Skip to main content
Log in

Modern theories of metabolic control and their applications

Review

  • Published:
Bioscience Reports

Abstract

Existing, qualitative notions with respect to the way in which enzyme properties control metabolism are discussed in the light of the control analysis developed by H. Kacser and J. A. Burns ((1973) in: Rate Control of Biological Processes, Davies DD, ed., Cambridge University Press, pp. 63–104) and R. Heinrich and T. A. Rapoport ((1974) Eur. 3. Biochem.42, 89–95), and recent experimental data. Points at which the existing notions should be adjusted are: (i) Metabolic control is shared by enzymes rather than confined to one rate-limiting enzyme per pathway. (if) Whether an enzyme exercises strong control on a flux cannot be deduced solely from its own properties, nor is it directly related to its distance from equilibrium. With respect to metabolic control, enzymes should be classified into four groups, rather than two (reversible versus irreversible). (iii) The distribution of control among the enzymes depends on the metabolic conditions. (iv) Control structures of metabolic pathways probably differ with the function of that pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kacser H & Burns JA (1973) in: Rate Control of Biological Processes (Davies DD, ed), pp 65–104, Cambridge University Press.

  2. Heinrich R & Rapoport TA (1974) Eur. J. Biochem.42, 89–95.

    PubMed  Google Scholar 

  3. Rapoport TA, Heinrich R & Rapoport SM (1976) Biochem. J.154, 449–469.

    PubMed  Google Scholar 

  4. Flint HJ, Tateson RW, Barthelmess IB, Porteous DJ, Donachie WD & Kacser H (1981) Biochem. J.200, 231–246.

    PubMed  Google Scholar 

  5. Porteous DJ & Kacser H (1983) Biochem. Soc. Trans.11, 94–96.

    Google Scholar 

  6. Gellerich, FN, Bohnensack R & Kunz W (1983) Biochim. Biophys. Acta722, 381–391.

    PubMed  Google Scholar 

  7. Westerhoff HV & Van Dam K (1984) Mosaic Non-Equilibrium Thermodynamics of (the control of) energy metabolism, Elsevier, Amsterdam, in the press.

    Google Scholar 

  8. Groen AK, Wanders RJA, Westerhoff HV, Van der Meer R & Tager JM (1982) J. Biol. Chem.257, 2754–2757.

    PubMed  Google Scholar 

  9. Westerhoff HV, Groen AK & Wanders RJA (1983) Biochem. Soc. Trans.11, 90–91.

    Google Scholar 

  10. Wanders RJA, Groen AK, Van Roermund CWT & Tager JM (1984) Eur. J. Biochem., in press.

  11. Duszynski J, Groen AK, Wanders RJA, Vervoorn RC & Tager JM (1982) FEBS Lett.146, 262–265.

    PubMed  Google Scholar 

  12. Wanders RJA, Meijer AJ, Van Roermund CM, Groen AK, Lof C & Tager JM (1983) Biochem. Soc. Trans.11, 89–90.

    Google Scholar 

  13. Groen AK, Vervoorn RC & Tager JM (1983) In: Isolation and Characterization of Isolated Liver Cells (Harris RA & Cornell, NW, eds), pp 493–498, Elsevier Biomedical, New York.

    Google Scholar 

  14. Westerhoff HV, Colen A-M & Van Dam K (1983) Biochem. Soc. Trans.11, 81–85.

    PubMed  Google Scholar 

  15. Westerhoff HV (1983) Mosaic Non-Equilibrium Thermodynamics and the Control fo Biological Free-Energy Transduction, Gerja-Waarland, Academisch Proefschrift, University of Amsterdam.

  16. Groen AK, Van der Meer R, Westerhoff HV, Wanders RJA, Akerboom TPM & Tager JM (1982) In: Metabolic Compartmentation (Siess H, ed), pp 9–37, Academic Press, New York.

    Google Scholar 

  17. Tager JM, Wanders RJA, Groen AK, Kunz W, Bohnensack R, Küster U, Letko G, Böhme G, Duszynski J & Wojtczak L (1983) FEBS Lett.151, 1–9.

    PubMed  Google Scholar 

  18. Heinrich R, Rapoport SM & Rapoport TA (1977) Prog. Biophys. Mol. Biol.32, 1–83.

    PubMed  Google Scholar 

  19. Kohn MC, Whitley LM & Garfinkel D (1979) J. Theor. Biol.76, 437–452.

    PubMed  Google Scholar 

  20. Kohn MC & Chiang E (1982) J. Theor. Biol.98, 109–126.

    PubMed  Google Scholar 

  21. Heinrich R & Rapoport TA (1975) Biosystems7, 130–136.

    PubMed  Google Scholar 

  22. Heinrich R & Rapoport TA (1974) Symp. Biol. Hung.18, 173–212.

    Google Scholar 

  23. Porteous JW (1983) Biochem. Soc. Trans.11, 29–31.

    Google Scholar 

  24. Krebs HA (1957) Endeavour16, 125–132.

    Google Scholar 

  25. Weber G (1975) In: Mechanism of Action and Regulation of Enzymes, Proc. 9th FEBS Meeting vol 32 (Keleti T, ed), pp 237–251, North Holland Akademiai Kiado, Amsterdam, Budapest.

    Google Scholar 

  26. Newsholme EA (1980) FEBS Lett.117, K121-K134.

    PubMed  Google Scholar 

  27. Rolleston FS (1972) Curr. Top. Cell. Regul.5, 47–75.

    Google Scholar 

  28. Blackman FF (1905) Annals of Botany19, 281–295.

    Google Scholar 

  29. Pütter A (1914) Z. Allgem. Physiol.16, 574–627.

    Google Scholar 

  30. Holzer H (1953) In: Biologie und Wirkung der Fermente, 89–112.

  31. Bücher Th & Rüssmann W (1963) Angew. Chem.19, 881–893.

    Google Scholar 

  32. Higgins JJ (1965) In: Control of Energy Metabolism (Chance B, Estabrook RW & Williamson JR, eds), pp 13–46, Academic Press, New York.

