Skip to main content

An Overview of Databases and Tools for lncRNA Genomics Advancing Precision Medicine

  • Chapter
  • First Online:
Machine Learning and Systems Biology in Genomics and Health

Abstract

The completion of the human genome project revealed many elusive questions about the “junk DNA” in the genome. One of the promising observations was the pervasive transcription and discovery of noncoding RNAs, which put aside the assumption of RNA as a mere messenger in the central dogma of molecular biology. It became evident that RNA plays more critical regulatory roles than simply being the genetic information carrier. The advancements in the next-generation sequencing methods in the last decade identified large numbers of long noncoding RNAs (lncRNAs) expressed during different conditions and performing diverse functions. Despite the rapidly growing advancements in various omics techniques to identify, annotate, and analyze the role of lncRNAs during different diseases, their molecular functions are still unexplored. To keep the pace of rapidly growing data and utilize them in novel lncRNA prediction, numerous computational repositories and predictive algorithms have been published in order to expand our horizons of the understanding and functions of lncRNAs. In this chapter, we described the current tools and computational repositories in the area of lncRNA biology covering numerous aspects like lncRNA identification, annotation, role in disease- or cell-type-specific expression, and detailed literature on their recent novel offbeat functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almagro Armenteros JJ et al (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33(21):3387–3395

    Article  PubMed  Google Scholar 

  • Amar D, Safer H, Shamir R (2013) Dissection of regulatory networks that are altered in disease via differential co-expression. PLoS Comput Biol 9(3):e1002955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral PP et al (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39:D146–D151

    Article  CAS  PubMed  Google Scholar 

  • Andersson R et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Z et al (2019) LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res 47(D1):D1034–d1037

    Article  CAS  PubMed  Google Scholar 

  • Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camargo AP et al (2020) RNAsamba: neural network-based assessment of the protein-coding potential of RNA sequences. NAR Genom Bioinform 2(1):lqz024

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao Z et al (2018) The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier. Bioinformatics 34(13):2185–2194

    Article  CAS  PubMed  Google Scholar 

  • Cerase A et al (2015) Xist localization and function: new insights from multiple levels. Genome Biol 16(1):166

    Article  PubMed  PubMed Central  Google Scholar 

  • Chávez Montes RA et al (2014) ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biol 14:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Check E (2007) Genome project turns up evolutionary surprises. Nature 447:760–761

    Article  CAS  PubMed  Google Scholar 

  • Chen G et al (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41:D983–D986

    Article  CAS  PubMed  Google Scholar 

  • Chen L et al (2021) The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 22(2):1706–1728

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Wang Y, Li GJN (2014) Dynamics of histone variant H3. 3 and its coregulation with H2A. Z at enhancers and promoters. Nucleus 5(1):21–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Metge F, Dieterich C (2016) Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32(7):1094–1096

    Article  CAS  PubMed  Google Scholar 

  • Costa PR, Acencio ML, Lemke N (2010) A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data. BMC Genomics 11:S9

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahariya S et al (2019) Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol Immunol 112:82–92

    Article  CAS  PubMed  Google Scholar 

  • Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinger ME et al (2009) NRED: a database of long noncoding RNA expression. Nucleic Acids Res 37:D122–D126

    Article  CAS  PubMed  Google Scholar 

  • Djebali S et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16(11):2043–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckhardt F (2004) et al. Future potential of the human epigenome project 4(5):609–618

    CAS  Google Scholar 

  • Engreitz JM et al (2016) Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539(7629):452–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Liu R (2014) CircRNAFinder: a tool for identifying circular RNAs using RNA-Seq data. in Proceedings of the 6th International Conference on Bioinformatics and Computational Biology, BICOB

    Google Scholar 

  • Gao Y, Zhang J, Zhao F (2018) Circular RNA identification based on multiple seed matching. Brief Bioinform 19(5):803–810

    Article  CAS  PubMed  Google Scholar 

  • Greally JM (2007) Encyclopaedia of humble DNA. Nature 447(7146):782–783

    Article  CAS  PubMed  Google Scholar 

  • Guo JC et al (2019) CNIT: a fast and accurate web tool for identifying protein-coding and long non-coding transcripts based on intrinsic sequence composition. Nucleic Acids Res 47(W1):W516–W522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha MJ, Baladandayuthapani V, Do KA (2015) DINGO: differential network analysis in genomics. Bioinformatics 31(21):3413–3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S et al (2016) Lncident: a tool for rapid identification of long noncoding RNAs utilizing sequence intrinsic composition and open reading frame information. Int J Genomics 2016:9185496

