Skip to main content

Structure, function, and inheritance of plastid genomes

  • Chapter
  • First Online:
Cell and Molecular Biology of Plastids

Part of the book series: Topics in Current Genetics ((TCG,volume 19))

Abstract

Plastids (chloroplasts) possess their own genetic information and consequently, express heritabletraits. The plastid genome (plastome) occurs at high copy numbers, with up to thousands of genomecopies being present in a single cell. Although mapping as a single circular molecule,the plastid DNA shows great structural dynamics. Multiple copies of the plastome are packed togetherin large nucleoprotein bodies, referred to as plastid nucleoids. The plastomes of land plants harbora rather conserved set of approximately 100–120 genes in a genome of 120–160kilobase pairs (kb). In contrast, size and coding capacity of plastomes in algae are much more variable.In most plant species, plastids and their genetic information are inherited maternally and thus excludedfrom sexual recombination. The cytological mechanisms leading to uniparentally maternal inheritanceare surprisingly diverse and can involve organelle exclusion by unequal cell division, plastid destructionor selective degradation of the plastid DNA from the paternal parent. Exceptions from maternal inheritance,i.e., biparental or paternal plastid transmission, have arisen multiple times during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah F, Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–142

    Article  PubMed  CAS  Google Scholar 

  2. Aguettaz P, Seyer P, Pesey H, Lescure A-M (1987) Relation between the plastid gene dosage and the levels of 16S rRNA and rbcL gene transcripts during amyloplast to chloroplast change in mixotrophic spinach cell suspensions. Plant Mol Biol 8:169–177

    Article  CAS  Google Scholar 

  3. Ahlert D, Ruf S, Bock R (2003) Plastid protein synthesis is required for plant development in tobacco. Proc Natl Acad Sci USA 100:15730–15735

    Article  PubMed  CAS  Google Scholar 

  4. Avni A, Edelman M (1991) Direct selection for paternal inheritance of chloroplasts in sexual progeny of Nicotiana. Mol Gen Genet 225:273–277

    Article  PubMed  CAS  Google Scholar 

  5. Baldev A, Gaikwad K, Kirti PB, Mohapatra T, Prakash S, Chopra VL (1998) Recombination between chloroplast genomes of Trachystoma ballii and Brassica juncea following protoplast fusion. Mol Gen Genet 260:357–361

    Article  PubMed  CAS  Google Scholar 

  6. Barbrook AC, Howe CJ (2000) Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum. Mol Gen Genet 263:152–158

    Article  PubMed  CAS  Google Scholar 

  7. Baumgartner BJ, Rapp JC, Mullet JE (1988) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89:1011–1018

    Article  Google Scholar 

  8. Baur E (1909) Das Wesen und die Erblichkeitsverhältnisse der “Varietates albomarginatae hort”. von Pelargonium zonale. Z indukt Abstammungs- u Vererbungslehre 1:330–351

    Google Scholar 

  9. Baur E (1910) Untersuchungen über die Vererbung von Chromatophorenmerkmalen bei Melandrium, Antirrhinum und Aquilegia. Z indukt Abstammungs- u Vererbungslehre 4:81–102

    Google Scholar 

  10. Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6:279–282

    Article  PubMed  CAS  Google Scholar 

  11. Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666

    Article  PubMed  CAS  Google Scholar 

  12. Bendich AJ, Smith SB (1990) Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17:421–425

    Article  CAS  Google Scholar 

  13. Berg S, Krause K, Krupinska K (2004) The rbcL genes of two Cuscuta species, C. gronovii and C. subinclusa, are transcribed by the nuclear-encoded plastid RNA polymerase (NEP). Planta 219:541–546

    Article  PubMed  CAS  Google Scholar 

  14. Birky CW Jr, Walsh JB (1992) Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes. Genetics 130:677–683

    PubMed  Google Scholar 

  15. Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338

    Article  PubMed  CAS  Google Scholar 

  16. Bock R (2001) Transgenic chloroplasts in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  PubMed  CAS  Google Scholar 

  17. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol, (in press)

