Skip to main content

Expression Specificity of Disease-Associated lncRNAs: Toward Personalized Medicine

  • Chapter
  • First Online:
Long Non-coding RNAs in Human Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 394))

Abstract

Long noncoding RNAs (lncRNAs) perform diverse regulatory functions in transcription, translation‚ chromatin modification, and cellular organization. Misregulation of lncRNAs is found linked to various human diseases. Compared to protein-coding RNAs‚ lncRNAs are more specific to organs, tissues, cell types, developmental stages, and disease conditions‚ making them promising candidates as diagnostic and prognostic biomarkers and as gene therapy targets. The functional annotation of mammalian genome (FANTOM) consortium utilizes cap analysis of gene expression (CAGE) method to quantify genome-wide activities of promoters and enhancers of coding and noncoding RNAs across a large collection of human and mouse tissues‚ cell types‚ diseases, and time-courses. The project discovered widespread transcription of major lncRNA classes, including lncRNAs derived from enhancers‚ bidirectional promoters‚ antisense lncRNAs‚ and repetitive elements. Results from FANTOM project enable assessment of lncRNA expression specificity across tissue and disease conditions‚ based on differential promoter and enhancer usage. More than 85 % of disease-related SNPs are within noncoding regions and are strikingly overrepresented in enhancer and promoter regions, suggestive of the importance of lncRNA loci at these SNP harboring regions to human diseases. In this chapter‚ we discuss lncRNA expression specificity‚ review diverse functions of disease-associated lncRNAs‚ and present perspectives on their potential therapeutic applications for personalized medicine. The future development of lncRNA applications relies on technologies to identify and validate their functions‚ structures‚ and mechanisms. Comprehensive understanding of genome-wide interaction networks of lncRNAs with proteins, chromatins, and other RNAs in regulating cellular processes will allow personalized medicine to use lncRNAs as highly specific biomarkers in diagnosis‚ prognosis, and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CAGE:

Cap analysis of gene expression

ChIP:

Chromatin immunoprecipitation

ENCODE:

Encyclopedia of DNA elements

eRNAs:

Enhancer RNAs

FANTOM:

Functional annotation of mammalian genome

GWAS:

Genome-wide association study

lncRNAs:

Long noncoding RNAs

miRNAs:

MicroRNAs

TSS:

Transcription start sites

RNA-seq:

RNA sequencing

References

  • Akalin A et al (2009) Transcriptional features of genomic regulatory blocks. Genome Biol 10(4):R38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersson R et al (2014a) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461

    Article  CAS  PubMed  Google Scholar 

  • Andersson R et al (2014b) Nuclear stability and transcriptional directionality separate functionally distinct RNA species. Nat Commun 5:5336

    Article  CAS  PubMed  Google Scholar 

  • Arner E et al (2015) Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347(6225):1010–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzalin CM, Lingner J (2014) Telomere functions grounding on TERRA firma. Trends in Cell Biol 25(1):29–36

    Google Scholar 

  • Bassett AR et al (2014) Considerations when investigating lncRNA function in vivo. In: Weigel D (ed) vol 3

    Google Scholar 

  • Bernstein BE et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    Article  CAS  Google Scholar 

  • Bertone P et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306(5705):2242–2246

    Article  CAS  PubMed  Google Scholar 

  • Carninci P et al (2003) Targeting a complex transcriptome: the construction of the mouse full-length cDNA encyclopedia. Genome Res 13(6b):1273–1289

    Article  PubMed  PubMed Central  Google Scholar 

  • Carninci P et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Carninci P et al (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38(6):626–635

    Article  CAS  PubMed  Google Scholar 

  • Carrieri C et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491(7424):454–457

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty D et al (2012) Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nat Methods 9(4):360–362

    Article  CAS  PubMed  Google Scholar 

  • Cheetham SW et al (2013) Long noncoding RNAs and the genetics of cancer. Br J Cancer 108(12):2419–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G et al (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41(Database issue):D983–D986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu C et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44(4):667–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark MB et al (2012) Genome-wide analysis of long noncoding RNA stability. Genome Res 22(5):885–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Core LJ et al (2014) Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet 46(12):1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H et al (2014) The human long noncoding RNA lnc-IL7R regulates the inflammatory response. Eur J Immunol 44(7):2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Silanes IL et al (2014) Identification of TERRA locus unveils a telomere protection role through association to nearly all chromosomes. Nat Commun 5