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrow J et al (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res 22(9):1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann S et al (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15(2):R34

    Article  PubMed  PubMed Central  Google Scholar 

  • Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17

    Article  CAS  PubMed  Google Scholar 

  • Hon CC et al (2017) An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543(7644):199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huarte M et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hucke FIL, Bugert JJ (2020) Current and promising antivirals against chikungunya virus. Front Public Health 8:618624

    Article  PubMed  PubMed Central  Google Scholar 

  • Huynh-Thu VA et al (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One 5:9

    Article  Google Scholar 

  • Iyer MK et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izuogu OG et al (2016) PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) events. BMC Bioinformatics 17:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakobi T, Uvarovskii A, Dieterich C (2019) Circtools-a one-stop software solution for circular RNA research. Bioinformatics 35(13):2326–2328

    Article  CAS  PubMed  Google Scholar 

  • Jin J et al (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29(8):1068–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J et al (2021) PLncDB V2.0: a comprehensive encyclopedia of plant long noncoding RNAs. Nucleic Acids Res 49(D1):D1489–d1495

    Article  CAS  PubMed  Google Scholar 

  • Kaleel M et al (2020) SCLpred-EMS: subcellular localization prediction of endomembrane system and secretory pathway proteins by deep N-to-1 convolutional neural networks. Bioinformatics 36(11):3343–3349

    Article  CAS  PubMed  Google Scholar 

  • Kang YJ et al (2017) CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 45(W1):W12–W16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapranov P et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488

    Article  CAS  PubMed  Google Scholar 

  • Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Latos PA et al (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338(6113):1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Laurent GS, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31(5):239–251

    Article  Google Scholar 

  • Li J et al (2015) TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Cancer Res 75(18):3728–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M et al (2017) Quantifying circular RNA expression from RNA-seq data using model-based framework. Bioinformatics 33(14):2131–2139

    Article  CAS  PubMed  Google Scholar 

  • Li MJ et al (2015) Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression. Brief Bioinform 16(3):393–412

    Article  PubMed  Google Scholar 

  • Li W, Notani D, Rosenfeld MG (2016) Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 17(4):207–223

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al (2021) LncExpDB: an expression database of human long non-coding RNAs. Nucleic Acids Res 49(D1):D962–d968

    Article  CAS  PubMed  Google Scholar 

  • Liu C et al (2005) NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res 33:D112–D115

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10(6):924–933

    Article  CAS  PubMed Central  Google Scholar 

  • Ma L et al (2019) LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res 47(D1):D128–d134

    Article  CAS  PubMed  Google Scholar 

  • Margolin AA et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7:S7

    Article  PubMed  PubMed Central  Google Scholar 

  • Mas-Ponte D et al (2017) LncATLAS database for subcellular localization of long noncoding RNAs. RNA 23(7):1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina-Rivera A et al (2018) Widespread enhancer Activity from Core promoters. Trends Biochem Sci 43(6):452–468

    Article  CAS  PubMed  Google Scholar 

  • Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  • Miao YR et al (2018) lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res 46(D1):D276–d280

    Article  CAS  PubMed  Google Scholar 

  • Montgomery MK, Xu S, Fire A (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. PNAS 95(26):15502–15507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Xiong K (2015) PredcircRNA: computational classification of circular RNA from other long non-coding RNA using hybrid features. Mol Biosyst 11(8):2219–2226

    Article  CAS  PubMed  Google Scholar 

  • Pan X et al (2018) WebCircRNA: classifying the circular RNA potential of coding and noncoding RNA. Genes (Basel) 9:11

    Article  Google Scholar 

  • Paraskevopoulou MD et al (2013) DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res 41:D239–D245

    Article  CAS  PubMed  Google Scholar 

  • Paytuví Gallart A et al (2016) GREENC: a wiki-based database of plant lncRNAs. Nucleic Acids Res 44(D1):D1161–D1166

    Article  PubMed  Google Scholar 

  • Pennacchio LA et al (2013) Enhancers: five essential questions. Nat Rev Genet 14(4):288–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkney HR, Wright BM, Diermeier SD (2020) The lncRNA toolkit: databases and in silico Tools for lncRNA analysis. Noncoding RNA 6:4

    Google Scholar 

  • Pontes B, Giráldez R, Aguilar-Ruiz JS (2015) Biclustering on expression data: a review. J Biomed Inform 57:163–180

    Article  PubMed  Google Scholar 

  • Quek XC et al (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43:D168–D173

    Article  CAS  PubMed  Google Scholar 

  • Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62

    Article  CAS  PubMed  Google Scholar 

  • Rahmatallah Y, Emmert-Streib F, Glazko G (2014) Gene sets net correlations analysis (GSNCA): a multivariate differential coexpression test for gene sets. Bioinformatics 30(3):360–368

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL (2014) lncRNAs: linking RNA to chromatin. Cold Spring Harb Perspect Biol 6:8

    Article  Google Scholar 

  • Rye M et al (2011) Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements. BMC Biol 9(1):1–18

    Article  Google Scholar 

  • Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesth Analg 126(5):1763–1768

    Article  PubMed  Google Scholar 

  • Seifuddin F et al (2020) lncRNAKB, a knowledgebase of tissue-specific functional annotation and trait association of long noncoding RNA. Sci Data 7(1):326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siggens L, Ekwall K (2014) Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. J Intern Med 276(3):201–214

    Article  CAS  PubMed  Google Scholar 

  • Simonti CN, Capra JA (2015) The evolution of the human genome. Curr Opin Genet Dev 35:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J et al (2019) RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun 10(1):5407

    Article  PubMed  PubMed Central  Google Scholar 

  • Song X et al (2016) Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 44(9):e87

    Article  PubMed  PubMed Central  Google Scholar 

  • Szabo L et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16(1):126

    Article  PubMed  PubMed Central  Google Scholar 

  • Szcześniak MW et al (2019) CANTATAdb 2.0: expanding the collection of plant long noncoding RNAs. Methods Mol Biol 1933:415–429

    Article  PubMed  Google Scholar 

  • Tesson BM, Breitling R, Jansen RC (2010) DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinformatics 11:497

    Article  PubMed  PubMed Central  Google Scholar 

  • The ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799

    Article  PubMed Central  Google Scholar 

  • The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57

    Article  PubMed Central  Google Scholar 

  • Thurman RE et al (2012) The accessible chromatin landscape of the human genome. Expert Rev Molec Diagn 489(7414):75–82

    CAS  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395(6705):854–854

    Article  CAS  PubMed  Google Scholar 

  • Tong X, Liu S (2019) CPPred: coding potential prediction based on the global description of RNA sequence. Nucleic Acids Res 47(8):e43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi V et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter JC et al (2001) The sequence of the human genome. Nature 291(5507):1304–1351

    CAS  Google Scholar 

  • Visel A, Rubin EM, Pennacchio LA (2009) Genomic views of distant-acting enhancers. Nature 461(7261):199–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volders PJ et al (2013) LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 41:D246–D251

    Article  CAS  PubMed  Google Scholar 

  • Wagner RW, Sun LJN (1998) Functional genomics double-stranded RNA poses puzzle. Nature 391(6669):744–745

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang L (2019) Deep learning of the back-splicing code for circular RNA formation. Bioinformatics 35(24):5235–5242

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2018) CRlncRNA: a manually curated database of cancer-related long non-coding RNAs with experimental proof of functions on clinicopathological and molecular features. BMC Med Genet 11(Suppl 6):114

    CAS  Google Scholar 

  • Wang K et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38(18):e178

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen X et al (2018) lncSLdb: a resource for long non-coding RNA subcellular localization. Database (Oxford) 2018:1–6

    Article  Google Scholar 

  • Wu R et al (2020) Phenotype-genotype network construction and characterization: a case study of cardiovascular diseases and associated non-coding RNAs. Database (Oxford):2020

    Google Scholar 

  • Yu B et al (2020) SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting. Bioinformatics 36(4):1074–1081

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:17

    Article  Google Scholar 

  • Zhang J et al (2020) Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat Commun 11(1):90

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang XO et al (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26(9):1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H et al (2020) LncTarD: a manually-curated database of experimentally-supported functional lncRNA-target regulations in human diseases. Nucleic Acids Res 48(D1):D118–d126

    CAS  PubMed  Google Scholar 

  • Zhao Z et al (2015) Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data. Database (Oxford) 2015:0910

    Article  Google Scholar 

  • Zheng Y et al (2019) Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med 11(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou B et al (2018) EVLncRNAs: a manually curated database for long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res 46(D1):D100–d105

    Article  CAS  PubMed  Google Scholar 

  • Zhou B et al (2021) EVLncRNAs 2.0: an updated database of manually curated functional long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res 49(D1):D86–d91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarinder Singh Thind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thind, A.S., Kaur, K., Monga, I. (2022). An Overview of Databases and Tools for lncRNA Genomics Advancing Precision Medicine. In: Singh, S. (eds) Machine Learning and Systems Biology in Genomics and Health. Springer, Singapore. https://doi.org/10.1007/978-981-16-5993-5_3

Download citation

Publish with us

Policies and ethics