Skip to main content

Finite Element Modeling of Cellular Mechanics Experiments

  • Chapter
  • First Online:
Cellular and Biomolecular Mechanics and Mechanobiology

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 4))

Abstract

The mechanical and biological response of cells to various loading regimes is a subject of great interest in the research field of biomechanics. Extensive utilization of different cellular mechanics experimental designs has been made over the years in order to provide better insight regarding the mechanical behavior of cells, and the mechanisms underlying the transduction of the applied loads into biological reactions. These experimental protocols have limited ability in directly measuring different mechanical parameters (e.g. internal cellular strains and stresses). In addition, they are very costly and involve highly complex apparatuses and experimental designs. Thus, further understating of cellular response can be achieved by means of computational models, such as the finite element (FE) method. FE modeling of cells is an emerging direction in the research field of cellular mechanics. Its application has been rapidly growing over the last decade due to its ability to quantify deformations, strains and stresses in and around cells, thus providing basic understating of the mechanical state of cells and allowing identification of mechanical properties of cells and cellular organelles when coupled with appropriate experiments. In this chapter, we review the two-dimensional (2D) and three-dimensional (3D) reported cell models of various cell types, subjected to different applied mechanical stimuli, e.g. compression, micropipette aspiration, indentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baaijens, F.P., Trickey, W.R., Laursen, T.A., Guilak, F.: Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte. Ann. Biomed. Eng. 33, 494–501 (2005)

    Article  Google Scholar 

  2. Bursa, J., Fuis, V.: Finite element simulation of mechanical tests of individual cells. In: IFMBE Proceedings WC 2009, pp. 16–19 (2009)

    Google Scholar 

  3. Bursa, J., Lebis, R., Janicek, P.: FE models of stress–strain states in vascular smooth muscle cells. Technol. Health Care 14, 311–320 (2006)

    Google Scholar 

  4. Caille, N., Thoumine, O., Tardy, Y., Meister, J.J.: Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177–187 (2002)

    Article  Google Scholar 

  5. Dailey, H.L., Ricles, L.M., Yalcin, H.C., Ghadiali, S.N.: Image-based finite element modeling of alveolar epithelial cell injury during airway reopening. J. Appl. Physiol. 106, 221–232 (2009)

    Article  Google Scholar 

  6. De Santis, G., Boschetti, F., Lennon, A. B., Prendergast, P.J., Verdonck, P., Verhegghe, B.: How an eukaryotic cell senses the substrate stiffness? An extrapolation using a finite element model with cytoskeleton modelled as tensegrity structure. In: Proceedings of the ASME 2009 Summer Bioengineering Conference, Resort at Squaw Creek, Lake Tahoe, CA, USA, 17–21 June 2009

    Google Scholar 

  7. Deguchi, S., Fukamachi, H., Hashimoto, K., Lio, K., Tsujioka, K.: Measurements and finite element modeling of the force balance in the vertical section of adhering vascular endothelial cells. J. Mech. Behav. Biomed. Mater. 2, 173–185 (2009)

    Article  Google Scholar 

  8. Ferko, M.C., Bhatnagar, A., Garcia, M.B., Butler, P.J.: Finite-element stress analysis of a multi-component model of sheared and focally-adhered endothelial cells. Ann. Biomed. Eng. 35, 208–223 (2007)

    Article  Google Scholar 

  9. Ferko, M.C., Pattersom, B.P., Butler, P.J.: High-resolution solid modeling of biological samples imaged with 3D fluorescence microscopy. Microsc. Res. Tech. 69, 648–655 (2006)

    Article  Google Scholar 

  10. Frisch, T., Thoumine, O.: Predicting the kinetics of cell spreading. J. Biomech. 35, 1137–1141 (2002)

    Article  Google Scholar 

  11. Gladilin, E., Micoulet, A., Hisseini, B., Rohr, K., Spatz, J., Elis, R.: 3D finite element analysis of uniaxial cell stretching: from image to insight. Phys. Biol. 4, 104–113 (2007)

    Article  Google Scholar 

  12. Huang, W., Anvari, B., Torres, J., Lebaron, R., Athanasiou, K.: Temporal effects of cell adhesion on mechanical characteristics of the single chondrocyte. J. Orthop. Res. 21, 88–95 (2003)

    Article  Google Scholar 

  13. Jean, R.P., Gray, D.S., Spector, A.A., Chen, C.S.: Characterization of the nuclear deformation caused by changes in endothelial cell shape, J. Biomech. Eng. 126(5): 552–558 (2004)

