Skip to main content

Advertisement

Log in

Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

We have previously shown that laminin-8, a vascular basement membrane component, was overexpressed in human glioblastomas multiforme and their adjacent tissues compared to normal brain. Increased laminin-8 correlated with shorter glioblastoma recurrence time and poor patient survival making it a potential marker for glioblastoma diagnostics and prediction of disease outcome. However, laminin-8 therapeutic potential was unknown because the technology of blocking the expression of multi-chain complex proteins was not yet developed. To inhibit the expression of laminin-8 constituents in glioblastoma in vitro and in vivo, we used Polycefin, a bioconjugate drug delivery system based on slime-mold Physarum polycephalum-derived poly(malic acid). It carries an attached transferrin receptor antibody to target tumor cells and to deliver two conjugated morpholino antisense oligonucleotides against laminin-8 α4 and β1 chains. Polycefin efficiently inhibited the expression of both laminin-8 chains by cultured glioblastoma cells. Intracranial Polycefin treatment of human U87MG glioblastoma-bearing nude rats reduced incorporation of both tumor-derived laminin-8 chains into vascular basement membranes. Polycefin was thus able to simultaneously inhibit the expression of two different chains of a complex protein. The treatment also significantly reduced tumor microvessel density (p  <  0.001) and area (p  <  0.001) and increased animal survival (p  <  0.0004). These data suggest that laminin-8 may be important for glioblastoma angiogenesis. Polycefin, a versatile nanoscale drug delivery system, was suitable for in vivo delivery of two antisense oligonucleotides to brain tumor cells causing a reduction of glioblastoma angiogenesis and an increase of animal survival. This system may hold promise for future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hallmann R, Horn N, Selg M et al (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85:979–1000

    Article  CAS  PubMed  Google Scholar 

  2. Fujiwara H, Gu J, Sekiguchi K (2004) Rac regulates integrin-mediated endothelial cell adhesion and migration on laminin-8. Exp Cell Res 292:67–77

    Article  CAS  PubMed  Google Scholar 

  3. Ljubimova JY, Lakhter AJ, Loksh A et al (2001) Overexpression of α4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res 61:5601–5610

    CAS  PubMed  Google Scholar 

  4. Ljubimova JY, Fugita M, Khazenzon NM et al (2004) Association between laminin-8 and glial tumor grade, recurrence, and patient survival. Cancer 101:604–612

    Article  PubMed  Google Scholar 

  5. Fujita M, Khazenzon NM, Bose S et al (2005) Overexpression of β1 chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Res 7:411–421

    Article  CAS  Google Scholar 

  6. Khazenzon NM, Ljubimov AV, Lakhter AJ et al (2003) Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro. Mol Cancer Ther 2:985–994

    CAS  PubMed  Google Scholar 

  7. Torchilin VP, Lukyanov AN (2003) Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today 8:259–266

    Article  CAS  PubMed  Google Scholar 

  8. Peterson CM, Shiah J, Sun Y et al (2003) HPMA copolymer delivery of chemotherapy and photodynamic therapy in ovarian cancer. Adv Exp Med Biol 519:101–123

    Article  CAS  PubMed  Google Scholar 

  9. Maeda H, Fang J, Inutsuka T et al (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319–328

    Article  CAS  PubMed  Google Scholar 

  10. Satchi-Fainaro R, Puder M, Davies JW et al (2004) Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med 10:255–261

    Article  CAS  PubMed  Google Scholar 

  11. Lee BS, Vert M, Holler E (2002) Water-soluble aliphatic polyesters: poly(malic acid)s. In: Doi Y, Steinbüchel A, (ed) Biopolymers, vol 3a. Wiley-VCH, New York, pp 75–103

  12. Gasslmaier B, Holler E (1997). Specificity and direction of depolymerization of β-poly(L-malate) catalysed by polymalatase from Physarum polycephalum. Fluorescence labeling at the carboxy-terminus of β-poly(L-malate). Eur J Biochem 250:308–314

    Article  CAS  PubMed  Google Scholar 

  13. Domurado D, Fournié P, Braud C et al (2003) In vivo fates of degradable poly(β-malic acid), and of its precursor, malic acid. J Bioact Compat Pol 18:23–32

    Article  CAS  Google Scholar 

  14. Lee BS, Fujita M, Khazenzon NM et al (2006) Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(β-L-malic acid) for drug delivery. Bioconjug Chem 17:317–326

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Zhang YF, Bryant J et al (2004) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10:3667–3677

    Article  CAS  PubMed  Google Scholar 

  16. Troncoso P, Ortiz AM, Dominguez J et al (2005) Use of FTY 720 and ICAM-1 antisense oligonucleotides for attenuating chronic renal damage secondary to ischemia-reperfusion injury. Transplant Proc 37:4284–4288