    Google Scholar 

  18. Bock R, Hippler M (2002) Extranuclear inheritance: Functional genomics in chloroplasts. Prog Bot 63:106–131

    Article  CAS  Google Scholar 

  19. Bock R, Khan MS (2004) Taming plastids for a green future. Trends Biotechnol 22:311–318

    Article  PubMed  CAS  Google Scholar 

  20. Bolen PL, Grant DM, Swinton D, Boynton JE, Gillham NW (1982) Extensive methylation of chloroplast DNA by a nuclear gene mutation does not affect chloroplast gene transmission in Chlamydomonas. Cell 28:335–343

    Article  PubMed  CAS  Google Scholar 

  21. Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix J-D (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16:6095–6104

    Article  PubMed  CAS  Google Scholar 

  22. Bubunenko MG, Schmidt J, Subramanian AR (1994) Protein substitution in chloroplast ribosome evolution. A eukaryotic cytosolic protein has replaced its organelle homologue (L23) in spinach. J Mol Biol 240:28–41

    Article  PubMed  CAS  Google Scholar 

  23. Bungard RA (2004) Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. BioEssays 26:235–247

    Article  PubMed  CAS  Google Scholar 

  24. Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    Article  PubMed  CAS  Google Scholar 

  25. Cannon GC, Ward LN, Case CI, Heinhorst S (1999) The 68 kDa compacting nucleoid protein from soybean chloroplasts inhibits DNA synthesis in vitro. Plant Mol Biol 39:835–845

    Article  PubMed  CAS  Google Scholar 

  26. Cho HS, Lee SS, Kim KD, Hwang I, Lim J-S, Park Y-I (2004) DNA gyrase is involved in chloroplast nucleoid partitioning. Plant Cell 16:2665–2682

    Article  PubMed  CAS  Google Scholar 

  27. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium x hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    Article  PubMed  CAS  Google Scholar 

  28. Chun EHL, Vaugham MH, Rich A (1963) The isolation and characterization of DNA associated with chloroplast preparations. J Mol Biol 7:130–141

    Article  PubMed  CAS  Google Scholar 

  29. Correns C (1909) Vererbungsversuche mit blass(gelb)grünen und buntblättrigen Sippen bei Mirabilis jalapa, Urtica pilulifera und Lunaria annua. Z indukt Abstammungs- u Vererbungslehre 1:291–329

    Google Scholar 

  30. Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458

    Article  Google Scholar 

  31. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nature Biotechnol 20:581–586

    Article  CAS  Google Scholar 

  32. Deng X-W, Wing RA, Gruissem W (1989) The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci USA 86:4156–4160

    Article  PubMed  CAS  Google Scholar 

  33. dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339

    Article  PubMed  CAS  Google Scholar 

  34. Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    Article  PubMed  CAS  Google Scholar 

  35. Drescher A, Ruf S, Calsa T Jr, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22:97–104

    Article  PubMed  CAS  Google Scholar 

  36. Ems SC, Morden CW, Dixon CK, Wolfe KH, dePamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733

    Article  PubMed  CAS  Google Scholar 

  37. Fojtová M, Kovarik A, Matyásek R (2001) Cytosine methylation of plastid genome in higher plants. Fact or artefact? Plant Sci 160:585–593

    Article  PubMed  Google Scholar 

  38. Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206

    Article  PubMed  CAS  Google Scholar 

  39. Hagemann R (2000) Erwin Baur or Carl Correns: Who really created the theory of plastid inheritance? J Hered 91:435–440

    Article  PubMed  CAS  Google Scholar 

  40. Hagemann R (2002) Milestones in plastid genetics of higher plants. Prog Bot 63:1–51

    Google Scholar 

  41. Hagemann R (2004) The sexual inheritance of plant organelles. In: Daniell H, Chase C (eds) Molecular Biology and Biotechnology of Plant Organelles. Springer, Heidelberg, pp 93–113

    Chapter  Google Scholar 

  42. Hagemann R, Schröder M-B (1989) The cytological basis of the plastid inheritance in angiosperms. Protoplasma 152:57–64

    Article  Google Scholar 

  43. Hager M, Biehler K, Illerhaus J, Ruf S, Bock R (1999) Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b6f complex. EMBO J 18:5834–5842

    Article  PubMed  CAS  Google Scholar 

  44. Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21:3537–3544

    Article  PubMed  CAS  Google Scholar 

  45. Hedtke B, Börner T, Weihe A (1997) Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 277:809–811

    Article  PubMed  CAS  Google Scholar 

  46. Hess WR, Börner T (1999) Organellar RNA polymerases of higher plants. Inter Rev Cytol 190:1–59

    Article  CAS  Google Scholar 

  47. Hess WR, Prombona A, Fieder B, Subramanian AR, Börner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J 12:563–571