    Google Scholar 

  • de Wit E, de Laat W (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev 26(1):11–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng Q et al (2014) Prognostic value of long non-coding RNA HOTAIR in various cancers. PLoS ONE 9(10):e110059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y et al (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505(7485):696–700

    Article  CAS  PubMed  Google Scholar 

  • Djebali S et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engreitz JM et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147):1237973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engreitz JM et al (2014) RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159(1):188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group (2014) Recommendations from the EGAPP Working Group: does PCA3 testing for the diagnosis and management of prostate cancer improve patient health outcomes? Genet Med 16(4):338–346

    Google Scholar 

  • Faghihi MA et al (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase expression. Nature Med 14(7):723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatemi RP, Velmeshev D, Faghihi MA (2014) De-repressing LncRNA-targeted genes to upregulate gene expression: focus on small molecule therapeutics. Mol Ther Nucleic Acids 3:e196

    Article  PubMed  PubMed Central  Google Scholar 

  • Faulkner GJ et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41(5):563–571

    Article  CAS  PubMed  Google Scholar 

  • Forrest AR et al (2014) A promoter-level mammalian expression atlas. Nature 507(7493):462–470

    Article  CAS  PubMed  Google Scholar 

  • Fort A et al (2014) Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet 46:558–566

    Article  CAS  PubMed  Google Scholar 

  • Francia S et al (2012) Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488(7410):231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge X et al (2013) Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol 30(2):588

    Article  PubMed  CAS  Google Scholar 

  • Gofrit ON et al (2014) DNA based therapy with diphtheria toxin-A BC-819: a phase 2b marker lesion trial in patients with intermediate risk nonmuscle invasive bladder cancer. J Urol 191(6):1697–1702

    Article  CAS  PubMed  Google Scholar 

  • Gong J et al (2014) lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res 43(Database issue):D181–186

    Google Scholar 

  • Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutschner T et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3):1180–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberle V et al (2014) Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507(7492):381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafner M et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall LL et al (2014) Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156(5):907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halley P et al (2014) Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep 6(1):222–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J et al (2014) Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol 11(7):829–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9(6):e1003569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helwak A, Tollervey D (2014) Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat Protocols 9(3):711–728

    Article  CAS  PubMed  Google Scholar 

  • Hirose T et al (2014) NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell 25(1):169–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyde SC et al (2008) CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 26(5):549–551

    Article  CAS  PubMed  Google Scholar 

  • Iyer MK et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208

    Google Scholar 

  • Jendrzejewski J et al (2012) The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci USA 109(22):8646–8651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q et al (2014) LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res 43(Database issue):D193–196

    Google Scholar 

  • Johnson R, Guigo R (2014) The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20(7):959–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamori-Katayama M et al (2011) Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res 21(7):1150–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama S et al (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566

    Article  PubMed  Google Scholar 

  • Kelley D, Rinn J (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13(11):R107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keskin H et al (2014) Transcript-RNA-templated DNA recombination and repair. Nature 515(7527):436–439

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim J-S (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334

    Article  CAS  PubMed  Google Scholar 

  • Kim T et al (2014) Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci USA 111(11):4173–4178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunarso G et al (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42(7):631–634

    Article  CAS  PubMed  Google Scholar 

  • Lam MT et al (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498(7455):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latos PA et al (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338(6113):1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Lau C-C et al (2014) Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell 25(3):335–349

    Article  CAS  PubMed  Google Scholar 

  • Li L, Chang HY (2014) Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol 24(10):594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z et al (2014a) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci USA 111(3):1002–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2014b) Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 5(8):2318–2329

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Mao YS et al (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13(1):95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Bejar O et al (2013) Pint lincRNA connects the p53 pathway with epigenetic silencing by the polycomb repressive complex 2. Genome Biol 14(9):R104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng L et al (2014) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518(7539):409–412

    Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR et al (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105(2):716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modarresi F et al (2012) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30(5):453–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15(6):423–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15:469

    Article  CAS  PubMed  Google Scholar 

  • Mousavi K et al (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51(5):606–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Necsulea A et al (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505(7485):635–640

