Skip to main content

Robustness: The Explanatory Picture

  • Chapter
  • First Online:
Biological Robustness

Part of the book series: History, Philosophy and Theory of the Life Sciences ((HPTL,volume 23))

Abstract

Robustness is a pervasive property of living systems, instantiated at all levels of the biological hierarchies (including ecology). As several other usual concepts in evolutionary biology, such as plasticity or dominance, it has been questioned from the viewpoint of its consequences upon evolution as well as from the side of its causes, on an ultimate or proximate viewpoint. It is therefore equally the explanandum for some enquiries in evolution in ecology, and the explanans for some interesting evolutionary phenomena such as evolvability. This epistemological fact instantiates general property of biological evolution that I call “explanatory reversibility”. In this chapter, I attempt to systematize the explanatory projects regarding robustness by distinguishing a set of epistemological questions. Are they the various expressions of one general project with specific key concepts and methods, or very disparate epistemic projects, unified by the mere homonymy of the term “robustness”? More precisely, are there specific kinds of explanations suited to explain robustness? Finally, how does robustness as an explanandum connect with other explananda in which evolutionists have been massively interested recently such as complexity, modularity or evolvability? After having initially explored various meanings of the concept of robustness and surveyed its instances in biology, I will propose a distinction between mechanical and structural explanations of robustness in evolutionary and functional biology. Then, among the latter, I will highlight the class of “topological explanations,” and the subclass of explanations based on networks, as a major explanatory tool to address robustness. Focusing on evolutionary issues, I will eventually address the “explanatory reversibility” of robustness and consider its relation to key evolutionary concepts that are also explanatorily revertible such as modularity, evolvability and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Canguilhem (1977) for a historical account.

  2. 2.

    See Huneman 2017, §3, for an account of explanations relying on the Central Limit Theorem as paradigmatic of structural explanations .

  3. 3.

    This may be sometimes confusing because evolutionary biology includes many questions about functions, and there is even a way of making sense of the very concept of functions in terms of evolutionary facts, which is widely shared by philosophers under the label “etiological view of function” (Wright 1973; see Huneman 2013, for a current overview). However in the present context the label “functional” should not be misleading.

  4. 4.

    For an alternative view of the evolution of mutational robustness see Van Nimwegen et al. (1999).

  5. 5.

    See Nicoglou (2015) for an account of those controversies.

  6. 6.

    Many definitions of « module » exist, and for a given system, many partition into ‘modules’ are possible, as Winther (2011) argues. Here, I take modules following the famous definition by Simon (1969), namely, within a system of interacting elements, a subset of elements that do interact within itself more than with other elements. Networks provide a way to identify modules, by running clustering analyses and pinpointing the major clusters.

  7. 7.

    A tentative way to do that is Huneman (2015b).

References

  • Alon, U. (2007). Network motifs: Theory and experimental approaches. Nature Reviews Genetics, 8, 450–461.

    Article  Google Scholar 

  • Baker, A. (2009). Mathematical explanation in science. British Journal for the Philosophy of Science, 60, 611–633.

    Article  Google Scholar 

  • Barton, N. (2010). Mutation and the evolution of recombination. Philosophical Transactions of the Royal Society B, 365, 1281–1294.

    Article  Google Scholar 

  • Bassett, D., & Muldoon, S. (2016). Network and multilayer network approaches to understanding human brain dynamics. Philosophy of Science, 83(5), 710–720.

    Article  Google Scholar 

  • Batterman, R. (2010). On the explanatory role of mathematics in empirical science. British Journal for the Philosophy of Science, 61, 1–25.

    Article  Google Scholar 

  • Bernard, C. (1858). Leçons sur la physiologie et la pathologie du système nerveux. Paris: Baillière.

    Google Scholar 

  • Brandon, R., & McShea, D. (2011). Biology’s first law. Chicago: University of Chicago Press.

    Google Scholar 

  • Canguilhem, G. (1977). La formation du concept de régulation biologique aux XVIII et XIXe siècles. In Idéologie et rationalité dans l’histoire des sciences de la vie. Paris: Vrin.

    Google Scholar 

  • Cannon, W. B. (1932). The wisdom of the body. London: Norton.

    Book  Google Scholar 

  • Cooper, G. J. (2004). The science of the struggle for existence: On the foundations of ecology. New York: Cambridge University Press.

    Google Scholar 

  • Craver, C. (2007). Explaining the brain. New York: Oxford University Press.

