren, P. 2003. Assessment of normal and tumor tissue uptake of MAG-CPT, a polymer-bound prodrug of camptothecin, in patients undergoing elective surgery for colorectal carcinoma. Cancer Chemother. Pharmacol. 52: 424–430.

    Article  PubMed  CAS  Google Scholar 

  • Saraste, J., Palade, G.E., and Farquhar, M.G. 1986. Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proc. Natl. Acad. Sci. USA 83: 6425–6429.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Satchi-Fainaro, R., Connors, T.A., and Duncan, R. 2001. PDEPT: polymer-directed enzyme prodrug therapy. I. HPMA copolymer-cathepsin B and PK1 as a model combination. Br. J. Cancer 85: 1070–1076.

    Article  CAS  Google Scholar 

  • Satchi , R., Hailu, H., Davies, J.W., Summerford, C., and Duncan, R. 2003. PDEPT: polymer-directed enzyme prodrug therapy. 2. HPMA copolymer-beta-lactamase and HPMA copolymer-C-Dox as a model combination. Bioconjug. Chem. 14: 797–804.

    Article  CAS  Google Scholar 

  • Satchi-Fainaro, R., Puder, M., Davies, J.W., Tran, H.T., Sampson, D.A., Greene, A.K., Corfas, G., and Folkman, J. 2004. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat. Med. 10: 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Satchi-Fainaro, R., Mamluk, R., Wang, L., Short, S.M., Nagy, J.A., Feng, D., Dvorak, A.M., Dvorak, H.F., Puder, M., Mukhopadhyay, D., and Folkman, J. 2005. Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell 7: 251–261.

    Article  PubMed  CAS  Google Scholar 

  • Satchi-Fainaro, R., Duncan, R., and Barnes, C.M. 2006. Polymer therapeutics for cancer: current status and future challenges. Adv. Polym. Sci. 193: 1–65.

    Article  CAS  Google Scholar 

  • Scales, C.W., Vasilieva, Y.A., Convertine, A.J., Lowe, A.B., and McCormick, C.L. 2005. Direct, controlled synthesis of the nonimmunogenic, hydrophilic polymer, poly(N-(2-hydroxypropyl) methacrylamide) via RAFT in aqueous media. Biomacromolecules 6: 1846–1850.

    Article  PubMed  CAS  Google Scholar 

  • Scales, C.W., Huang, F.Q., Li, N., Vasilieva, Y.A., Ray, J., Convertine, A.J., and McCormick, C.L. 2006. Corona-stabilized interpolyelectrolyte complexes of SiRNA with nonimmunogenic, hydrophilic/cationic block copolymers prepared by aqueous RAFT polymerization. Macromolecules 39: 6871–6881.

    Article  ADS  CAS  Google Scholar 

  • Schechter, I. and Berger, A. 1967. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27: 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Schiavon, O., Pasut, G., Moro, S., Orsolini, P., Guiotto, A., and Veronese, F.M. 2004. PEG-Ara-C conjugates for controlled release. Eur. J. Med. Chem. 39: 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, H., Harbottle, R.P., Yokosaki, Y., Kunde, J., Sheppard, D., and Coutelle, C. 1998. A novel peptide, PLAEIDGIELTY, for the targeting of alpha9betal-integrins. FEBS Lett. 429: 269–273.

    Article  PubMed  CAS  Google Scholar 

  • Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J., and Czaja, A.D. 2002. Laser–Raman imagery of Earth’s earliest fossils. Nature 416: 73–76.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schousboe, I., Thomsen, P., and van Deurs, B. 2004. Factor XII binding to endothelial cells depends on caveolae. Eur. J. Biochem. 271: 2998–3005.

    Article  PubMed  CAS  Google Scholar 

  • Seib, F.P., Jones, A.T., and Duncan, R. 2006. Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics I. Differential centrifugation fractionation B16F10 cells and use to study the intracellular fate of HPMA copolymer–doxorubicin. J. Drug Target. 14: 375–390.

    Article  PubMed  CAS  Google Scholar 

  • Service, R.F. 1996. Combinatorial chemistry hits the drug market. Science 272: 1266–1268.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Seymour, L.W., Duncan, R., Strohalm, J., and Kopeček, J. 1987. Effect of molecular weight (Mw) of N-(2-hydroxypropyl) methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J. Biomed. Mater. Res. 21: 1341–1358.