    Google Scholar 

  33. Rapoport TA, Heinrich R, Jacobasch G & Rapoport SM (1974) Eur. J. Biochem.42, 107–120.

    PubMed  Google Scholar 

  34. Krebs HA (1969) Curr. Top. Cell. Regul.1, 45–55.

    Google Scholar 

  35. Newsholme EA & Crabtree B (1976) Biochem. Soc Symp.41, 61–109.

    PubMed  Google Scholar 

  36. Kacser H & Burns JA (1979) Biochem. Soc. Trans.7, 1149–1160.

    PubMed  Google Scholar 

  37. Harvey RJ (1978) J. Theor. Biol.74, 411–437.

    PubMed  Google Scholar 

  38. Kacser H (1983) Biochem. Soc. Trans.11, 35–40.

    PubMed  Google Scholar 

  39. Cornish-Bowden A (1975) J. Theor. Biol.51, 233–235.

    PubMed  Google Scholar 

  40. Savageau MA (1976) Biochemical Systems Analysis, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  41. Newsholme EA (1978) Biochem. Soc. Symp.43, 183–205.

    PubMed  Google Scholar 

  42. Ghosh R (1981) J. Theor. Biol.93, 395–401.

    PubMed  Google Scholar 

  43. Goldbeter A & Koshland DE Jr (1982) Quart. Rev. Biophys.15, 555–591.

    Google Scholar 

  44. Newsholme EA, Arch JRS, Brooks B & Surhold B (1983) Biochem. Soc. Trans.11, 52–56.

    PubMed  Google Scholar 

  45. Newsholme EA & Start, C (1973) Regulation in Metabolism, John Wiley & Sons, New York.

    Google Scholar 

  46. Hill TL (1977) Free Energy Transduction in Biology, Academic Press, New York.

    Google Scholar 

  47. Pietrobon D, Azzone GF & Walz D (1981) Eur. J. Biochem117, 389–394.

    PubMed  Google Scholar 

  48. Westerhoff HV & Dancshàzy Zs (1984) Trends Biochm. Sci., in the press.

  49. Westerhoff HV & Arents JC (1983) Biosci. Rep.4,

  50. Heinrich R & Rapoport SM (1983) Biochem. Soc. Trans.11, 31–35.

    PubMed  Google Scholar 

  51. Mitchell P (1966) Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin.

  52. Bohnensack R, Küster U & Letko G (1982) Biochim. Biophys. Acta680, 271–380.

    PubMed  Google Scholar 

  53. Heinrich R & Rapoport TA (1980) J. Theor. Biol.86, 279–313.

    PubMed  Google Scholar 

  54. Kacser H & Burns J (1981) Genetics97, 639–666.

    PubMed  Google Scholar 

  55. Ottaway JH & McMinn CL (1980) In: Enzyme Regulation and Mechanism of Action (Midler P & Hess B, eds), pp 69–82, Pergamon Press, New York.

    Google Scholar 

  56. Corkey BE, Martin-Requero A, Walajtys-Rode E, Williams RJ & Williamson JR (1982) J. Biol. Chem.257, 9668–9676.

    PubMed  Google Scholar 

  57. Lemasters JJ, Grunwald R & Billica WH (1982) Biophys. J.37, 406a.

    Google Scholar 

  58. Ataullakhanov FI, Vitvitsky VM, Zhabotinsky AM, Pichugin AV, Platonova OV, Kholodenko BN & Ehrlich LI (1981) Eur. J. Biochem.115, 359–365.

    PubMed  Google Scholar 

  59. Colowick SP (1973) In: The Enzymes (Boyer PD, ed) vol 9, pp 1–48, Academic Press, New York.

    Google Scholar 

  60. Stocchi V, Magnani M Canestrari F, Dacha M & Fornaini G (1981) J. Biol. Chem.256, 7856–7862.

    PubMed  Google Scholar 

  61. Bloxham DP & Lardy HA (1973) In: The Enzymes (Boyer PD, ed), vol 8, pp 239–278, Academic Press, New York.

    Google Scholar 

  62. Van Dam K, Westerhoff HV, Rutgers M, Bode JA, De Jonge PC, Bos MM & Van den Berg G (1981) In: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (Palmieri F, Quagliariello E, Siliprandi N & Slater EC, eds), pp 389–397, Elsevier, Amsterdam.

    Google Scholar 

  63. Hue L (1981) Adv. Enzym.52, 247–331.

    Google Scholar 

  64. Savageau MA (1971) Arch. Biochem. Biophys.145, 612–621.

    PubMed  Google Scholar 

  65. Arch JRS & Newsholme EA (1976) Biochem J.158, 603–622.

    PubMed  Google Scholar 

  66. Crabtree B & Newsholme EA (1978) Eur. J. Biochem.89, 19–22.

    PubMed  Google Scholar 

  67. Davies JI & Williams PA (1971) J. Theor. Biol.30, 41–57.

    PubMed  Google Scholar 

  68. Savageau MA (1971) Nature229, 542–544.

    PubMed  Google Scholar 

  69. Haldane JBS (1932) Enzymes, Longmans, Green & Co., London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westerhoff, H.V., Groen, A.K. & Wanders, R.J.A. Modern theories of metabolic control and their applications. Biosci Rep 4, 1–22 (1984). https://doi.org/10.1007/BF01120819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120819

Keywords

Navigation