    Book  Google Scholar 

  • Craver, C., & Darden, L. (2013). In search for mechanisms: Discovery across the life sciences. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Cupal, J., Stadler, P., & Schuster, P. (1999). Topology in phenotype space. In J. Giegerich (Ed.), Computer science in biology (pp. 9–15). Dordrecht: Springer.

    Google Scholar 

  • Darden, L. (2006). Reasoning in biological discoveries: Essays on mechanisms, interfield relations, and anomaly resolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Davidson, E. H. (1986). Gene activity in early development. Orlando: Academic.

    Google Scholar 

  • de Visser, J. A. G. M., Hermisson, J., Wagner, G. P., Ancel Meyers, L., Bagheri-Chaichian, H., Blanchard, J. L., & Chao, L. (2003). Evolution and detection of genetic robustness. Evolution, 57, 1959–1972.

    Google Scholar 

  • Denamur, E., & Matic, I. (2006). Evolution of mutation rates in bacteria. Molecular Microbiology, 60, 820–827.

    Article  Google Scholar 

  • Dunne, J. (2006). The network structure of food webs. In M. Pascual & J. Dunne (Eds.), Ecological networks: Linking structure to dynamics in food webs. Oxford: Oxford University Press.

    Google Scholar 

  • Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002a). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5, 558–567.

    Article  Google Scholar 

  • Dunne, J. E., Williams, R. J., & Martinez, N. D. (2002b). Food web structure and network theory: The role of connectance and size. PNAS, 99, 12917–12922.

    Article  Google Scholar 

  • Edwards, A. W. F. (1994). The fundamental theorem of natural selection. Biological Reviews of the Cambridge Philosophical Society, 69(4), 443–474.

    Article  Google Scholar 

  • Eldredge, N. (1985). Unfinished synthesis: Biological hierarchies and modern evolutionary thought. New York: Oxford University Press.

    Google Scholar 

  • Elowitz, M. B., Levine, A. J., Siggia, E. D., et al. (2002). Stochastic gene expression in a single cell. Science, 297, 1183–1186.

    Article  Google Scholar 

  • Fisher, R. (1930). The genetical theory of natural selection. London: Methuen.

    Book  Google Scholar 

  • Fisher, R. (1932). The evolutionary modification of genetic phenomena. Proceedings of the 6th International Congress of Genetics, 1, 165–172.

    Google Scholar 

  • Fontana, W., Stadler, P. F., Bornberg-Bauer, E., Griesmacher, T., Hofacker, I. L., Tacker, M., et al. (1999). RNA folding and combinatory landscapes. Physics Review E, 47, 2083–2099.

    Article  Google Scholar 

  • Frank, S. A. (2009). The common patterns of nature. Journal of Evolutionary Biology, 22, 1563–1585.

    Article  Google Scholar 

  • Glennan, S. (1996). Mechanisms and the nature of causation. Erkenntnis, 44, 49–71.

    Article  Google Scholar 

  • Gouyon, P. H., Vienne, D., & Giraud, T. (2015). Sex and evolution. In T. Heams, P. Huneman, G. Lecointre, & M. Silberstein (Eds.), Handbook of evolutionary thinking in the sciences (pp. 499–502). Dordecht: Springer.

    Google Scholar 

  • Gross, J. L., & Tucker, T. W. (1987). Topological graph theory. Reading: Wiley Interscience.

    Google Scholar 

  • Holling, G. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

    Article  Google Scholar 

  • Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177(2), 213–245.

    Article  Google Scholar 

  • Huneman, P. (Ed.). (2013). Functions: selection and mechanisms. Dordrecht: Springer.

    Google Scholar 

  • Huneman, P. (2015a). Diversifying the picture of explanations in biological sciences: Ways of combining topology with mechanisms. Synthese. https://doi.org/10.1007/s11229-015-0808-z.

    Article  Google Scholar 

  • Huneman, P. (2015b). Redesigning the argument from design. Paradigmi, 33(2), 105–132.

    Article  Google Scholar 

  • Huneman, P. (2017). Outlines of a theory of structural explanations. Philosophical Studies. https://doi.org/10.1007/s11098-017-0887-4.

    Article  Google Scholar 

  • Ives, R., & Carpenter, J. (2007). Stability and diversity of ecosystems. Science, 317(5834), 58–62.