    Article  PubMed  CAS  Google Scholar 

  • Seymour, L.W., Ferry, D.R., Anderson, D., Hesslewood, S., Julyan, P.J., Poyner, R., Doran, J., Young, A.M., Burtles, S., and Kerr, D.J. 2002. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J. Clin. Oncol. 20: 1668–1676.

    Article  PubMed  CAS  Google Scholar 

  • Shen, W.C. and Ryser, H.J. 1981. cis-Aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem. Biophys. Res. Commun. 102: 1048–1054.

    Article  PubMed  CAS  Google Scholar 

  • Shiah, J.-G., Koňák, Č., Spikes, J.D., and Kopeček, J. 1997. Solution and photoproperties of N-(2-hydroxypropyl) methacrylamide copolymer–meso-chlorin e6 conjugates. J. Phys. Chem. B 101: 6803–6809.

    Article  CAS  Google Scholar 

  • Shiah, J.-G., Koňák, Č., Spikes, J.D., and Kopeček, J. 1998. Influence of pH on solubility and photoproperties of N-(2-hydroxypropyl) methacrylamide copolymer–meso-chlorin e6 conjugates. Drug Deliv. 5: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Shiah, J.-G., Sun, Y., Peterson, C.M., Kopeček, J. 1999. Biodistribution of free and N-(2-hydroxy-propyl) methacrylamide copolymer-bound meso chlorin e6 and adriamycin in nude mice bearing human ovarian carcinoma OVCAR-3 xenografts. J. Control. Release 61: 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Shiah, J.G., Sun, Y., Peterson, C.M., Straight, R.C., and Kopeček, J. 2000. Antitumor activity of N-(2-hydroxypropyl) methacrylamide copolymer-mesochlorin e6 and adriamycin conjugates in combination treatments. Clin. Cancer Res. 6: 1008–1015.

    PubMed  CAS  Google Scholar 

  • Shiah, J.G., Dvořák, M., Kopečková, P., Sun, Y., Peterson, C.M., and Kopeček, J. 2001a. Biodistribution and antitumour efficacy of long-circulating N-(2-hydroxypropyl) methacrylamide copolymer–doxorubicin conjugates in nude mice. Eur. J. Cancer 37: 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Shiah, J.G., Sun, Y., Kopečková, P., Peterson, C.M., Straight, R.C., and Kopeček, J. 2001b. Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin/mesochlorin e6-OV-TL 16 antibody immunoconjugates. J. Control. Release 74: 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Simoes, S., Slepushkin, V., Pires, P., Gaspar, R., de Lima, M.P., and Duzgunes, N. 1999. Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Ther. 6: 1798–1807.

    Article  PubMed  CAS  Google Scholar 

  • Singer, J.W., Shaffer, S., Baker, B., Bernareggi, A., Stromatt, S., Nienstedt, D., and Besman, M. 2005. Paclitaxel poliglumex (XYOTAX; CT-2103): an intracellularly targeted taxane. Anticancer Drugs 16: 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G.P. and Petrenko, V.A. 1997. Phage display. Chem. Rev. 97: 391–410.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.A., Porteous, C.M., Coulter, C.V., and Murphy, M.P. 1999. Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem. 263: 709–716.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.A., Kelso, G.F., James, A.M., and Murphy, M.P. 2004. Targeting coenzyme Q derivatives to mitochondria. Methods Enzymol. 382: 45–67.

    Article  PubMed  CAS  Google Scholar 

  • Soldati, T. and Schliwa, M. 2006. Powering membrane traffic in endocytosis and recycling. Nat. Rev. Mol. Cell Biol. 7: 897–908.

    Article  PubMed  CAS  Google Scholar 

  • Solovskij, M.V., Ulbrich, K., and Kopeček, J. 1983. Synthesis of N-(2-hydroxypropyl) methacrylamide copolymers with antimicrobial activity. Biomaterials 4: 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Sparr, E., Ash, W.L., Nazarov, P.V., Rijkers, D.T.S., Hemminga, M.A., Tieleman, D.P., and Killian, J.A. 2005. Self-association of transmembrane alpha-helices in model membranes–Importance of helix orientation and role of hydrophobic mismatch. J. Biol. Chem. 280: 39324–39331.

    Article  PubMed  CAS  Google Scholar 

  • Št’astný, M., Strohalm, J., Plocová, D., Ulbrich, K., and Říhová, B. 1999. A possibility to overcome P-glycoprotein (PGP)-mediated multidrug resistance by antibody-targeted drugs conjugated to N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer carrier. Eur. J. Cancer 35: 459–466.