    PubMed  CAS  Google Scholar 

  48. Hess WR, Hoch B, Zeltz P, Hübschmann T, Kössel H, Börner T (1994) Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6:1455–1465

    PubMed  CAS  Google Scholar 

  49. Hippler M, Bock R (2004) Chloroplast proteomics. Prog Bot 65:90–105

    Article  CAS  Google Scholar 

  50. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) Chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of cereals. Mol Gen Genet 217:185–194

    Article  PubMed  CAS  Google Scholar 

  51. Horlow C, Goujaud J, Lépingle A, Missonier C, Bourgin J-P (1990) Transmission of paternal chloroplasts in tobacco (Nicotiana tabacum). Plant Cell Rep 9:249–252

    Article  Google Scholar 

  52. Ikehara T, Uchida H, Suzuki L, Nakamura S (1996) Chloroplast nucleoids in large number and large DNA amount with regard to maternal inheritance in Chlamydomonas reinhardtii. Protoplasma 194:11–17

    Article  CAS  Google Scholar 

  53. Isono K, Niwa Y, Satoh K, Kobayashi H (1997) Evidence for transcriptional regulation of plastid photosynthesis genes in Arabidopsis thaliana roots. Plant Physiol 114:623–630

    Article  PubMed  CAS  Google Scholar 

  54. Jansen RK, Raubeson LA, Boore JL, de Pamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leebens-Mack J, Cui L (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395:348–384

    Article  PubMed  CAS  Google Scholar 

  55. Jenkins BD, Kulhanek DJ, Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9:283–296

    PubMed  CAS  Google Scholar 

  56. Jeong SY, Rose A, Meier I (2003) MFP1 is a thylakoid-associated, nucleoid-binding protein with a coiled-coil structure. Nucleic Acids Res 31:5175–5185

    Article  PubMed  CAS  Google Scholar 

  57. Joet T, Cournac L, Horvath EM, Medgyesy P, Peltier G (2001) Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. Plant Physiol 125:1919–1929

    Article  PubMed  CAS  Google Scholar 

  58. Jukes TH, Osawa S (1990) The genetic code in mitochondria and chloroplasts. Experientia 46:1117–1126

    Article  PubMed  CAS  Google Scholar 

  59. Kahlau S, Aspinall S, Gray JC, Bock R (2006) Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 63:194–207

    Article  PubMed  CAS  Google Scholar 

  60. Kaneko T, Tabata S (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 38:1171–1176

    Article  PubMed  CAS  Google Scholar 

  61. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  PubMed  CAS  Google Scholar 

  62. Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46:85–94

    Article  PubMed  CAS  Google Scholar 

  63. Kobayashi T, Takahara M, Miyagishima S-Y, Kuroiwa H, Sasaki N, Ohta N, Matsuzaki M, Kuroiwa T (2002) Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids. Plant Cell 14:1579–1589

    Article  PubMed  CAS  Google Scholar 

  64. Kowallik KV, Stoebe B, Schaffran I, Kroth-Pancic P, Freier U (1995) The chloroplast genome of a chlorophyll a+c-containing alga, Odontella sinensis. Plant Mol Biol Rep 13:336–342

    Article  CAS  Google Scholar 

  65. Krause K, Krupinska K (2000) Molecular and functional properties of highly purified transcriptionally active chromosomes from spinach chloroplasts. Physiol Plant 109:188–195

    Article  CAS  Google Scholar 

  66. Kumar D, Mukherjee S, Reddy MK, Tewari KK (1995) A novel single-stranded DNA-specific endonuclease from pea chloroplasts. J Exp Bot 46:767–776

    Article  CAS  Google Scholar 

  67. Kuroiwa T (1989) The nuclei of cellular organelles and the formation of daughter organelles by the “plastid-dividing ring”. Bot Mag Tokyo 102:291–329

    Article  Google Scholar 

  68. Kuroiwa T (1991) The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol 128:1–62

    Article  CAS  Google Scholar 

  69. Lee D, Natesan E (2006) Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol 24:109–114

    Article  PubMed  CAS  Google Scholar 

  70. Li W, Ruf S, Bock R (2006) Constancy of organellar genome copy numbers during leaf development and senescence in higher plants. Mol Gen Genomics 275:185–192