    Article  Google Scholar 

  • Jones, N. (2014). Bowtie structures, pathway diagrams, and topological explanation. Erkenntnis, 79, 1135.

    Article  Google Scholar 

  • Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A., & Berlow, E. L. (2016). How structured is the Entangled Bank? The Surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biology, 14(8), e1002527.

    Article  Google Scholar 

  • Kitano, H. (2004). Biological robustness. Nature Review Genetics, 5, 826–837.

    Article  Google Scholar 

  • Lange, M. (2013). Really statistical explanations and genetic drift. Philosophy of Science, 80(2), 169–188.

    Article  Google Scholar 

  • Lenton, T. (2016). Earth system science: A very short introduction. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Lesne, A. (2008). Robustness: Confronting lessons from physics and biology. Biological Reviews, 83, 509–532.

    Google Scholar 

  • Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54, 421–431.

    Google Scholar 

  • Lynch, M. (2010). Evolution of the mutation rate. Trends in Genetics, 26(8), 345–352.

    Article  Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.

    Article  Google Scholar 

  • Martin, G., & Lenormand, T. (2015). The fitness effect of mutations across environments: Fisher’s geometrical model with multiple optima. Evolution, 69, 1433–1447. https://doi.org/10.1111/evo.12671.

    Article  Google Scholar 

  • May, R. M. (1974). Stability and complexity in model ecosystems. Princeton: Princeton University Press.

    Google Scholar 

  • Maynard Smith, J. (1978). The evolution of sex. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mayr, E. (1961). Cause and effect in biology. Science, 134, 1501–1506.

    Article  Google Scholar 

  • McShea, D. (2005). The evolution of complexity without natural selection: A possible large-scale trend of the fourth kind. Paleobiology, 31(2), 146–156.

    Article  Google Scholar 

  • Minelli, A. (2017). Evolvability and its evolvability. In P. Huneman & D. Walsh (Eds.), Challenging the modern synthesis. New York: Oxford University Press.

    Google Scholar 

  • Montoya, J. M., & Solé, R. V. (2002). Small world patterns in food webs. Journal of Theoretical Biology, 214, 405–412.

    Article  Google Scholar 

  • Nicoglou, A. (2015). The evolution of phenotypic plasticity: Genealogy of a debate in genetics. Studies in History and Philosophy of Biological and Biomedical Sciences C, 50, 67.

    Article  Google Scholar 

  • Nicoglou, A. (ms). Plasticity in biology.

    Google Scholar 

  • Okasha, S. (2008). Fisher’s “fundamental theorem” of natural selection: A philosophical analysis. British Journal for the Philosophy of Science, 59(3), 319–351.

    Article  Google Scholar 

  • Orr, H. A. (2000). Adaptation and the cost of complexity (PDF). Evolution, 54, 13–20.

    Article  Google Scholar 

  • Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307, 321–326.

    Article  Google Scholar 

  • Pimm, S. (2002). Food webs (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Pradeu, T. (2012). The limits of the self: Immunology and biological identity. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Revilla-i-Domingo, I., Domingo, R., & Davidson, E. (2003). Developmental gene network analysis. International Journal of Developmental Biology, 47, 695–703.

    Google Scholar 

  • Romano, L. A., & Gray, G. A. (2003). Conservation of endo 16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation. Development, 130(17), 4187–4199.

    Article  Google Scholar 

  • Sameer, S., Bajikar, S. S., & Janes, K. A. (2012). Multiscale models of cell signaling. Annals of Biomedical Engineering, 40, 2319–2327.

    Article  Google Scholar 

  • Sarkar, S. (1999). From the Reaktionsnorm to the adaptive norm: The reaction norm, 1909–1960. Biology and Philosophy, 14, 235–252.

    Article  Google Scholar 

  • Scheiner, S. M. (1993). Genetics and evolution of phenotypic plasticity. Annual Re- view of Ecology and Systematics, 24, 35e68.

    Google Scholar 

  • Schuster, P. (2002). A testable genotype-phenotype map: Modeling evolution of RNA molecules. In M. Lässig & A. Valleriani (Eds.), Lecture notes in physics, 585 (pp. 55–81). Dordrecht: Springer.

    Google Scholar 

  • Schuster, P., Fontana, W., Stadler, P. F., & Hofacker, I. (1994). From sequences to shapes and back: A case study in RNA secondary structures. Proceedings of the Royal Society of London Series B, 255, 279–284.