    Article  CAS  PubMed  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996

    Article  CAS  PubMed  Google Scholar 

  • Park C et al (2014) lncRNAtor: a comprehensive resource for functional investigation of long non-coding RNAs. Bioinformatics 30(17):2480–2485

    Google Scholar 

  • Pennisi E (2014) Lengthy RNAs earn respect as cellular players. Science 344(6188):1072

    Article  CAS  PubMed  Google Scholar 

  • Porro A et al (2014) Functional characterization of the TERRA transcriptome at damaged telomeres. Nat Commun 5

    Google Scholar 

  • Prensner JR et al (2014) PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res 74(6):1651–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pringle IA et al (2012) Rapid identification of novel functional promoters for gene therapy. J Mol Med (Berl) 90(12):1487–1496

    Article  CAS  Google Scholar 

  • Quek XC et al (2014) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43(Database issue):D168–173

    Google Scholar 

  • Quinn JJ et al (2014) Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat Biotechnol 32(9):933–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  • Rinn J, Guttman M (2014) RNA and dynamic nuclear organization. Science 345(6202):1240–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russ AP, Lampel S (2005) The druggable genome: an update. Drug Discovery Today 10(23–24):1607–1610

    Article  PubMed  Google Scholar 

  • Schug J et al (2005) Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol 6(4):R33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Severin J, Lizio M, Harshbarger J (2014) Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat Biotechnol 32(3):217–219

    Google Scholar 

  • Shukla R et al (2013) Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153(1):101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon MD et al (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci USA 108(51):20497–20502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelzer Y et al (2014) The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet 46(6):551–557

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto Y et al (2012) Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol 13(8):R67

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki H et al (2009) The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 41(5):553–562

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Carninci P (2014) Widespread genome transcription: new possibilities for RNA therapies. Biochem Biophys Res Commun 452(2):294–301

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H et al (2012) 5’ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 7(3):542–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thai P et al (2013) Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol 49(2):204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorsen K et al (2011) Tumor-specific usage of alternative transcription start sites in colorectal cancer identified by genome-wide exon array analysis. BMC Genom 12(1):505

    Article  CAS  Google Scholar 

  • Trimarchi T et al (2014) Genome-wide mapping and characterization of notch-regulated long noncoding RNAs in acute leukemia. Cell 158(3):593–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volders PJ et al (2015) An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res 43(Database issue):D174–D180

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh AL et al (2014) Long noncoding RNAs and prostate carcinogenesis: the missing ‘linc’? Trends Mol Med 20(8):428–436

    Article  CAS  PubMed  Google Scholar 

  • Wan G et al (2013) A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J 32(21):2833–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Y et al (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505(7485):706–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2014) Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516:405–409

    Google Scholar 

  • Wang P et al (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344(6181):310–313

    Article  CAS  PubMed  Google Scholar 

  • Ward LD, Kellis M (2012) Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science 337(6102):1675–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang JF et al (2014) Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24(5):513–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C et al (2013) NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res 42(Database issue):D98–D103

    Google Scholar 

  • Yang F et al (2013) Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell 49(6):1083–1096

    Article  CAS  PubMed  Google Scholar 

  • Yildirim E et al (2013) Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152(4):727–742

    Article  CAS  PubMed  Google Scholar 

  • Yu TY, Kao YW, Lin JJ (2014) Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc Natl Acad Sci USA 111(9):3377–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue F et al (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515(7527):355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang EB et al (2014a) Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 5(8):2276–2292

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang EB et al (2014b) P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis 5:e1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We especially thank FANTOM consortium for generating unprecedented amount of data for promoter-centric analysis in thousands of samples. We apologize for not being able to mention all important, related work from colleagues. This work was supported by a research grant from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) to the RIKEN Center for Life Science Technologies and the Human Frontier Science Program to P.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Carninci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nguyen, Q., Carninci, P. (2015). Expression Specificity of Disease-Associated lncRNAs: Toward Personalized Medicine. In: Morris, K. (eds) Long Non-coding RNAs in Human Disease. Current Topics in Microbiology and Immunology, vol 394. Springer, Cham. https://doi.org/10.1007/82_2015_464

Download citation

Publish with us

Policies and ethics