    Article  PubMed  Google Scholar 

  • Strohalm, J. and Kopeček, J. 1978. Poly[N-(2-hydroxypropyl) methacrylamide]. IV. Heterogeneous polymerization. Angew. Makromol. Chem. 70: 109–118.

    Article  CAS  Google Scholar 

  • Šubr, V. and Ulbrich, K. 2006. Synthesis and properties of new N-(2-hydroxypropyl) methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React. Funct. Polym. 66: 1525–1538.

    Article  CAS  Google Scholar 

  • Šubr, V., Koňák, Č., Laga, R., and Ulbrich, K. 2006. Coating of DNA/poly(L-lysine) complexes by covalent attachment of poly[N-(2-hydroxypropyl) methacrylamide]. Biomacromolecules 7: 122–130.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, J.A. and Watts, C. 1995. Macropinocytosis. Trends Cell. Biol. 5: 424–428.

    Article  PubMed  CAS  Google Scholar 

  • Tang, A. and Kopeček, J. 2002. Presentation of epitopes on genetically engineered peptides and selection of lymphoma-targeting moieties based on epitope biorecognition. Biomacromolecules 3: 421–431.

    Article  PubMed  CAS  Google Scholar 

  • Tang, A., Kopečková, P., and Kopeček, J. 2003. Binding and cytotoxicity of HPMA copolymer conjugates to lymphocytes mediated by receptor-binding epitopes. Pharm. Res. 20: 360–367.

    Article  PubMed  CAS  Google Scholar 

  • Teicher, B.A., Holden, S.A., Jacobs, J.L., Abrams, M.J., and Jones, A.G. 1986. Intracellular distribution of a platinum-rhodamine 123 complex in cis-platinum sensitive and resistant human squamous carcinoma cell lines. Biochem. Pharmacol. 35: 3365–3369.

    Article  PubMed  CAS  Google Scholar 

  • Teicher, B.A., Varshney, A., Khandekar, V., and Herman, T.S. 1991. Effect of hypoxia and acidosis on the cytotoxicity of six metal(ligand) 4(rhodamine-123) 2 complexes at normal and hyperthermic temperatures. Int. J. Hyperthermia 7: 857–868.

    Article  PubMed  CAS  Google Scholar 

  • Teodorescu, M. and Matyjaszewski, K. 1999. Atom transfer radical polymerization of (meth) acrylamides. Macromolecules 32: 4826–4831.

    Article  ADS  CAS  Google Scholar 

  • Teodorescu, M. and Matyjaszewski, K. 2000. Controlled polymerization of (meth) acrylamides by atom transfer radical polymerization. Macromol. Rapid Commun. 21: 190–194.

    Article  CAS  Google Scholar 

  • Thomas, M. and Klibanov, A.M. 2002. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA 99: 14640–14645.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Thomsen, P., Roepstorff, K., Stahlhut, M., and van Deurs, B. 2002. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13: 238–250.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A.H., Vasey, P.A., Murray, L.S., Cassidy, J., Fraier, D., Frigerio, E., and Twelves, C. 1999. Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours. Br. J. Cancer 81: 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Tijerina, M., Kopečková, P., and Kopeček, J. 2003a. Correlation of subcellular compartmentalization of HPMA copolymer-Mce6 conjugates with chemotherapeutic activity in human ovarian carcinoma cells. Pharm. Res. 20: 728–737.

    Article  PubMed  CAS  Google Scholar 

  • Tijerina, M., Kopečková, P., and Kopeček, J. 2003b. Mechanisms of cytotoxicity in human ovarian carcinoma cells exposed to free Mce6 or HPMA copolymer-Mce6 conjugates. Photochem. Photobiol. 77: 645–652.

    Article  PubMed  CAS  Google Scholar 

  • Toki, B.E., Cerveny, C.G., Wahl, A.F., and Senter, P.D. 2002. Protease-mediated fragmentation of p-amidobenzyl ethers: a new strategy for the activation of anticancer prodrugs. J. Org. Chem. 67: 1866–1872.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V.P. 2006a. Multifunctional nanocarriers. Adv. Drug. Deliv. Rev. 58: 1532–1555.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V.P. 2006b. Recent approaches to intracellular deličvery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng. 8: 343–375.

    Article  PubMed  CAS  Google Scholar 

  • Tsukioka, Y., Matsumura, Y., Hamaguchi, T., Koike, H., Moriyasu, F., and Kakizoe, T. 2002. Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn. J. Cancer Res. 93: 1145–1153.

