Skip to main content

Animal Models of Deficient Sensorimotor Gating in Schizophrenia: Are They Still Relevant?

  • Chapter
Translational Neuropsychopharmacology

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 28))

Abstract

Animal models of impaired sensorimotor gating, as assessed by prepulse inhibition (PPI) of startle, have demonstrated clear validity at face, predictive, and construct levels for schizophrenia therapeutics, neurophysiological endophenotypes, and potential causative insults for this group of disorders. However, with the growing recognition of the heterogeneity of the schizophrenias, and the less sanguine view of the clinical value of antipsychotic (AP) medications, our field must look beyond “validity,” to assess the actual utility of these models. At a substantial cost in terms of research support and intellectual capital, what has come from these models, that we can say has actually helped schizophrenia patients? Such introspection is timely, as we are reassessing not only our view of the genetic and pathophysiological diversity of these disorders, but also the predominant strategies for SZ therapeutics; indeed, our field is gaining awareness that we must move away from a “find what’s broke and fix it” approach, toward identifying spared neural and cognitive function in SZ patients, and matching these residual neural assets with learning-based therapies. Perhaps, construct-valid models that identify evidence of “spared function” in neural substrates might reveal opportunities for future therapeutics and allow us to study these substrates at a mechanistic level to maximize opportunities for neuroplasticity. Such an effort will require a retooling of our models, and more importantly, a re-evaluation of their utility. For animal models to remain relevant in the search for schizophrenia therapeutics, they will need to focus less on what is valid and focus more on what is useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel KM, Allin MP, Hemsley DR, Geyer MA (2003) Low doses of ketamine increases prepulse inhibition in healthy men. Neuropharmacology 44:729–737

    Article  CAS  PubMed  Google Scholar 

  • Acheson DT, Stein MB, Paulus MP, Geyer MA, Risbrough VB (2012) The effect of pregabalin on sensorimotor gating in ‘low’ gating humans and mice. Neuropharmacology 63:480–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmari SE, Risbrough VB, Geyer MA, Simpson HB (2012) Impaired sensorimotor gating in unmedicated adults with obsessive-compulsive disorder. Neuropsychopharmacology 37:1216–1223

    Article  PubMed  PubMed Central  Google Scholar 

  • Angelov SD, Dietrich C, Krauss JK, Schwabe K (2014) Effect of deep brain stimulation in rats selectively bred for reduced prepulse inhibition. Brain Stimul 7(4):595–602

    Article  PubMed  Google Scholar 

  • Angst MJ, Macedo CE, Guiberteau T, Sandner G (2007) Alteration of conditioned emotional response and conditioned taste aversion after neonatal ventral hippocampus lesions in rats. Brain Res 1143:183–192

    Article  CAS  PubMed  Google Scholar 

  • Anticevic A, Brumbaugh MS, Winkler AM, Lombardo LE, Barrett J, Corlett PR, Kober H, Gruber J, Repovs G, Cole MW, Krystal JH, Pearlson GD, Glahn DC (2013) Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history. Biol Psychiatry 73:565–573

    Article  PubMed  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    CAS  PubMed  Google Scholar 

  • Bhakta SG, Talledo JA, Lamb SN, Balvaneda B, Chou HH, Rana B, Young J, Light G, Swerdlow NR (2014) Effects of Tolcapone on neurocognitive and neurophysiological measures in healthy adults. Neuropsychopharmacology 39:S514

    Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  CAS  PubMed  Google Scholar 

  • Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248–3257

    CAS  PubMed  Google Scholar 

  • Castellan Baldan L, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, Anderson GM, Loring E, Gorczyca R, Billingslea E, Wasylink S, Panza KE, Ercan-Sencicek AG, Krusong K, Leventhal BL, Ohtsu H, Bloch MH, Hughes ZA, Krystal JH, Mayes L, de Araujo I, Ding YS, State MW, Pittenger C (2014) Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 81:77–90

    Article  CAS  PubMed  Google Scholar 

  • Castellanos FX, Fine EJ, Kaysen DL, Marsh WL, Rapoport JL, Hallett M (1996) Sensorimotor gating in boys with Tourette’s Syndrome and ADHD: preliminary results. Biol Psychiatry 39:33–41