    Article  Google Scholar 

  14. Jean, R.P., Chen, C.S., Spector, A.A.: Finite-element analysis of the adhesion–cytoskeleton–nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model. J. Biomech. Eng. 127, 594–600 (2005)

    Article  Google Scholar 

  15. Leipzig, N.D., Athanasiou, K.A.: Static compression of single chondrocytes catabolically modifies single-cell gene expression. Biophys. J. 94, 2412–2422 (2008)

    Article  Google Scholar 

  16. Lenaerts, L., van Lenthe, G.H.: Multi-level patient-specific modeling of the proximal femur. A promising tool to quantify the effect of osteoporosis treatment. Philos. Trans. A Math. Phys. Eng. Sci. 367, 2079–2093 (2009)

    Article  Google Scholar 

  17. Linder-Ganz, E., Shabshin, N., Itzchak, Y., Gefen, A.: Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach. J. Biomech. 40, 1443–1454 (2007)

    Article  Google Scholar 

  18. McGarry, J.P.: Characterization of cell mechanical properties by computational modeling of parallel plate compression. Ann. Biomed. Eng. 37, 2317–2375 (2009)

    Article  Google Scholar 

  19. McGarry, J.G., Prendergast, P.J.: A three-dimensional finite element model of an adherent eukaryotic cell. Eur. Cell Mater. 16, 27–34 (2004)

    Google Scholar 

  20. Mijailovich, S.M., Kojic, M., Zivkovic, M., Fabry, B., Fredberg, J.J.: A finite element model of cell deformation during magnetic bead twisting. J. Appl. Physiol. 93, 1429–1436 (2002)

    Google Scholar 

  21. Miyazaki, H., Hasegawa, Y., Hayashi, K.: Tensile properties of contractile and synthetic vascular smooth muscle cells. JSME Int. J. 45, 870–879 (2002)

    Article  Google Scholar 

  22. Ofek, G., Natoli, R.M., Athanasiou, K.A.: In situ mechanical properties of the chondrocyte cytoplasm and nucleus. J. Biomech. 42, 873–877 (2009)

    Article  Google Scholar 

  23. Ohayon, J., Tracqui, P.: Computation of adherent cell elasticity for critical cell-bead geometry in magnetic bead twisting. Ann. Biomed. Eng. 33, 131–141 (2005)

    Article  Google Scholar 

  24. Peeters, E.A.G., Oomens, C.W.J., Boute, C.V.C., Bader, D.L., Baaijens, F.P.T.: Mechanical and failure properties of single attached cells under compression. J. Biomech. 38, 1685–1693 (2005)

    Article  Google Scholar 

  25. Pistoia, W., van Rietbergen, B., Lochmuller, E.M., Lill, C.A., Eckstein, F., Ruegsegger, P.: Image-based micro-finite-element modeling for improved distal radius strength diagnosis: moving from bench to bedside. J. Clin. Densitom. 7, 153–160 (2004)

    Article  Google Scholar 

  26. Portnoy, S., Yizhar, Z., Shabshin, N., Itzchak, Y., Kristal, A., Dotan-Marom, Y., Siev-Ner, I., Gefen, A.: Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee. J. Biomech. 41, 1897–1909 (2008)

    Article  Google Scholar 

  27. Salvi, J.D., Lim, J.Y., Donahue, H.J.: Finite element analyses of fluid flow conditions in cell culture. Tissue Eng. Part C Methods 16(4): 661–670 (2010)

    Article  Google Scholar 

  28. Slomka, N., Gefen, A.: Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics. J. Biomech. (2010). doi:10.1016/j.jbiomech.2010.02.011

  29. Slomka, N., Or-Tzadikario, S., Sassun, D., Gefen, A.: Membrane-stretch-induced-cell death in deep tissue injury: computer model studies. Cell Mol. Bioeng. 2, 118–132 (2009)

    Article  Google Scholar 

  30. Zhao, R., Wyss, K., Simmons, C.A.: Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration. J. Biomech. 42, 2768–2773 (2009)

    Article  Google Scholar 

  31. Zeng, D., Juzkiw, T., Read, A.T., Chan, D.W., Glucksberg, M.R., Ethier, C.R., Johnson, M.: Young’s modulus of elasticity of Schlemm’s canal endothelial cells. Biomech. Model. Mechanobiol. 9, 19–33 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Gefen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slomka, N., Gefen, A. (2010). Finite Element Modeling of Cellular Mechanics Experiments. In: Gefen, A. (eds) Cellular and Biomolecular Mechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_31

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14217-8

  • Online ISBN: 978-3-642-14218-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics