Skip to main content
Log in

Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The structure of the cytoplasmic genomes in plants has been investigated by using fluorescence microscopy to make moving pictures of ethidium-stained DNA fractionated by pulsed-field gel electrophoresis (PFGE) and emerging from organelles lysed within gelled agarose. For watermelon chloroplasts, PFGE fractions contained linear molecules representing monomeric to tetrameric lengths of the unit genome (155 kilobase pairs, kb) and linear DNA of at least 1,200 kb, whereas circular molecules were clearly identified only with chloroplast agarose inserts. For pea, the oligomeric series extended only to the trimer. Most of the DNA from watermelon mitochondria was in the form of 50–100 kb linear molecules with some DNA of at least 1,200 kb, but no band was seen at the size of this genome (330 kb) and no circular molecules were identified in either PFGE fractions or mitochondria embedded in agarose. Most mitochondrial DNA from cauliflower also consisted of 50–100 kb linear molecules with some much longer linear forms, but no genome-sized (220 kb) PFGE band was evident. The possible relevance of the very long linear DNAs to previous cytological and genetic observations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand R (1986) Trends Genet 23:278–283

    Google Scholar 

  • Bancroft I, Wolk CP (1988) Nucleic Acids Res 16:7405–7418

    Google Scholar 

  • Bendich AJ (1985) Plant mitochondrial DNA: unusual variation on a common theme. In: Hohn B, Dennis ES (eds) Genetic flux in plants. Springer, Wien, pp 111–138

    Google Scholar 

  • Bendich AJ (1987) BioEssays 6:279–282

    Google Scholar 

  • Beverley SM (1988) Nucleic Acids Res 16:925–939

    Google Scholar 

  • Birky CW Jr (1983) Science 222:468–475

    Google Scholar 

  • Brait JF, Gigot C, Laulhere JP, Mache R (1982) Plant Physiol 69:1205–1211

    Google Scholar 

  • Carle GF, Olson MV (1987) Meth Enzymol 155:468–482

    Google Scholar 

  • Church GM, Gilbert W (1984) Proc Natl Acad Sci USA 81:1991–1995

    Google Scholar 

  • Coleman AW (1985) J Phycol 21:1–16

    Google Scholar 

  • Daum G, Bohni PC, Schatz G (1982) J Biol Chem 257:13028–13033

    Google Scholar 

  • Deng X-W, Wing RA, Gruissem W (1989) Proc Natl Acad Sci USA 86:4156–4160

    Google Scholar 

  • Dewey RE, Schuster AM, Levings CS III, Timothy DH (1985) Proc Natl Acad Sci USA 82:1015–1019

    Google Scholar 

  • Forster JL, Grabowy CT, Harris EH, Boynton JE, Gillham NW (1980) Curr Genet 1:137–153

    Google Scholar 

  • Hashimoto H (1985) Protoplasma 127:119–127

    Google Scholar 

  • Herrmann RG, Kowallick KV, Bohnert HJ (1974) Portugal Acta Biol Ser A 14:91–110

    Google Scholar 

  • Herrmann RG, Palta HK, Kowallik KV (1980) Planta 148:319–327

    Google Scholar 

  • Herrmann RG, Possigham JV (1980) Plastid DNA — the plastome. In: Reiner J (ed) Results and problems in cell differentiation: the chloroplast, vol 10. Springer, Berlin Heidelberg New York, pp 45–96

    Google Scholar 

  • Kolodner R, Tewari KK (1975a) Biochim Biophys Acta 402:372–390

    Google Scholar 

  • Kolodner R, Tewari KK (1975b) Nature 256:708–711

    Google Scholar 

  • Kolodner R, Tewari KK (1979) Proc Natl Acad Sci USA 76:41–45

    Google Scholar 

  • Kuroiwa T, Suzuki T, Ogawa K, Kawano S (1981) Plant & Cell Physiol 22:381–396

    Google Scholar 

  • Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottmann WH (1988) Phil Trans R Soc Lond B 319:149–163

    Google Scholar 

  • Luthe DS, Quatrano RS (1980) Plant Physiol 65:305–313

    Google Scholar 

  • Manhart JR, Kelly K, Dudock BS, Palmer JD (1989) Mol Gen Genet 216:417–421

    Google Scholar 

  • Miyamura S, Nagata T, Kuroiwa T Protoplasma (1986) 133:66–72

    Google Scholar 

  • Morgenthaler JJ, Marsden MPF, Price CA (1975) Arch Biochem Biophys 168:289–301

    Google Scholar 

  • Palmer JD (1985) Annu Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD (1988) Genetics 118:341–351

    Google Scholar 

  • Sager R (1977) Advan Genet 19:287–340

    Google Scholar 

  • Schwartz DC, Koval M (1989) Nature 338:520–522

    Google Scholar 

  • Skelly PJ, Maleszka R (1989) Nucleic Acids Res 17:7537

    Google Scholar 

  • Skubatz H, Bendich AJ (1990) Isolation of mitochondria and mtDNA. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht (in press)

    Google Scholar 

  • Smith SB, Aldridge PA, Callis JB (1989) Science 243:203–206

    Google Scholar 

  • Smith SB, Bendich AJ (1990) Biopolymers (in press)

  • Tymms MJ, Schweiger H (1985) Proc Natl Acad Sci USA 82:1706–1710

    Google Scholar 

  • Van Daelen RAJ, Jonkers JJ, Zabel P (1989) Plant Mol Biol 12:341–352

    Google Scholar 

  • Van Winkle-Swift KP (1980) Curr Genet 1:113–125

    Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) Cell 25:793–803

    Google Scholar 

  • Yoshida Y, Laulhère J-P, Rozier R, Mache R (1978) Biol Cell 32:187–190

    Google Scholar 

  • Zurawski G, Whitfeld PR, Bottomly W (1986) Nucleic Acids Res 14:3975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendich, A.J., Smith, S.B. Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17, 421–425 (1990). https://doi.org/10.1007/BF00334522

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334522

Key words

Navigation