Skip to main content

Challenges of Long Non Coding RNAs in Human Disease Diagnosis and Therapies: Bio-Computational Approaches

  • Chapter
  • First Online:
Handbook of Machine Learning Applications for Genomics

Part of the book series: Studies in Big Data ((SBD,volume 103))

  • 449 Accesses

Abstract

Long non-coding RNAs (lncRNAs) are the diverse and prevalent classes of cellular transcripts. Currently numerous research advocates that lncRNAs are the fundamental regulatory elements exist at each level of cell and molecular physiology, where their variations are linked with several human diseases. Here we highlighted and summarised the significant roles of lncRNAs in diverse human diseases, their application as biomarkers element and effective databases using the available bioinformatics resources. Subsequently, we also discuss the specific challenges and potential strategies for its clinical applications in light of computational biology. Therefore, it may conclusive that this study of lncRNAs not only enhances the knowledge a novel aspect for public repositories, dedicated resources, and other effective tools for functional analysis of lncRNAs linked human diseases moreover it definitely supports and reveals the wider range of opportunities for innovative treatment in future days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mattick, J.S.: The genetic signatures of noncoding RNAs. PLoS Genet. 5(4), e1000459 (2009)

    Google Scholar 

  2. Consortium, E.P.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146), 799 (2007)

    Google Scholar 

  3. Mattick, J., Makunin, I.: Non-coding. RNA Hum. Mol. Genet 15, R17–R29 (2006)

    Article  Google Scholar 

  4. Brannan, C.I., et al.: The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 10(1), 28–36 (1990)

    Google Scholar 

  5. Brockdorff, N., et al.: Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351(6324), 329–331 (1991)

    Google Scholar 

  6. Brown, C.J., et al.: A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349(6304), 38–44 (1991)

    Google Scholar 

  7. Jarroux, J., Morillon, A., Pinskaya, M.: History, discovery, and classification of lncRNAs. Long Non Cod. RNA Biol. 2017, 1–46 (2017)

    Google Scholar 

  8. Erdmann, V.A., et al.: Collection of mRNA-like non-coding RNAs. Nucleic Acids Res. 27(1), 192–195 (1999)

    Article  Google Scholar 

  9. Collins, L., et al.: Regulation of long non-coding RNAs and MicroRNAs in heart disease: insight into mechanisms and therapeutic approaches. Front. Physiol. 11, 798 (2020)

    Article  Google Scholar 

  10. Yoon, J.-H., et al.: LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47(4), 648–655 (2012)

    Article  Google Scholar 

  11. Gong, C., Maquat, L.E.: lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470(7333), 284–288 (2011)

    Google Scholar 

  12. Paneru, B., et al.: Crosstalk among lncRNAs, microRNAs and mRNAs in the muscle ‘degradome’ of rainbow trout. Sci. Rep. 8(1), 1–15 (2018)

    Article  Google Scholar 

  13. De Santa, F., et al.: A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8(5), e1000384 (2010)

    Google Scholar 

  14. Li, Y., et al.: Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis. Clin. Chem. 65(6), 798–808 (2019)

    Article  Google Scholar 

  15. Chen, C., et al.: The roles of long noncoding RNAs in myocardial pathophysiology. Biosci. Rep. 39(11), BSR20190966 (2019)

    Google Scholar 

  16. Zhou, X., et al.: Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci. Rep. 5(1), 1–10 (2015)

    Google Scholar 

  17. Terracciano, D., et al.: Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: new architects in cancer prognostic biomarkers. Transl. Res. 184, 108–117 (2017)

    Article  Google Scholar 

  18. Xuan, L., et al.: Circulating long non-coding RNA s NRON and MHRT as novel predictive biomarkers of heart failure. J. Cell Mol. Med. 21(9), 1803–1814 (2017)

    Article  Google Scholar 

  19. Di Mauro, V., Barandalla-Sobrados, M., Catalucci, D.: The noncoding-RNA landscape in cardiovascular health and disease. Non-coding RNA Res. 3(1), 12–19 (2018)

    Google Scholar 

  20. Li, J., Xuan, Z., Liu, C.: Long non-coding RNAs and complex human diseases. Int. J. Mol. Sci. 14(9), 18790–18808 (2013)