    Article  Google Scholar 

  • Simon, H. (1969). The sciences of the artificial. Cambridge: MIT Press.

    Google Scholar 

  • Sniegowski, P. D., Gerrish, P. J., Johnson, T., & Shaver, A. (2000). The evolution of mutation rates: Separating causes from consequences. Bioessays, 22, 1057–1066.

    Article  Google Scholar 

  • Solé, R., & Valverde, S. (2006). Are network motifs the spandrels of cellular complexity? TREE, 21(8), 419–422.

    Google Scholar 

  • Solé, R., & Valverde, S. (2008). Spontaneous emergence of modularity in cellular networks. Journal of the Royal Society Interface, 5, 129–133.

    Article  Google Scholar 

  • Stadler, B., & Stadler, P. (2004). The topology of evolutionary biology. In C. Ciobanu (Ed.), Modeling in molecular biology. Natural computing series (pp. 267–286). Dordrecht: Springer.

    Google Scholar 

  • Stadler, P., Stadler, P., Wagner, G., & Fontana, W. (2001). The topology of the possible: formal spaces underlying patterns of evolutionary change. Journal of Theoretical Biology, 213(2), 241–274.

    Article  Google Scholar 

  • Strogatz, S. (2001). Exploring complex networks. Nature, 410, 268–276.

    Article  Google Scholar 

  • Sultan, S. E., & Stearns, S. C. (2005). Environmentally contingent variation: Phenotypic plasticity and norms of reaction. In B. Hallgrimsson & B. Hall (Eds.), Variation. Boston: Elsevier Academic Press.

    Google Scholar 

  • Taddei, F., Matic, I., & Radman, M. (1995). Cyclic AMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 92, 11736–11740.

    Article  Google Scholar 

  • Tilman, D. (1996). Biodiversity: Population versus ecosystem stability. Ecology, 77(2), 350–363.

    Article  Google Scholar 

  • Van Nimwegen, E., Crutchfield, J., & Huynen, M. (1999). Neutral evolution of mutational robustness. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9716–9720.

    Article  Google Scholar 

  • Via, S., & Lande, R. (1985). Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution, 39, 505–522.

    Article  Google Scholar 

  • Waddington, C. (1940). Organisers and genes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wagner, A. (2005a). Robustness and evolvability in living systems. Princeton: Princeton University Press.

    Google Scholar 

  • Wagner, A. (2005b). Distributed robustness versus redundancy as causes of mutational robustness. Bioessays, 27, 176–188.

    Article  Google Scholar 

  • Wagner, G., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50(3), 967–976.

    Article  Google Scholar 

  • Walsh, D. (2015). Variance, invariance and statistical explanation. Erkenntnis, 80(3), 469–489.

    Article  Google Scholar 

  • Watts, D. (2003). Six degrees of separation. New York: Norton.

    Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics in “small-world” networks. Nature, 393, 440–442.

    Article  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Williams, G. C. (1975). Sex and evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Winther, R. (2011). Part-whole science. Synthese, 178, 397–427.

    Article  Google Scholar 

  • Woodward, J. (2013). II–Mechanistic explanation: Its scope and limits. Aristotelian Society Supplementary, 87(1), 39–65.

    Article  Google Scholar 

  • Wright, L. (1973). Functions. Philosophical Review, 85, 70–86.

    Google Scholar 

  • Wright, S. (1932). « The roles of mutation, inbreeding, crossbreeding, and selection in evolution » Proceedings of the sixth international congress on genetics (pp. 355–366).

    Google Scholar 

  • Yodzis, P. (1989). Introduction to theoretical ecology. New York: Harper & Row.

    Google Scholar 

Download references

Acknowledgements

The author thanks Anya Plutynski, Nick Jones, Carl Craver and Matteo Mossio for helpful comments and discussions on the arguments presented in this paper. Many thanks to the editors of the volume, whose careful reading improved the manuscript. I also thank Andrew McFarland for his thorough language-check. I am finally grateful to an anonymous reviewer for constructive criticism. This work was possible thanks to the grant ANR--13-BSH3-0007 Explabio and the LIA CNRS Paris “Montreal ECIEB.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huneman, P. (2018). Robustness: The Explanatory Picture. In: Bertolaso, M., Caianiello, S., Serrelli, E. (eds) Biological Robustness. History, Philosophy and Theory of the Life Sciences, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01198-7_5

Download citation

Publish with us

Policies and ethics