    Article  CAS  Google Scholar 

  71. Liere K, Link G (1995) RNA-binding activity of the matK protein encoded by the chloroplast trnK intron from mustard (Sinapis alba L.). Nucleic Acids Res 23:917–921

    Article  PubMed  CAS  Google Scholar 

  72. Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254

    PubMed  CAS  Google Scholar 

  73. Liu J-W, Rose RJ (1992) The spinach chloroplast chromosome is bound to the thylakoid membrane in the region of the inverted repeat. Biochem Biophys Res Commun 184:993–1000

    Article  PubMed  CAS  Google Scholar 

  74. Lung B, Zemann A, Madej MJ, Schuelke M, Techritz S, Ruf S, Bock R, Hüttenhofer A (2006) Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res 34:3842–3852

    Article  PubMed  CAS  Google Scholar 

  75. Maier RM, Neckermann K, Igloi GL, Kössel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    Article  PubMed  CAS  Google Scholar 

  76. Majeran W, Wollman F-A, Vallon O (2000) Evidence for a role of ClpP in the degradation of the chloroplast cytochrome b6f complex. Plant Cell 12:137–149

    PubMed  CAS  Google Scholar 

  77. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  78. Marano MR, Carrillo N (1991) Chromoplast formation during tomato fruit ripening. No evidence for plastid methylation. Plant Mol Biol 16:11–19

    Article  PubMed  CAS  Google Scholar 

  79. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  80. Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659–2679

    Article  PubMed  CAS  Google Scholar 

  81. Medgyesy P, Fejes E, Maliga P (1985) Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proc Natl Acad Sci USA 82:6960–6964

    Article  PubMed  CAS  Google Scholar 

  82. Medgyesy P, Páy A, Márton L (1986) Transmission of paternal chloroplasts in Nicotiana. Mol Gen Genet 204:195–198

    Article  CAS  Google Scholar 

  83. Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, Calie PJ, Jermiin LS, Wolfe KH (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658

    PubMed  CAS  Google Scholar 

  84. Misumi O, Suzuki L, Nishimura Y, Sakai A, Kawano S, Kuroiwa H, Kuroiwa T (1999) Isolation and phenotypic characterization of Chlamydomonas reinhardtii mutants defective in chloroplast DNA segregation. Protoplasma 209:273–282

    Article  CAS  Google Scholar 

  85. Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83:383–404

    Article  Google Scholar 

  86. Mohr G, Perlman PS, Lambowitz AM (1993) Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res 21:4991–4997

    Article  PubMed  CAS  Google Scholar 

  87. Monod C, Takahashi Y, Goldschmidt-Clermont M, Rochaix J-D (1994) The chloroplast ycf8 open reading frame encodes a photosystem II polypeptide which maintains photosynthetic activity under adverse growth conditions. EMBO J 13:2747–2754

    PubMed  CAS  Google Scholar 

  88. Morden CW, Wolfe KH, dePamphilis CW, Palmer JD (1991) Plastid translation and transcription genes in a non-photosynthetic plant: intact, missing and pseudo genes. EMBO J 10:3281–3288

    PubMed  CAS  Google Scholar 

  89. Mukherjee SK, Reddy MK, Kumar D, Tewari KK (1994) Purification and characterization of a eukaryotic type 1 topoisomerase from pea chloroplasts. J Biol Chem 269:3793–3801

    PubMed  CAS  Google Scholar 

  90. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Article  Google Scholar 

  91. Munekage Y, Hashimoto M, Miyake C, Tomizawa K-I, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  PubMed  CAS  Google Scholar 

  92. Nakano T, Murakami S, Shoji T, Yoshida S, Yamada Y, Sato F (1997) A novel protein with DNA binding activity from tobacco chloroplast nucleoids. Plant Cell 9:1673–1682

    PubMed  CAS  Google Scholar 

  93. Neale DB, Marshall KA, Sederoff RR (1989) Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl. Proc Natl Acad Sci USA 86:9347–9349

    Article  PubMed  CAS  Google Scholar 

  94. Ngernprasirtsiri J, Kobayashi H, Akazawa T (1988a) DNA methylation occurred around lowly expressed genes of plastid DNA during tomato fruit development. Plant Physiol 88:16–20