    PubMed  CAS  Google Scholar 

  • Tucker, C.E., Chen, L.S., Judkins, M.B., Farmer, J.A., Gill, S.C., and Drolet, D.W. 1999. Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J. Chromatogr. B Biomed. Sci. Appl. 732: 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Tuerk, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Twaites, B., Alarcon, C.D., and Alexander, C. 2005. Synthetic polymers as drugs and therapeutics. J. Mater. Chem. 15: 441–455.

    Article  CAS  Google Scholar 

  • Ulbrich, K. and Šubr, V. 2004. Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliv. Rev. 56: 1023–1050.

    Article  PubMed  CAS  Google Scholar 

  • Ulbrich, K., Zacharieva, E.I., Obereigner, B., and Kopeček, J. 1980. Polymers containing enzymatically degradable bonds. 5. Hydrophilic polymers degradable by papain. Biomaterials 1:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Ulbrich, K., Strohalm, J., and Kopeček, J. 1981. Polymers containing enzymatically degradable bonds. 3. Poly[N-(2-hydroxypropyl) methacrylamide] chains connected by oligopeptide sequences cleavable by trypsin. Makromol. Chem. 182: 1917–1928.

    Article  Google Scholar 

  • Ulbrich, K., Koňák, Č., Tuzar, Z., and Kopeček, J. 1987. Solution properties of drug carriers based on poly[N-(2-hydroxypropyl) methacrylamide] containing biodegradable bonds. Makromol. Chem. 188: 1261–1272.

    Article  CAS  Google Scholar 

  • Ulbrich, K., Etrych, T., Chytil, P., Jelínková, M., and Říhová, B. 2003. HPMA copolymers with pH-controlled release of doxorubicin: in vitro cytotoxicity and in vivo antitumor activity. J. Control. Release 87: 33–47.

    Article  PubMed  CAS  Google Scholar 

  • van der Aa, M.A., Huth, U.S., Hafele, S.Y., Schubert, R., Oosting, R.S., Mastrobattista, E., Hennink, W.E., Peschka-Suss, R., Koning, G.A., and Crommelin, D.J. 2007. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm. Res. 24: 1590–1598.

    Article  PubMed  CAS  Google Scholar 

  • Vasey, P.A., Kaye, S.B., Morrison, R., Twelves, C., Wilson, P., Duncan, R., Thomson, A.H., Murray, L.S., Hilditch, T.E., Murray, T., Burtles, S., Fraier, D., Frigerio, E., Cassidy, J., and on behalf of the Cancer Research Campaign Phase I/II Committee. 1999. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin. Cancer Res. 5: 83–94.

    PubMed  CAS  Google Scholar 

  • Vasir, J.K. and Labhasetwar, V. 2005. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat. 4: 363–374.

    PubMed  CAS  Google Scholar 

  • Vasir, J.K., Reddy, M.K., and Labhasetwar, V.D. 2005. Nanosystems in drug targeting: opportunities and challenges. Curr. Nanosci. 1: 47–64.

    Article  ADS  CAS  Google Scholar 

  • Vega, J., Ke, S., Fan, Z., Wallace, S., Charsangavej, C., and Li, C. 2003. Targeting doxorubicin to epidermal growth factor receptors by site-specific conjugation of C225 to poly(L-glutamic acid) through a polyethylene glycol spacer. Pharm. Res. 20: 826–832.

    Article  PubMed  CAS  Google Scholar 

  • Vercauteren, R., Schacht, E., and Duncan, R. 1992. Effect of the chemical modification of dextran on the degradation by rat liver lysosomal enzymes. J. Bioact. Compat. Polym. 7: 346–357.

    Article  CAS  Google Scholar 

  • Vives, E., Brodin, P., and Lebleu, B. 1997. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272: 16010–16017.

    Article  PubMed  CAS  Google Scholar 

  • Wachters, F.M., Groen, H.J., Maring, J.G., Gietema, J.A., Porro, M., Dumez, H., de Vries, E.G., and van Oosterom, A.T. 2004. A phase I study with MAG-camptothecin intravenously administered weekly for 3 weeks in a 4-week cycle in adult patients with solid tumours. Br. J. Cancer 90: 2261–2267.

    PubMed  CAS  Google Scholar 

  • Wadia, J.S. and Dowdy, S.F. 2005. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv. Drug Deliv. Rev. 57: 579–596.