    Article  CAS  PubMed  Google Scholar 

  • Chambers RA, Sentir AM, Conroy SK, Truitt WA, Shekhar A (2010) Cortical-striatal integration of cocaine history and prefrontal dysfunction in animal modeling of dual diagnosis. Biol Psychiatry 67:788–792

    Article  CAS  PubMed  Google Scholar 

  • Charles R, Sakurai T, Takahashi N, Elder GA, Gama Sosa MA, Young LJ, Buxbaum JD (2014) Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice. Dis Model Mech 7:1013–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou HH, Bhakta SG, Talledo JA, Lamb SN, Balvaneda B, Light GA, Twamley EW, Swerdlow NR (2013a) Memantine effects on MATRICS consensus cognitive performance battery in healthy adults and schizophrenia patients. Biol Psychiatry 73:273S

    Google Scholar 

  • Chou HH, Talledo J, Lamb S, Thompson WK, Swerdlow NR (2013b) Amphetamine effects on MATRICS consensus cognitive battery performance in healthy adults. Psychopharmacology 227:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daenen EW, Wolterink G, Van Der Heyden JA, Kruse CG, Van Ree JM (2003) Neonatal lesions in the amygdala or ventral hippocampus disrupt prepulse inhibition of the acoustic startle response; implications for an animal model of neurodevelopmental disorders like schizophrenia. Eur Neuropsychopharmacol 13:187–197

    Article  CAS  PubMed  Google Scholar 

  • Darbra S, Modol L, Llido A, Casas C, Vallee M, Pallares M (2014) Neonatal allopregnanolone levels alteration: effects on behavior and role of the hippocampus. Prog Neurobiol 113:95–105

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1984) The mammalian startle response. In Eaton RC (ed) Neural mechanisms of startle behavior. Springer Science, New York, pp 287–351

    Google Scholar 

  • Dietz DM, Kennedy PJ, Sun H, Maze I, Gancarz AM, Vialou V, Koo JW, Mouzon E, Ghose S, Tamminga CA, Nestler EJ (2014) ΔFosB induction in prefrontal cortex by antipsychotic drugs is associated with negative behavioral outcomes. Neuropsychopharmacology 39:538–544

    Article  CAS  PubMed  Google Scholar 

  • Driesen NR, McCarthy G, Bhagwagar Z, Bloch M, Calhoun V, D’Souza DC, Gueorguieva R, He G, Ramachandran R, Suckow RF, Anticevic A, Morgan PT, Krystal JH (2013) Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol Psychiatry 18:1199–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan EJ, Madonick SH, Parwani A, Angrist B, Rajan R, Chakravorty S et al (2001) Clinical and sensorimotor gating effects of ketamine in normals. Neuropsychopharmacology 25:72–83

    Article  CAS  PubMed  Google Scholar 

  • Francis DD, Szegda K, Campbell G, Martin WD, Insel TR (2003) Epigenetic sources of behavioral differences in mice. Nat Neurosci 6:445–446

    CAS  PubMed  Google Scholar 

  • Frankland PW, Wang Y, Rosner B, Shimizu T, Balleine BW, Dykens EM, Ornitz EM, Silva AJ (2004) Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol Psychiatry 9:417–425

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (1991) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  Google Scholar 

  • Gomez-Wong E, Marti MJ, Tolosa E, Valls-Solé J (1998) Sensory modulation of the blink reflex in patients with blepharospasm. Arch Neurol 55:1233–1237

    Article  CAS  PubMed  Google Scholar 

  • Graham F (1975) The more or less startling effects of weak prestimuli. Psychophysiology 12:238–248

    Article  CAS  PubMed  Google Scholar 

  • Greenwood TA, Braff DL, Light GA, Cadenhead KS, Calkins ME, Dobie DJ, Freedman R, Green MF, Gur RE, Gur RC, Mintz J, Nuechterlein KH, Olincy A, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Schork NJ (2007) The consortium on the genetics of schizophrenia (COGS): initial heritability analyses of endophenotypic measures for schizophrenia. Arch Gen Psychiatry 64:1242–1250

    Article  PubMed  Google Scholar 

  • Hanlon FM, Houck JM, Klimaj SD, Caprihan A, Mayer AR, Weisend MP, Bustillo JR, Hamilton DA, Tesche CD (2012) Frontotemporal anatomical connectivity and working-relational memory performance predict everyday functioning in schizophrenia. Psychophysiology 49:1340–1352