    Article  PubMed  CAS  Google Scholar 

  95. Ngernprasirtsiri J, Kobayashi H, Akazawa T (1988b) DNA methylation as a mechanism of transcriptional regulation in nonphotosynthetic plastids in plant cells. Proc Natl Acad Sci USA 85:4750–4754

    Article  PubMed  CAS  Google Scholar 

  96. Nishimura Y, Misumi O, Matsunaga S, Higashiyama T, Yokota A, Kuroiwa T (1999) The active digestion of uniparental chloroplast DNA in a single zygote of Chlamydomonas reinhardtii is revealed by using the optical tweezer. Proc Natl Acad Sci USA 96:12577–12582

    Article  PubMed  CAS  Google Scholar 

  97. Nishimura Y, Misumi O, Kato K, Inada N, Higashiyma T, Momoyama Y, Kuroiwa T (2002) An mt+ gamete-specific nuclease that targets mt chloroplasts during sexual reproduction in C. reinhardtii. Genes Dev 16:1116–1128

    Article  PubMed  CAS  Google Scholar 

  98. Nishiyama R, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) A chloroplast-resident DNA methyltransferase is responsible for hypermethylation of chloroplast genes in Chlamydomonas maternal gametes. Proc Natl Acad Sci USA 99:5925–5930

    Article  PubMed  CAS  Google Scholar 

  99. Nishiyama R, Wada Y, Mibu M, Yamaguchi Y, Shimogawara K, Sano H (2004) Role of a nonselective de novo DNA methyltransferase in maternal inheritance of chloroplast genes in the green alga, Chlamydomonas reinhardtii. Genetics 168:809–816

    Article  PubMed  CAS  Google Scholar 

  100. Ohta N, Matsuzaki M, Misumi O, Miyagishima S-Y, Nozaki H, Tanaka K, Shin-I T, Kohara Y, Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10:67–77

    Article  PubMed  CAS  Google Scholar 

  101. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S-I, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  CAS  Google Scholar 

  102. Ohyama K, Fukuzawa H, Kohchi T, Sano T, Sano S, Shirai H, Umesono K, Shiki T, Takeuchi M, Chang Z, Aota S-I, Inokuchi H, Ozeki H (1988) Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification. J Mol Biol 203:281–298

    Article  PubMed  CAS  Google Scholar 

  103. Oldenburg DJ, Bendich AJ (2004) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970

    Article  PubMed  CAS  Google Scholar 

  104. Orsat B, Monfort A, Chatellard P, Stutz E (1992) Mapping and sequencing of an actively transcribed Euglena gracilis chloroplast gene (ccsA) homologous to the Arabidopsis thaliana nuclear gene cs (ch-42). FEBS Lett 303:181–184

    Article  PubMed  CAS  Google Scholar 

  105. Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264

    PubMed  CAS  Google Scholar 

  106. Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93

    Article  CAS  Google Scholar 

  107. Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29:537–550

    Article  PubMed  CAS  Google Scholar 

  108. Palmer JD, Nugent JM, Hebron LA (1987) Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc Natl Acad Sci USA 84:769–773

    Article  PubMed  CAS  Google Scholar 

  109. Pfalz J, Liere K, Kandlbinder A, Dietz K-J, Oelmüller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    Article  PubMed  CAS  Google Scholar 

  110. Reith M (1995) Molecular biology of rhodophyte and chromophyte plastids. Annu Rev Plant Physiol Plant Mol Biol 46:549–575

    Article  CAS  Google Scholar 

  111. Reith M, Munholland J (1993) A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5:465–475

    PubMed  CAS  Google Scholar 

  112. Reith M, Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13:333–335

    Article  CAS  Google Scholar 

  113. Revill MJW, Stanley S, Hibberd JM (2005) Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J Exp Bot 56:2477–2486

    Article  PubMed  CAS  Google Scholar 

  114. Rochaix J-D (1997) Chloroplast reverse genetics: new insights into the function of plastid genes. Trends Plant Sci 2:419–425

    Article  Google Scholar 

  115. Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545

    Article  PubMed  CAS  Google Scholar 

  116. Rolland N, Dorne A-J, Amoroso G, Sültemeyer DF, Joyard J, Rochaix J-D (1997) Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas. EMBO J 16:6713–6726