    Article  Google Scholar 

  21. Askarian-Amiri, M.E., et al.: SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17(5), 878–891 (2011)

    Article  Google Scholar 

  22. Petrovics, G., et al.: Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 23(2), 605–611 (2004)

    Article  Google Scholar 

  23. Chung, S., et al.: Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci. 102(1), 245–252 (2011)

    Article  Google Scholar 

  24. Faghihi, M.A., et al.: Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med. 14(7), 723–730 (2008)

    Article  Google Scholar 

  25. Mus, E., Hof, P.R., Tiedge, H.: Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. 104(25), 10679–10684 (2007)

    Article  Google Scholar 

  26. Broadbent, H.M., et al.: Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum. Mol. Genet. 17(6), 806–814 (2008)

    Article  Google Scholar 

  27. Khalil, A.M., et al.: A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. PLoS One 3(1), e1486 (2008)

    Google Scholar 

  28. Sonkoly, E., et al.: Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene PRINS. J. Biolog. Chem. 280(25), 24159–24167 (2005)

    Article  Google Scholar 

  29. Wang, F., et al.: UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 582(13), 1919–1927 (2008)

    Article  Google Scholar 

  30. Shirasawa, S., et al.: SNPs in the promoter of a B cell-specific antisense transcript, SAS-ZFAT, determine susceptibility to autoimmune thyroid disease. Hum. Mol. Genet. 13(19), 2221–2231 (2004)

    Article  Google Scholar 

  31. Ishii, N., et al.: Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet. 51(12), 1087–1099 (2006)

    Article  Google Scholar 

  32. Moseley, M.L., et al.: Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat. Genet. 38(7), 758–769 (2006)

    Article  Google Scholar 

  33. Zhu, Y., et al.: ncRAN, a newly identified long noncoding RNA, enhances human bladder tumor growth, invasion, and survival. Urology 77(2), 510. e1–510. e5 (2011)

    Google Scholar 

  34. Castelnuovo, M., et al.: An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB J. 24(10), 4033–4046 (2010)

    Article  Google Scholar 

  35. Tanaka, K., et al.: Loss of imprinting of long QT intronic transcript 1 in colorectal cancer. Oncology 60(3), 268–273 (2001)

    Article  Google Scholar 

  36. Calin, G.A., et al.: Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12(3), 215–229 (2007)

    Article  MathSciNet  Google Scholar 

  37. Maida, Y., et al.: An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461(7261), 230–235 (2009)

    Google Scholar 

  38. Pasic, I., et al.: Recurrent focal copy-number changes and loss of heterozygosity implicate two noncoding RNAs and one tumor suppressor gene at chromosome 3q13. 31 in osteosarcoma. Cancer Res. 70(1), 160–171 (2010)

    Google Scholar 

  39. Yoon, J.-H., Abdelmohsen, K., Gorospe, M. (2014). Functional interactions among microRNAs and long noncoding RNAs. In: Seminars in cell & developmental biology. Elsevier (2014)

    Google Scholar 

  40. Szymański, M., Erdmann, V.A., Barciszewski, J.: Noncoding regulatory RNAs database. Nucleic Acids Res. 31(1), 429–431 (2003)

    Article  Google Scholar 

  41. Sacco, L.D., Baldassarre, A., Masotti, A.: Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int. J. Mol. Sci. 13(1), 97–114 (2012)

    Google Scholar 

  42. Fang, S., et al.: NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 46(D1), D308–D314 (2018)

    Article  Google Scholar 

  43. Chakraborty, S., et al. (2014) LncRBase: an enriched resource for lncRNA information. PLoS One 9(9), e108010 (2014)

    Google Scholar 

  44. Ma, L., et al.: LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs. Nucleic Acids Res. 43(D1), D187–D192 (2015)

    Article  Google Scholar 

  45. Ma, L., et al.: LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 47(D1), D128–D134 (2019)

    Article  Google Scholar 

  46. Josset, L., et al.: Annotation of long non-coding RNAs expressed in collaborative cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts. RNA Biol. 11(7), 875–890 (2014)

    Article  Google Scholar 

  47. Bhartiya, D., et al. (2013) lncRNome: a comprehensive knowledgebase of human long noncoding RNAs. Database 2013 (2013)

