Skip to main content

Robustness in Biological Systems: A Provisional Taxonomy

  • Chapter
Complex Systems Science in Biomedicine

Abstract

Biology is a domain of tension: on the one hand, biology is concerned with transformation and the generation of diversity; on the other, biology is concerned with the persistence of improbable structural regularities. The historical sciences in biology, principally evolution, have focused on change. The mechanistic sciences in biology, principally medicine, have focused on stability. Robustness, as a research program, aims to uncover those evolved mechanisms promoting the persistence of regularities. Here I organize mechanisms of robustness into a phenomenological taxonomy, grouping biological mechanisms into principles of robust organization. These include: Redundancy, Purging, Feedback, Modularity, Spatial Compartmentalization, Distributed Processing, and the Extended Phenotype. I present case studies in which mechanisms representative of each principle are described. These case studies serve to illustrate the ubiquity of specialized robustness mechanisms in all complex biosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

6. References

  1. Aeyels D, Lamnabhi-Lagarrigue F, Schaft AJvd, Nonlinear Control Network. 1999. Stability and stabilization of nonlinear systems. Springer, London.

    Google Scholar 

  2. Albert R, Jeong H, Barabasi AL. 2000. Error and attack tolerance of complex networks. Nature 406:378–382.

    Article  CAS  PubMed  Google Scholar 

  3. Alon U, Surette MG, Barkai N, Leibler S. 1999. Robustness in bacterial chemotaxis. Nature 397:168–171.

    Article  PubMed  CAS  Google Scholar 

  4. Ancel LW, Fontana W. 2000. Plasticity, evolvability, and modularity in RNA. J Exp Zool 288:242–283.

    Article  PubMed  CAS  Google Scholar 

  5. Barkai N, Leibler S. 1997. Robustness in simple biochemical networks. Nature 387:913–917.

    Article  PubMed  CAS  Google Scholar 

  6. Calabretta R, Nolfi S, Parisi D, Wagner GP. 1998. Emergence of functional modularity in robots. In From animals to animats, pp. 497–504. Ed. R Pfeifer, B Blumberg, J-A Meyer, SW Wilson. MIT Press, Cambridge.

    Google Scholar 

  7. Chomsky N. 1981. Principles and parameters in syntactic theory. In Explanations in linguistics, pp. 32–75. Ed. N Hornstein, D Lightfoot. Longman, London.

    Google Scholar 

  8. Constantino JN, Todd RD. 2000. Genetic structure of reciprocal social behavior. Am J Psychiatry 157:2043–2045.

    Article  PubMed  CAS  Google Scholar 

  9. Darwin C. 1859. On the origin of the species by means of natural selection, or, the preservation of favoured races in the struggle for life. J. Murray, London.

    Google Scholar 

  10. Darwin C. 1874. The descent of man, and selection in relation to sex. A.L. Burt, New York.

    Google Scholar 

  11. Dawkins R. 1982. The extended phenotype: the gene as the unit of selection. Freeman, San Francisco.

    Google Scholar 

  12. Emanuel P, Leff E. 1979. Introduction to feedback control systems. McGraw-Hill, New York.

    Google Scholar 

  13. Erwin DH. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci USA 98:5399–5403.

    Article  PubMed  CAS  Google Scholar 

  14. Falconer DS, Mackay TFC. 1996. Introduction to quantitative genetics. Essex, England, Longman.

    Google Scholar 

  15. Fontana W. 2002. Modelling “evo-devo” with RNA. Bioessays 24:1164–1177.

    Article  PubMed  CAS  Google Scholar 

  16. Goldberg E. 1995. Rise and fall of modular orthodoxy. J Clin Exp Neuropsychol 17:193–208.

    PubMed  CAS  Google Scholar 

  17. Gould SJ. 2002. The structure of evolutionary theory. Harvard UP, Cambridge.

    Google Scholar 

  18. Grassly NC, Von Haeseler A, Krakauer DC. 2000. Error, population structure and the origin of diverse sign systems. J Theor Biol 206:369–378.

    Article  PubMed  CAS  Google Scholar 

  19. Hanski I. 2001. Spatially realistic theory of metapopulation ecology. Naturwissenschaften 88:372–381.

    Article  PubMed  CAS  Google Scholar 

  20. Hertz J, Krogh A, Palmer RG. 1991. Introduction to the theory of neural computation. Addison-Wesley, Redwood City, CA.

    Google Scholar 

  21. Hurst LD, Randerson JP. 2000. Dosage, deletions and dominance: simple models of the evolution of gene expression. J Theor Biol 205:641–647.