    Article  PubMed  PubMed Central  Google Scholar 

  • Haut KM, Lim KO, MacDonald A (2010) Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: effects of practice, generalization and specificity. Neuropsychopharmacology 35:1850–1859

    Article  PubMed  PubMed Central  Google Scholar 

  • Hines RM, Hines DJ, Houston CM, Mukherjee J, Haydon PG, Tretter V, Smart TG, Moss SJ (2013) Disrupting the clustering of GABAA receptor α2 subunits in the frontal cortex leads to reduced γ-power and cognitive deficits. Proc Natl Acad Sci USA 110(41):16628–16633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoenig K, Hochrein A, Quednow BB, Maier W, Wagner M (2005) Impaired prepulse inhibition of acoustic startle in obsessive-compulsive disorder. Biol Psychiatry 57:1153–1158

    Article  PubMed  Google Scholar 

  • Janssen PAJ, Niemegeers CJE (1959) Chemistry and pharmacology of compounds related to 4-(4-hydroxy-Cphenyl-piperidino)-butyrophenone. Part II. Inhibition of apomorphine vomiting in dogs. Arzneimittel-Forsch 9:765–767

    CAS  Google Scholar 

  • Johansson C, Jackson DM, Svensson L (1994) The atypical antipsychotic, remoxipride, blocks phencyclidine-induced disruption of prepulse inhibition in the rat. Psychopharmacology 116:437–442

    Article  CAS  PubMed  Google Scholar 

  • Karten HJ (1991) Homology and evolutionary origins of the ‘Neocortex’. Brain Behav Evolution 38:264–272

    Article  CAS  Google Scholar 

  • Kodsi MH, Swerdlow NR (1994) Quinolinic acid lesions of the ventral striatum reduce sensorimotor gating of acoustic startle in rats. Brain Res 643:59–65

    Article  CAS  PubMed  Google Scholar 

  • Kumari V, Gray JA, Geyer MA, Soni W, Mitterschiffthaler MT, Vythelingum GN, Simmons A, Williams SC, Sharma T (2003) Neural correlates of tactile prepulse inhibition: a functional MRI study in normal and schizophrenic subjects. Psychiatry Res 122(2):99–113

    Google Scholar 

  • Kumari V, Peters ER, Fannon D, Antonova E, Premkumar P, Anilkumar AP, Williams SC, Kuipers E (2009) Dorsolateral prefrontal cortex activity predicts responsiveness to cognitive-behavioral therapy in schizophrenia. Biol Psychiatry 66:594–602

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari V, Premkumar P, Fannon D, Aasen I, Raghuvanshi S, Anilkumar AP, Antonova E, Peters ER, Kuipers E (2012) Sensorimotor gating and clinical outcome following cognitive behaviour therapy for psychosis. Schizophr Res 134:232–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Labbate GP, da Silva AV, Barbosa-Silva RC (2014) Effect of severe neonatal seizures on prepulse inhibition and hippocampal volume of rats tested in early adulthood. Neurosci Lett 568:62–66

    Article  CAS  PubMed  Google Scholar 

  • Le Pen G, Moreau JL (2002) Disruption of prepulse inhibition of startle reflex in a neurodevelopmental model of schizophrenia: reversal by clozapine, olanzapine and risperidone but not by haloperidol. Neuropsychopharm 27:1–11

    Article  Google Scholar 

  • Le Pen G, Kew J, Alberati D, Borroni E, Heitz MP, Moreau JL (2003) Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal-lesioned rats: reversal by glycine and a glycine transporter inhibitor. Biol Psychiatry 54:1162–1170

    Article  PubMed  CAS  Google Scholar 

  • Le Pen G, Gourevitch R, Hazane F, Hoareau C, Jay TM, Krebs MO (2006) Peri-pubertal maturation after developmental disturbance: a model for psychosis onset in the rat. Neuroscience 143:395–405

    Article  PubMed  CAS  Google Scholar 

  • Levitt JJ, Bobrow L, Lucia D, Srinivasan P (2010) A selective review of volumetric and morphometric imaging in schizophrenia. In: Swerdlow NR (ed) Behavioral neurobiology of schizophrenia and its treatment. Current Topics in Behavioral Neuroscience, Springer, pp 243–282