    Article  PubMed  CAS  Google Scholar 

  • Wadia, J.S., Stan, R.V., and Dowdy, S.F. 2004. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10: 310–315.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, E., Plank, C., Zatloukal, K., Cotten, M., and Birnstiel, M.L. 1992. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA 89: 7934–7938.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Wang, Y.S., Youngster, S., Grace, M., Bausch, J., Bordens, R., and Wyss, D.F. 2002. Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Deliv. Rev. 54: 547–570.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D., Miller, S., Sima, M., Kopečková, P., and Kopeček, J. 2003. Synthesis and evaluation of water-soluble polymeric bone-targeted drug delivery systems. Bioconjug. Chem. 14: 853–859.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Qu, X., Gray, A.I., Tetley, L., and Uchegbu, I.F. 2004a. Self-assembly of cetyl linear polyethylenimine to give micelles, vesicles, and dense nanoparticles. Macromolecules 37: 9114–9122.

    Article  ADS  CAS  Google Scholar 

  • Wang, X., Zhang, J., Song, A., Lebrilla, C.B., and Lam, K.S. 2004b. Encoding method for OBOC small molecule libraries using a biphasic approach for ladder-synthesis of coding tags. J. Am. Chem. Soc. 126: 5740–5749.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D., Miller, S.C., Kopečková, P., and Kopeček, J. 2005. Bone-targeting macromolecular therapeutics. Adv. Drug Deliv. Rev. 57: 1049–1076.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D., Miller, S.C., Shlyakhtenko, L.S., Portillo, A.M., Liu, X.M., Papangkorn, K., Kopečková, P., Lyubchenko, Y., Higuchi, W.I., Kopeček, J., 2007. Osteotropic Peptide that differentiates functional domains of the skeleton.Bioconjug. Chem. 18: 1375–1378.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D., Sima, M., Mosley, R.L., Davda, J.P., Tietze, N., Miller, S.C., Gwilt, P.R., Kopečková, P., and Kopeček, J. 2006. Pharmacokinetic and biodistribution studies of a bone-targeting drug delivery system based on N-(2-hydroxypropyl) methacrylamide copolymers. Mol. Pharm. 3: 717–725.

    Article  PubMed  CAS  Google Scholar 

  • Weissig, V. 2005. Targeted drug delivery to mammalian mitochondria in living cells. Expert Opin. Drug Deliv. 2: 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Westerlund-Wikstrom, B. 2000. Peptide display on bacterial flagella: principles and applications. Int. J. Med. Microbiol. 290: 223–230.

    PubMed  CAS  Google Scholar 

  • Willhite, S.L., Goebel, S.R., and Scoggin, J.A. 1998. Raloxifene provides an alternative for osteoporosis prevention. Ann. Pharmacother. 32: 834–837.

    Article  PubMed  CAS  Google Scholar 

  • Willis, M.C., Collins, B.D., Zhang, T., Green, L.S., Sebesta, D.P., Bell, C., Kellogg, E., Gill, S.C., Magallanez, A., Knauer, S., Bendele, R.A., Gill, P.S., Janjic, N. 1998. Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug. Chem. 9: 573–582 (erratum, 633).

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. and Szostak, J.W. 1998. Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem. Biol. 5: 609–617.

    Article  PubMed  CAS  Google Scholar 

  • Wiwattanapatapee, R., Carreno-Gomez, B., Malik, N., and Duncan, R. 2000. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm. Res. 17: 991–998.

    Article  PubMed  CAS  Google Scholar 

  • Yanjarappa, M.J., Gujraty, K.V., Joshi, A., Saraph, A., and Kane, R.S. 2006. Synthesis of copolymers containing an active ester of methacrylic acid by RAFT: controlled molecular weight scaffolds for biofunctionalization. Biomacromolecules 7: 1665–1670.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D., Peng, P., Dharap, S.S., Wang, Y., Mehlig, M., Chandna, P., Zhao, H., Filpula, D., Yang, K., Borowski, V., Zhang, Z., and Minko, T. 2005. Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. J. Control. Release 110: 90–102.

    Article  PubMed  CAS  Google Scholar 

  • Zanta, M.A., Belguise-Valladier, P., and Behr, J.P. 1999. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA 96: 91–96.

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pan, H., Kopecek, J. (2008). Multifunctional Water-Soluble Polymers for Drug Delivery. In: Torchilin, V. (eds) Multifunctional Pharmaceutical Nanocarriers. Fundamental Biomedical Technologies, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76554-9_4

Download citation

Publish with us

Policies and ethics