    Article  PubMed  CAS  Google Scholar 

  22. Jacquez JA. 1985. Compartmental analysis in biology and medicine. U Michigan P, Ann Arbor.

    Google Scholar 

  23. Jansen VAA, de Roos A. 2000. The role of space in reducing predator-prey cycles. In The geometry of ecological interactions, pp. 183–200. Ed. U Dieckmann, R Law, JAJ Metz. Cambridge UP, Cambridge.

    Google Scholar 

  24. Joanisse MF, Seidenberg MS. 1999. Impairments in verb morphology after brain injury: a connectionist model. Proc Natl Acad Sci USA 96:7592–7597.

    Article  PubMed  CAS  Google Scholar 

  25. Kepler TB, Elston TC. 2001. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81:3116–3136.

    PubMed  CAS  Google Scholar 

  26. Kimura M, Ohta T, Aoki K. 1985. Population genetics and molecular evolution: papers marking the sixtieth birthday of Motoo Kimura. Japan Scientific Societies Press, Tokyo; Springer, New York.

    Google Scholar 

  27. Krakauer DC, Nowak MA. 1999. Evolutionary preservation of redundant duplicated genes. Semin Cell Dev Biol 10:555–559.

    Article  PubMed  CAS  Google Scholar 

  28. Krakauer DC. 2000. Evolving cell death in the virus-infected nervous system. Trends Neurosci 23:611–612.

    Article  PubMed  CAS  Google Scholar 

  29. Krakauer DC, Sasaki A. 2002. Noisy clues to the origin of life. Proc R Soc Lond B Biol Sci 269:2423–2428.

    Article  Google Scholar 

  30. Krakauer DC, Page KM, Sealfon S. 2002. Module dynamics of the GnRH signal transduction network. J Theor Biol 218:457–470.

    PubMed  CAS  Google Scholar 

  31. Krakauer DC, Plotkin JB. 2002. Redundancy, antiredundancy, and the robustness of genomes. Proc Natl Acad Sci USA 99:1405–1409.

    Article  PubMed  CAS  Google Scholar 

  32. Krakauer DC, Plotkin JB. 2004. Principles and parameters of molecular robustness. In Robust design: a repertoire for biology, ecology and engineering, pp. 71–103. Ed. E Jen. Oxford UP, Oxford.

    Google Scholar 

  33. Ay N, Krakauer DC. 2005. Information geometry of robust biological networks. SFI Preprint.

    Google Scholar 

  34. Levin SA, Grenfell B, Hastings A, Perelson AS. 1997. Mathematical and computational challenges in population biology and ecosystems science. Science 275:334–343.

    Article  PubMed  CAS  Google Scholar 

  35. Levine AJ. 1993. The tumor suppressor genes. Annu Rev Biochem 62:623–651.

    Article  PubMed  CAS  Google Scholar 

  36. Levine AJ. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.

    Article  PubMed  CAS  Google Scholar 

  37. Matsumoto K, Nakayama T, Sakai H, Tanemura K, Osuga H, Sato E, Ikeda JE. 1999. Neuronal apoptosis inhibitory protein (NAIP) may enhance the survival of granulosa cells thus indirectly affecting oocyte survival. Mol Reprod Dev 54:103–111.

    Article  PubMed  CAS  Google Scholar 

  38. May RM. 1973. Stability and complexity in model ecosystems. Monogr Popul Biol 6:1–235.

    PubMed  CAS  Google Scholar 

  39. Maynard Smith J. 1982. Evolution and the theory of games. Cambridge UP, Cambridge.

    Google Scholar 

  40. McClelland JL, Artificial Intelligence and Psychology Project. 1988. Parallel distributed processing: implications for cognition and development. Departments of Computer Science and Psychology, Carnegie Mellon University, Learning Research and Development Center, University of Pittsburgh.

    Google Scholar 

  41. McClelland JL, Rumelhart DE. 1988. Explorations in parallel distributed processing: a handbook of models, programs, and exercises. MIT Press, Cambridge.

    Google Scholar 

  42. Murray JD, Stanley EA, Brown DL. 1986. On the spatial spread of rabies among foxes. Proc R Soc Lond B Biol Sci 229:111–150.

    Article  PubMed  CAS  Google Scholar 

  43. Nowak MA, Krakauer DC, Dress A. 1999. An error limit for the evolution of language. Proc R Soc Lond B Biol Sci 266:2131–2136.

    Article  CAS  Google Scholar 

  44. Nowak MA, Plotkin JB, Krakauer DC. 1999. The evolutionary language game. J Theor Biol 200:147–162.

    Article  PubMed  CAS  Google Scholar 

  45. Nowak MA, Krakauer DC. 1999. The evolution of language. Proc Natl Acad Sci USA 96:8028–8033.

    Article  PubMed  CAS  Google Scholar 

  46. Plotkin JB, Nowak MA. 2002. The different effects of apoptosis and DNA repair on tumorigenesis. J Theor Biol 214:453–467.

    Article  PubMed  CAS  Google Scholar 

  47. Ponte E, Bracco E, Faix J, Bozzaro S. 1998. Detection of subtle phenotypes: the case of the cell adhesion molecule csA in Dictyostelium. Proc Natl Acad Sci USA 95:9360–9365.

    Article  PubMed  CAS  Google Scholar 

  48. Prior IA, Hancock JF. 2001. Compartmentalization of Ras proteins. J Cell Sci 114:1603–1608.

    PubMed  CAS  Google Scholar 

  49. Raff RA, Sly BJ. 2000. Modularity and dissociation in the evolution of gene expression territories in development. Evol Dev 2:102–113.

    Article  PubMed  CAS  Google Scholar 

  50. Raff EC, Raff RA. 2000. Dissociability, modularity, evolvability. Evol Dev 2:235–237.

    Article  PubMed  CAS  Google Scholar 

  51. Segel LA, Bar-Or RL. 1999. On the role of feedback in promoting conflicting goals of the adaptive immune system. J Immunol 163:1342–1349.

    PubMed  CAS  Google Scholar 

  52. Segel LA. 2001. Controlling the immune system: diffuse feedback via a diffuse informational network. Novartis Found Symp 239:31–40, discussion 40–51.

    Article  PubMed  CAS  Google Scholar 

  53. Schlosser G, Wagner GP. 2004. Modularity in development and evolution. Chicago UP, Chicago.

    Google Scholar 

  54. Simon H. 1962 The architecture of complexity. Proc Am Phil Soc 106:467–482.

    Google Scholar 

  55. Slotine JJ, Lohmiller W. 2001. Modularity, evolution, and the binding problem: a view from stability theory. Neural Netw 14:137–145.

    Article  PubMed  CAS  Google Scholar 

  56. Stearns S. 1998. Evolution in health and disease. Oxford UP, Oxford.

    Google Scholar 

  57. Tautz D. 1992. Redundancies, development and the flow of information. Bioessays 14:263–266.

    Article  PubMed  CAS  Google Scholar 

  58. Von Dassow G, Meir E, Munro EM, Odell GM. 2000. The segment polarity network is a robust developmental module. Nature 406:188–192.

    Article  Google Scholar 

  59. Von Dassow G, Odell GM. 2002. Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. J Exp Zool 294:179–215.

    Article  CAS  Google Scholar 

  60. Wagner A. 1994. Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization. Proc Natl Acad Sci USA 91:4387–4391.

    Article  PubMed  CAS  Google Scholar 

  61. Wagner A. 1996. Genetic redundancy caused by gene duplications and its evolution in networks of transcriptional regulators. Biol Cybern 74:557–567.

    PubMed  CAS  Google Scholar 

  62. Wagner GP, Altenberg L. 1996. Complex adapatations and the evolution of evolvability. Evolution 50:967–976.

    Article  Google Scholar 

  63. Westerhoff HV, Groen AK, Wanders RJ. 1984. Modern theories of metabolic control and their applications (review). Biosci Rep 4:1–22.

    Article  PubMed  CAS  Google Scholar 

  64. Winther RG. 2001. Varieties of modules: kinds, levels, origins, and behaviors. J Exp Zool 291:116–129.

    Article  PubMed  CAS  Google Scholar 

  65. Yi TM, Huang Y, Simon MI, Doyle J. 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97:4649–4653.

    Article  PubMed  CAS  Google Scholar 

  66. Jordan PC. 1979. Chemical kinetics and transport. Plenum Press, New York.

    Google Scholar 

  67. Pinker S. 1999. Words and rules. Perseus Publishing, Reading, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Krakauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Inc.

About this chapter

Cite this chapter

Krakauer, D.C. (2006). Robustness in Biological Systems: A Provisional Taxonomy. In: Deisboeck, T.S., Kresh, J.Y. (eds) Complex Systems Science in Biomedicine. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33532-2_6

Download citation

Publish with us

Policies and ethics