    Chapter  Google Scholar 

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    Article  CAS  PubMed  Google Scholar 

  • Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK (2005) clinical antipsychotic trials of intervention effectiveness (CATIE) investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–1223

    Google Scholar 

  • Lind NM, Arnfred SM, Hemmingsen RP, Hansen AK (2004) Prepulse inhibition of the acoustic startle reflex in pigs and its disruption by d-amphetamine. Behav Brain Res 155:217–222

    Article  CAS  PubMed  Google Scholar 

  • Linn GS, Negi SS, Gerum SV, Javitt DC (2003) Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys. Psychopharmacology 169:234–239

    Article  CAS  PubMed  Google Scholar 

  • Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharm 9:67–75

    Article  CAS  Google Scholar 

  • Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1995) Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology 122:35–43

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Leung LS (2014) Deep brain stimulation of the medial septum or nucleus accumbens alleviates psychosis-relevant behavior in ketamine-treated rats. Behav Brain Res 266:174–182

    Article  CAS  PubMed  Google Scholar 

  • MacLean PD (1954) The limbic system and its hippocampal formation; studies in animals and their possible application to man. J Neurosurg 11(1):29–44

    Article  CAS  PubMed  Google Scholar 

  • Mansbach RS, Geyer MA, Braff DL (1988) Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology 94:507–514

    Article  CAS  PubMed  Google Scholar 

  • Marquis JP, Goulet S, Doré FY (2006) Neonatal lesions of the ventral hippocampus in rats lead to prefrontal cognitive deficits at two maturational stages. Neuroscience 140:759–767

    Article  CAS  PubMed  Google Scholar 

  • McAlonan GM, Daly E, Kumari V, Critchley HD, van Amelsvoort T, Suckling J, Simmons A, Sigmundsson T, Greenwood K, Russell A, Schmitz N, Happe F, Murphy DG (2002) Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain 125:1594–1606

    Article  PubMed  Google Scholar 

  • Meltzer HY, Alphs L, Green AI, Altamura AC, Anand R, Bertoldi A, Bourgeois M, Chouinard G, Islam MZ, Kane J, Krishnan R, Lindenmayer JP, Potkin S, International Suicide Prevention Trial Study Group (2003) Clozapine treatment for suicidality in schizophrenia: international suicide prevention trial (InterSePT). Arch Gen Psychiatry 60:82–91

    Google Scholar 

  • Miller EJ, Saint Marie LR, Breier MR, Swerdlow NR (2010) Pathways from the ventral hippocampus and caudal amygdala to forebrain regions that regulate sensorimotor gating in the rat. Neuroscience 165(2):601–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray RM, Jones P, O’Callaghan E (1991) Fetal brain development and later schizophrenia. Ciba Found Symp 156:155–163

    CAS  PubMed  Google Scholar 

  • Nguyen R, Morrissey MD, Mahadevan V, Cajanding JD, Woodin MA, Yeomans JS, Takehara-Nishiuchi K, Kim JC (2014) Parvalbumin and GAD65 interneuron inhibition in the ventral hippocampus induces distinct behavioral deficits relevant to schizophrenia. J Neurosci 34:14948–14960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Donnell P (2012) Cortical disinhibition in the neonatal ventral hippocampal lesion model of schizophrenia: New vistas on possible therapeutic approaches. Pharmacol Ther 133:19–25

    Article  PubMed  CAS  Google Scholar 

  • Ornitz EM, Hanna GL, de Traversay J (1992) Prestimulation-induced startle modulation in attention deficit hyperactivity disorder and nocturnal enuresis. Psychophysiology 29:437–451

    Article  CAS  PubMed  Google Scholar 

  • Palmer DD, Henter ID, Wyatt RJ (1999) Do antipsychotic medications decrease the risk of suicide in patients with schizophrenia? J Clin Psychiatry 60(Suppl 2):100–103

    PubMed  Google Scholar 

  • Perez VB, Swerdlow NR, Braff DL, Naatanen R, Light GA (2014) Using biomarkers to inform diagnosis, guide treatments and track response to interventions in psychotic illnesses. Biomark Med 8(1):9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinnock F, Bosch D, Brown T, Simons N, Yeomans JR, DeOliveira C, Schmid S (2015) Nicotine receptors mediating sensorimotor gating and its enhancement by systemic nicotine. Front Behav Neurosci 9:30. doi:10.3389/fnbeh.2015.00030

    Article  PubMed  PubMed Central  Google Scholar 

  • Posch DK, Schwabe K, Krauss JK, Lütjens G (2012) Deep brain stimulation of the entopeduncular nucleus in rats prevents apomorphine-induced deficient sensorimotor gating. Behav Brain Res 232:130–136

    Article  CAS  PubMed  Google Scholar 

  • Powell SB, Swerdlow NR (2015) Social isolation rearing and sensorimotor gating in rat models of relevance to schizophrenia: what we know, and what we don’t. In: Pletnikov M, Waddington J (eds) Modeling psychopathological dimensions of schizophrenia. Handbooks of Behavioral Neuroscience, vol 23. Elsevier, Amsterdam (in press)

    Google Scholar 

  • Renoux AJ, Sala-Hamrick KJ, Carducci NM, Frazer M, Halsey KE, Sutton MA, Dolan DF, Murphy GG, Todd PK (2014) Impaired sensorimotor gating in Fmr1 knock out and Fragile X premutation model mice. Behav Brain Res 267:42–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M (2004) Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry 61:1136–1144

    Article  PubMed  Google Scholar 

  • Ribeiro BM, do Carmo MR, Freire RS, Rocha NF, Borella VC, de Menezes AT, Monte AS, Gomes PX, de Sousa FC, Vale ML, de Lucena DF, Gama CS, Macedo D (2013) Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine. Schizophr Res 151:12–19

    Google Scholar 

  • Risbrough V, Ji B, Hauger R, Zhou X (2014) Generation and characterization of humanized mice carrying COMT158 Met/Val alleles. Neuropsychopharmacology 39:1823–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohleder C, Jung F, Mertgens H, Wiedermann D, Sué M, Neumaier B, Graf R, Leweke FM, Endepols H (2014) Neural correlates of sensorimotor gating: a metabolic positron emission tomography study in awake rats. Front Behav Neurosci 8:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Roussos P, Giakoumaki SG, Rogdaki M, Pavlakis S, Frangou S, Bitsios P (2008) Prepulse inhibition of the startle reflex depends on the catechol O-methyltransferase Val158Met gene polymorphism. Psychol Med 38:1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Ryan RT, Bhardwaj SK, Tse YC, Srivastava LK, Wong TP (2013) Opposing alterations in excitation and inhibition of layer 5 medial prefrontal cortex pyramidal neurons following neonatal ventral hippocampal lesion. Cereb Cortex 23:1198–1227

    Article  PubMed  Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  PubMed Central  CAS  Google Scholar 

  • Schwartz JM (1997) Brain lock: free yourself from obsessive-compulsive behavior. Regan Books, New York, p 1997

    Google Scholar 

  • Schwartz JM (1998) Neuroanatomical aspects of cognitive-behavioural therapy response in obsessive-compulsive disorder. An evolving perspective on brain and behaviour. Br J Psychiatry Suppl 35:38–44

    Google Scholar 

  • Schwartz JM, Stoessel PW, Baxter LR Jr, Martin KM, Phelps ME (1996) Systematic changes in cerebral glucose metabolic rate after successful behavior modification treatment of obsessive-compulsive disorder. Arch Gen Psychiatry 53:109–113

    Article  CAS  PubMed  Google Scholar 

  • Shilling PD, Saint Marie RL, Shoemaker JM, Swerdlow NR (2008) Strain differences in the gating-disruptive effects of apomorphine: relationship to gene expression in nucleus accumbens signaling pathways. Biol Psychiatry 63:748–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobin C, Kiley-Brabeck K, Karayiorgou M (2005) Lower prepulse inhibition in children with the 22q11 deletion syndrome. Am J Psychiatry 162:1090–1099

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorenson CA, Swerdlow NR (1982) The effect of tail pinch on the acoustic startle response in rats. Brain Res 247:105–113

    Article  CAS  PubMed  Google Scholar 

  • Stefansson H, Meyer-Lindenberg A, Steinberg S, Magnusdottir B, Morgen K, Arnarsdottir S, Bjornsdottir G, Walters GB, Jonsdottir GA, Doyle OM, Tost H, Grimm O, Kristjansdottir S, Snorrason H, Davidsdottir SR, Gudmundsson LJ, Jonsson GF, Stefansdottir B, Helgadottir I, Haraldsson M, Jonsdottir B, Thygesen JH, Schwarz AJ, Didriksen M, Stensbøl TB, Brammer M, Kapur S, Halldorsson JG, Hreidarsson S, Saemundsen E, Sigurdsson E, Stefansson K (2014) CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 505:361–366

    Article  CAS  PubMed  Google Scholar 

  • Sun SX, Liu GG, Christensen DB, Fu AZ (2007) Review and analysis of hospitalization costs associated with antipsychotic nonadherence in the treatment of schizophrenia in the United States. Curr Med Res Opin 23:2305–2312

    Article  PubMed  Google Scholar 

  • Swerdlow NR (2011a) Are we studying and treating schizophrenia correctly? Schizophr Res 130:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR (2011b) Beyond antipsychotics: Pharmacologically-augmented cognitive therapies (PACTs) for schizophrenia. Neuropsychopharmacology 37:310–311

    Article  PubMed Central  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1993) Clozapine and haloperidol in an animal model of sensorimotor gating deficits in schizophrenia. Pharmacol Biochem Behav 44:741–744

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA, Koob GF (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol Psychiatry 21:23–33

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Keith VA, Braff DL, Geyer MA (1991) Effects of spiperone, raclopride, SCH 23390 and clozapine on apomorphine inhibition of sensorimotor gating of the startle response in the rat. J Pharmacol Exp Ther 256:530–536

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Caine SB, Braff DL, Geyer MA (1992a) The neural substrates of sensorimotor gating of the startle reflex: a review of recent findings and their implications. J Psychopharmacol 6:176–190

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Caine SB, Geyer MA (1992b) Regionally selective effects of intracerebral dopamine infusion on sensorimotor gating of the startle reflex in rats. Psychopharmacology 108:189–195

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Benbow CH, Zisook S, Geyer MA, Braff DL (1993) A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol Psychiatry 33:298–301

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994a) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–154

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Zisook D, Taaid N (1994b) Seroquel (ICI 204, 636) restores prepulse inhibition of acoustic startle in apomorphine-treated rats: similarities to clozapine. Psychopharmacology 114:675–678

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR (1995) Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington’s disease. J Neurol Neurosurg Psychiatry 58:192–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR, Bakshi V, Waikar M, Taaid N, Geyer MA (1998) Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats. Psychopharmacology 140:75–80

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001a) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156:194–215

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Karban B, Ploum Y, Sharp R, Geyer MA, Eastvold A (2001b) Tactile prepuff inhibition of startle in children with Tourette’s syndrome: in search of an “fMRI-friendly” startle paradigm. Biol Psychiatry 50:578–585

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Stephany N, Shoemaker JM, Ross L, Wasserman LC, Talledo J, Auerbach PP (2002) Effects of amantadine and bromocriptine on startle and sensorimotor gating: parametric studies and cross-species comparisons. Psychopharmacology 164:82–92

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Platten A, Pitcher L, Goins J, Auerbach PP (2004) Heritable differences in the dopaminergic regulation of sensorimotor gating. I. Apomorphine effects on startle gating in albino and hooded outbred rat strains and their F1 and N2 progeny. Psychopharmacology 174:441–451

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Talledo J, Sutherland AN, Nagy D, Shoemaker JM (2006) Antipsychotic effects on prepulse inhibition in normal ‘low gating’ humans and rats. Neuropsychopharmacology 31:2011–2021

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology 199:331–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR, van Bergeijk DP, Bergsma F, Weber E, Talledo J (2009) The effects of memantine on prepulse inhibition. Neuropsychopharmacology 34:1854–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR, Light GA, Breier MR, Shoemaker JM, Saint Marie RL, Neary AC, Geyer MA, Stevens KE, Powell SB (2012a) Sensory and sensorimotor gating deficits after neonatal ventral hippocampal lesions in rats. Dev Neurosci 34:240–249

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Shilling PD, Breier M, Trim RS, Light GA, Marie RS (2012b) Fronto-temporal-mesolimbic gene expression and heritable differences in amphetamine-disrupted sensorimotor gating in rats. Psychopharmacology 224:349–362

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Bhakta SG, Talledo JA et al (2013a) Sensorimotor gating predicts sensitivity to pro-attentional effects of amphetamine in healthy adults. Society for Neuroscience, San Diego, 9–13 Nov 2013

    Google Scholar 

  • Swerdlow NR, Powell SB, Breier MR, Hines SR, Light GA (2013b) Coupling of gene expression in medial prefrontal cortex and nucleus accumbens after neonatal ventral hippocampal lesions accompanies deficits in sensorimotor gating and auditory processing in rats. Neuropharmacology 75:38–46

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Light GA, Sprock J, Calkins ME, Green MF, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Radant AD, Ray A, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL (2014) Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS. Schizophr Res 152:503–512

    Article  PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR, Bhakta S, Chou HH, Talledo JA, Balvaneda B, Light GA (2015) Memantine effects on sensorimotor gating and mismatch negativity in patients with chronic psychosis. Neuropsychopharmacology (in press). doi:10.1038/npp.2015.162)

  • Taub E, Uswatte G, Elbert T (2002) New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci 3:228–236

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Sumiyoshi T, Seo T, Matsuoka T, Itoh H, Suzuki M, Kurachi M (2010) Neonatal exposure to MK-801, an N-methyl-D-aspartate receptor antagonist, enhances methamphetamine-induced locomotion and disrupts sensorimotor gating in pre- and postpubertal rats. Brain Res 1352:223–230

    Article  CAS  PubMed  Google Scholar 

  • Vaillancourt C, Boksa P (2000) Birth insult alters dopamine-mediated behavior in a precocial species, the guinea pig. Implications for schizophrenia. Neuropsychopharmacology 23:654–666

    Article  CAS  PubMed  Google Scholar 

  • Valls-Sole J, Munoz JE, Valldeoriola F (2004) Abnormalities of prepulse inhibition do not depend on blink reflex excitability: a study in Parkinson’s disease and Huntington’s disease. Clin Neurophysiol 115:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • van Rijn S, Swaab H, Magnée M, van Engeland H, Kemner C (2011) Psychophysiological markers of vulnerability to psychopathology in men with an extra X chromosome (XXY). PLoS ONE 6:e20292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vazquez-Roque RA, Solis O, Camacho-Abrego I, Rodriguez-Moreno A, Cruz Fde L, Zamudio S, Flores G (2012) Dendritic morphology of neurons in prefrontal cortex and ventral hippocampus of rats with neonatal amygdala lesion. Synapse 66:73–382

    Article  CAS  Google Scholar 

  • Vollenweider FX, Barro M, Csomor PA, Feldon J (2006) Clozapine enhances prepulse inhibition in healthy humans with low but not with high prepulse inhibition levels. Biol Psychiatry 60:597–603

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Zhang L, Ding YQ, Zhao J, Zheng Y (2014a) Neonatal intrahippocampal injection of lipopolysaccharide induces deficits in social behavior and prepulse inhibition and microglial activation in rats: Implication for a new schizophrenia animal model. Brain Behav Immun 38:166–174

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Zheng Y, Ding YQ, Li Y, Zhang X, Wu R, Guo X, Zhao J (2014b) Minocycline and risperidone prevent microglia activation and rescue behavioral deficits inducted by neonatal intrahippocampal injection of lipopolysaccharide in rats. PLoS ONE 9:393966

    Article  Google Scholar 

Download references

Acknowledgements

NRS is supported by NIMH awards MH59803, MH93453, MH42228, and MH094320. GL is supported by MH42228, MH065571, MH094151, MH093453, MH094320, UL1TR000100, MH081944, NARSAD, the Veterans Medical Research Foundation, and the VISN-22 Mental Illness, Research, Education, and Clinical Center. GL has served as a consultant for Astellas Inc, Forum, and Neuroverse for work unrelated to this chapter. The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal R. Swerdlow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Swerdlow, N.R., Light, G.A. (2015). Animal Models of Deficient Sensorimotor Gating in Schizophrenia: Are They Still Relevant?. In: Robbins, T.W., Sahakian, B.J. (eds) Translational Neuropsychopharmacology. Current Topics in Behavioral Neurosciences, vol 28. Springer, Cham. https://doi.org/10.1007/7854_2015_5012

Download citation

Publish with us

Policies and ethics