    Article  PubMed  CAS  Google Scholar 

  117. Ruf S, Kössel H, Bock R (1997) Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J Cell Biol 139:95–102

    Article  PubMed  CAS  Google Scholar 

  118. Rujan T, Martin W (2001) How many genes in Arabidopsis come from cyanobacteria ? An estimate from 386 protein phylogenies. Trends Genet 17:113–121

    Article  PubMed  CAS  Google Scholar 

  119. Sager R, Ishida MR (1963) Chloroplast DNA in Chlamydomonas. Proc Natl Acad Sci USA 50:725–730

    Article  PubMed  CAS  Google Scholar 

  120. Sager R, Ramanis Z (1976) Chloroplast genetics of Chlamydomonas. II. Mapping by cosegregation frequency analysis. Genetics 83:323–340

    PubMed  CAS  Google Scholar 

  121. Sakai A, Yamashita H, Nemoto Y, Kawano S, Kuroiwa T (1991) Transcriptional activity of morphologically intact proplastid-nuclei (nucleoids) isolated from tobacco cultured cells. Plant Cell Physiol 32:835–843

    CAS  Google Scholar 

  122. Salvador ML, Klein U, Bogorad L (1998) Endogenous fluctuations of DNA topology in the chloroplast of Chlamydomonas reinhardtii. Mol Cell Biol 18:7235–7242

    PubMed  CAS  Google Scholar 

  123. Sasaki Y, Sekiguchi K, Nagano Y, Matsuno R (1993a) Chloroplast envelope protein encoded by chloroplast genome. FEBS Lett 316:93–98

    Article  PubMed  CAS  Google Scholar 

  124. Sasaki Y, Hakamada K, Suama Y, Nagano Y, Furusawa I, Matsuno R (1993b) Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J Biol Chem 268:25118–25123

    PubMed  CAS  Google Scholar 

  125. Sasaki Y, Konishi T, Nagano Y (1995) The compartmentation of acetyl-coenzyme A carboxylase in plants. Plant Physiol 108:445–449

    PubMed  CAS  Google Scholar 

  126. Sato N, Albrieux C, Joyard J, Douce R, Kuroiwa T (1993) Detection and characterization of a plastid envelope DNA-binding protein which may anchor plastid nucleoids. EMBO J 12:555–561

    PubMed  CAS  Google Scholar 

  127. Scharff LB, Koop H-U (2006) Linear molecules of tobacco ptDNA end at known replication origins and additional loci. Plant Mol Biol 62:611–621

    Article  PubMed  CAS  Google Scholar 

  128. Sekine K, Hase T, Sato N (2002) Reversible DNA compaction by sulfite reductase regulates transcriptional activity of chloroplast nucleoids. J Biol Chem 277:24399–24404

    Article  PubMed  CAS  Google Scholar 

  129. Shanklin J, DeWitt ND, Flanagan JM (1995) The stroma of higher plant plastids contain CplP and CplC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Plant Cell 7:1713–1722

    PubMed  CAS  Google Scholar 

  130. Shi L, Zhu T, Mogensen HL, Smith SE (1991) Paternal plastid inheritance in alfalfa: plastid nucleoid number within generative cells correlates poorly with plastid number and male plastid transmission strength. Curr Genet 19:399–401

    Article  Google Scholar 

  131. Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709

    Article  PubMed  CAS  Google Scholar 

  132. Shimada H, Sugiura M (1991) Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucleic Acids Res 19:983–995

    Article  PubMed  CAS  Google Scholar 

  133. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  134. Sijben-Müller G, Hallick RB, Alt J, Westhoff P, Herrmann RG (1986) Spinach plastid gene coding for initiation factor IF-1, ribosomal protein S11 and RNA polymerase α-subunit. Nucleic Acids Res 14:1029–1042

    Article  PubMed  Google Scholar 

  135. Simpson CL, Stern DB (2002) The treasure trove of algal chloroplast genomes. Surprises in architecture and gene content, and their functional implications. Plant Physiol 129:957–966

    Article  PubMed  CAS  Google Scholar 

  136. Stein DB, Palmer JD, Thompson WF (1986) Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda. Curr Genet 10:835–841

    Article  CAS  Google Scholar 

  137. Sugiura M (1989) The chloroplast chromosomes in land plants. Annu Rev Cell Biol 5:51–70

    Article  PubMed  CAS  Google Scholar 

  138. Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168

    Article  PubMed  CAS  Google Scholar 

  139. Szmidt AE, Alden T, Hällgren J-E (1987) Paternal inheritance of chloroplast DNA in Larix. Plant Mol Biol 9:59–64

    Article  CAS  Google Scholar 

  140. Testolin R, Cipriani G (1997) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in the genus Actinidia. Theor Appl Genet 94:897–903

    Article  CAS  Google Scholar 

  141. Tewari KK, Wildman SG (1966) Chloroplast DNA from tobacco leaves. Science 153:1269–1271

    Article  PubMed  CAS  Google Scholar 

  142. Thanh ND, Medgyesy P (1989) Limited chloroplast gene transfer via recombination overcomes plastome-genome incompatibility between Nicotiana tabacum and Solanum tuberosum. Plant Mol Biol 12:87–93

    Article  Google Scholar 

  143. Tilney-Bassett RAE (1984) The genetic evidence for nuclear control of chloroplast biogenesis in higher plants. In: Ellis R J (ed) Chloroplast Biogenesis. Cambridge Univ Press, Cambridge, pp 13–50

    Google Scholar 

  144. Tilney-Bassett RAE (1994) Nuclear control of chloroplast inheritance in higher plants. J Heredity 85:347–354

    Google Scholar 

  145. Umen JG, Goodenough UW (2001) Chloroplast DNA methylation and inheritance in Chlamydomonas. Genes Dev 15:2585–2597

    Article  PubMed  CAS  Google Scholar 

  146. Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    Article  PubMed  CAS  Google Scholar 

  147. Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K, Sugiura M (1997) Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94:5967–5972

    Article  PubMed  CAS  Google Scholar 

  148. Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosynthesis Res 70:107–118

    Article  CAS  Google Scholar 

  149. Wang T, Li Y, Shi Y, Reboud X, Darmency H, Gressel J (2004) Low frequency transmission of a plastid-encoded trait in Setaria italica. Theor Appl Genet 108:315–320

    Article  PubMed  CAS  Google Scholar 

  150. Wimpee CF, Wrobel RL, Garvin DK (1991) A divergent plastid genome in Conopholis americana, an achlorophyllous parasitic plant. Plant Mol Biol 17:161–166

    Article  PubMed  CAS  Google Scholar 

  151. Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitutions vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  152. Wolfe KH, Morden CW, Ems SC, Palmer JD (1992) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: Loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35:304–317

    Article  PubMed  CAS  Google Scholar 

  153. Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    Article  PubMed  CAS  Google Scholar 

  154. Xie Z, Merchant S (1996) The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J Biol Chem 271:4632–4639

    Article  PubMed  CAS  Google Scholar 

  155. Xie Z, Culler D, Dreyfuss BW, Kuras R, Wollman F-A, Girard-Bascou J, Merchant S (1998) Genetic analysis of chloroplast c-type cytochrome assembly in Chlamydomonas reinhardtii: one chloroplast locus and at least four nuclear loci are required for heme attachment. Genetics 148:681–692

    PubMed  CAS  Google Scholar 

  156. Zhang Q, Liu Y, Sodmergen (2003) Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol 44:941–951

    Article  PubMed  CAS  Google Scholar 

  157. Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400:155–159

    Article  PubMed  CAS  Google Scholar 

  158. Zoschke R, Liere K, Börner T (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J, in press

    Google Scholar 

  159. Zubko MK, Day A (1998) Stable albinism induced without mutagenesis: a model for ribosome-free plastid inheritance. Plant J 15:265–271

    Article  PubMed  CAS  Google Scholar 

  160. Zubko MK, Day A (2002) Differential regulation of genes transcribed by nucleus-encoded plastid RNA polymerase, and DNA amplification, within ribosome-deficient plastids in stable phenocopies of cereal albino mutants. Mol Genet Genomics 267:27–37

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Bock .

Editor information

Ralph Bock

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bock, R. (2007). Structure, function, and inheritance of plastid genomes. In: Bock, R. (eds) Cell and Molecular Biology of Plastids. Topics in Current Genetics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0223

Download citation

Publish with us

Policies and ethics