    Google Scholar 

  48. Miao, Y.-R., et al.: lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res. 46(D1), D276–D280 (2018)

    Article  Google Scholar 

  49. Bao, Z., et al. (2019) LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res. 47(D1), D1034-D1037 (2019)

    Google Scholar 

  50. Gao, Y., et al. (2019) Lnc2Cancer v2. 0: updated database of experimentally supported long non-coding RNAs in human cancers. Nucleic Acids Res. 47(D1), D1028–D1033 (2019)

    Google Scholar 

  51. Amaral, P.P., et al. (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 39(Database issue), D146–D151 (2011)

    Google Scholar 

  52. Risueño, A., et al.: GATExplorer: genomic and transcriptomic explorer; mapping expression probes to gene loci, transcripts, exons and ncRNAs. BMC Bioinf. 11(1), 1–12 (2010)

    Article  Google Scholar 

  53. Pang, K.C., et al. (2007) RNAdb 2.0—an expanded database of mammalian non-coding RNAs. Nucleic Acids Res. 35(Database issue), D178–D182 (2007)

    Google Scholar 

  54. Gardner, P.P., et al. (2009) Rfam: updates to the RNA families database. Nucleic Acids Res. 37(Database issue), D136–D140 (2009)

    Google Scholar 

  55. He, S., et al. (2008) NONCODE v2.0: decoding the non-coding. Nucleic Acids Res. 36(Database issue), D170–D172 (2008)

    Google Scholar 

  56. Mituyama, T., et al. (2009) The functional RNA database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res. 37(Database issue), D89–D92 (2009)

    Google Scholar 

  57. Chen, G., et al.: LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41(D1), D983–D986 (2012)

    Article  Google Scholar 

  58. Cabili, M.N., et al.: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18), 1915–1927 (2011)

    Article  Google Scholar 

  59. Zhang, Y., et al.: ncRNAimprint: a comprehensive database of mammalian imprinted noncoding RNAs. RNA 16(10), 1889–1901 (2010)

    Article  Google Scholar 

  60. Yamasaki, C., et al. (2008) The H-Invitational Database (H-InvDB), a comprehensive annotation resource for human genes and transcripts. Nucleic Acids Res. 36(Database issue), D793–D799 (2008)

    Google Scholar 

  61. Liao, Q., et al. (2011) ncFANs: a web server for functional annotation of long non-coding RNAs. Nucleic Acids Res. 39(suppl_2), W118–W124 (2011)

    Google Scholar 

  62. Zhou, B., et al.: EVLncRNAs: a manually curated database for long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res. 46(D1), D100–D105 (2018)

    Article  Google Scholar 

  63. Roy, S.S., Hsu, C.H., Wen, Z.H., Lin, C.S., Chakraborty, C.: A hypothetical relationship between the nuclear reprogramming factors for induced pluripotent stem (iPS) cells generation–bioinformatic and algorithmic approach. Med. Hypotheses 76(4), 507–511 (2011)

    Article  Google Scholar 

  64. Chakraborty, C., Sekhar Roy, S., Hsu, C.H., Wen, Z.H., Lin, C.S.: Network building of proteins in a biochemical pathway: a computational biology related model for target discovery and drug-design. Curr. Bioinform. 5(4), 290–295 (2010)

    Article  Google Scholar 

  65. Chakraborty, C., Roy, S.S., Hsu, M.J., Agoramoorthy, G.: Network analysis of transcription factors for nuclear reprogramming into induced pluripotent stem cell using bioinformatics. Cell Journal (Yakhteh) 15(4), 332 (2014)

    Google Scholar 

  66. Chakraborty, C., Roy, S.S., Hsu, M.J., & Agoramoorthy, G. (2011). Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: a network-based protein-protein interaction analysis. PLoS One 6(1), e16388

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, M., Sharma, A.R., Chakraborty, C. (2022). Challenges of Long Non Coding RNAs in Human Disease Diagnosis and Therapies: Bio-Computational Approaches. In: Roy, S.S., Taguchi, YH. (eds) Handbook of Machine Learning Applications for Genomics. Studies in Big Data, vol 103. Springer, Singapore. https://doi.org/10.1007/978-981-16-9158-4_8

Download citation

Publish with us

Policies and ethics