    Article  CAS  PubMed  Google Scholar 

  17. Kutryk MJ, Foley DP, van den Brand M et al (2002) Local intracoronary administration of antisense oligonucleotide against c-myc for the prevention of in-stent restenosis: results of the randomized investigation by the Thoraxcenter of antisense DNA using local delivery and IVUS after coronary stenting (ITALICS) trial. J Am Coll Cardiol 39:281–287

    Article  CAS  PubMed  Google Scholar 

  18. Lambert DL, Malik N, Shepherd L et al (2001) Localization of c-Myb and induction of apoptosis by antisense oligonucleotide c-Myb after angioplasty of porcine coronary arteries. Arterioscler Thromb Vasc Biol 21:1727–1732

    CAS  PubMed  Google Scholar 

  19. Yoshizumi T, Yonemitsu Y, Ikeda Y et al (2006) Tumor necrosis factor-a antisense transfer remarkably improves hepatic graft viability. Liver Int 26:451–456

    Article  CAS  PubMed  Google Scholar 

  20. Countryman RA, Kaban NL, Colombo PJ (2005) Hippocampal c-fos is necessary for long-term memory of a socially transmitted food preference. Neurobiol Learn Mem 84:175–183

    Article  CAS  PubMed  Google Scholar 

  21. Lai SK, Ng TK, Lau WK et al (2004) Selective knockdown of gene expression of N-methyl-D-aspartate receptor one ameliorates parkinsonian motor symptom in 6-hydroxydopamine-lesioned rats. Neurochem Int 45:11–22

    Article  CAS  PubMed  Google Scholar 

  22. Sasaki T, Mann K, Timpl R (2001) Modification of the laminin α4 chain by chondroitin sulfate attachment to its N-terminal domain. FEBS Lett 505:173–178

    Article  CAS  PubMed  Google Scholar 

  23. Rubio L, Burgos JS, Morera C et al (2000) Morphometric study of tumor angiogenesis as a new prognostic factor in nasopharyngeal carcinoma patients. Pathol Oncol Res 6:210–216

    Article  CAS  PubMed  Google Scholar 

  24. Chen B, Pogue BW, Zhou X et al (2005) Effect of tumor host microenvironment on photodynamic therapy in a rat prostate tumor model. Clin Cancer Res 11:720–727

    CAS  PubMed  Google Scholar 

  25. Ozawa MG, Yao VJ, Chanthery YH et al (2005) Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma. Cancer 104:2104–2115

    Article  CAS  PubMed  Google Scholar 

  26. de Jong JS, van Diest PJ, Baak JP (1995) Heterogeneity and reproducibility of microvessel counts in breast cancer. Lab Invest 73:922–926

    PubMed  Google Scholar 

  27. Gasinska A, Urbanski K, Adamczyk A et al (2002) Prognostic significance of intratumour microvessel density and haemoglobin level in carcinoma of the uterine cervix. Acta Oncol 41:437–443

    Article  PubMed  Google Scholar 

  28. Sirica AE, Gainey TW (1997) A new rat bile ductular epithelial cell culture model characterized by the appearance of polarized bile ducts in vitro. Hepatology 26:537–549

    CAS  PubMed  Google Scholar 

  29. Kadoya Y, Yamashina S (1989) Intracellular accumulation of basement membrane components during morphogenesis of rat submandibular gland. J Histochem Cytochem 37:1387–1392

    CAS  PubMed  Google Scholar 

  30. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  CAS  PubMed  Google Scholar 

  31. Jeffes EW, Zhang JG, Hoa N et al (2005) Antiangiogenic drugs synergize with a membrane macrophage colony-stimulating factor-based tumor vaccine to therapeutically treat rats with an established malignant intracranial glioma. J Immunol 174:2533–2543

    CAS  PubMed  Google Scholar 

  32. Ruoslahti E (2004) Vascular zip codes in angiogenesis and metastasis. Biochem Soc Trans 32:397–402

    Article  CAS  PubMed  Google Scholar 

  33. Ningaraj NS, Rao MK, Black KL (2003) Adenosine 5′-triphosphate-sensitive potassium channel-mediated blood-brain tumor barrier permeability increase in a rat brain tumor model. Cancer Res 63:8899–8911

    CAS  PubMed  Google Scholar 

  34. Fulda S, Wick W, Weller M et al (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8:808–815

    CAS  PubMed  Google Scholar 

  35. Storm PB, Renard VM, Moriarity JL et al (2004) Systemic BCNU enhances the efficacy of local delivery of a topoisomerase I inhibitor against malignant glioma. Cancer Chemother Pharmacol 54:361–367

    Article  CAS  PubMed  Google Scholar 

  36. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    Article  CAS  PubMed  Google Scholar 

  37. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. Takako Sasaki, Max-Planck-Institut für Biochemie, Martinsried, Germany, for a gift of polyclonal antibody to laminin α4 chain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Y. Ljubimova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, M., Khazenzon, N.M., Ljubimov, A.V. et al. Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 9, 183–191 (2006). https://doi.org/10.1007/s10456-006-9046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-006-9046-9

Keywords

Navigation