Skip to main content

Baker’s yeast: challenges and future prospects

  • Chapter
  • First Online:
Functional Genetics of Industrial Yeasts

Part of the book series: Topics in Current Genetics ((TCG,volume 2))

Abstract

In the past few years, recombinant DNA technology has led to the apparition of new baker’s yeast strains, which have optimized or novel properties, and in the near future, it is expected that this tool will produce a huge spectrum of specialized yeasts of high added value. Their introduction in the manufacturing market will produce a dramatic change in formulation, ingredients, or processing conditions currently used in the baking practice and will provide new products with enhanced flavour, textures, or extended shelf life. As the potential of recombinant gene expression and metabolic engineering is more understood, this technology could be further addressed to attend to public and consumer demands of environmentally sound processes and healthy and convenient products. This chapter reviews the most important advances in the genetic improvement of baker’s yeast, puts emphasis on fundamental and applied aspects, and discusses perspectives and outlooks in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams J, Puskas-Rozsa S, Simlar J, Wilke CM (1992) Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr Genet 22:13–19

    Article  CAS  Google Scholar 

  • Aguilera A, Klein HL (1993) Chromosome aberrations in simpler eukaryotes. In: Kirsch IR (ed.) The Causes and Consequences of Chromosomal Aberrations. CRC Press, Boca Raton, pp 51–90

    Google Scholar 

  • Aguilera J, Prieto JA (2001) The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr Genet 39:273–283

    Article  CAS  Google Scholar 

  • Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    CAS  Google Scholar 

  • Alepuz PM, Cunningham KW, Estruch F (1997) Glucose repression affects ion homeostasis in yeast through regulation of the stress-activated ENA1 gene. Mol Microbiol 26:91–98

    Article  CAS  Google Scholar 

  • Alepuz PM, Jovanovic A, Reiser V, Ammerer G (2001) Stress-induced map kinase Hogl is part of transcription activation complexes. Mol Cell 7:767–777

    Article  CAS  Google Scholar 

  • Almeida MJ, Pais CS (1996a) Characterization of the yeast population from traditional corn and rye bread doughs. Lett Appl Microbiol 23:154–158

    Google Scholar 

  • Almeida MJ, Pais CS (1996b) Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs. Appl Environ Microbiol 62:4401–4404

    CAS  Google Scholar 

  • Alonso-Monge R, Real E, Wojda I, Bebelman JP, Mager WH, Siderius M (2001) Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol 41:717–730

    Article  CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    Article  CAS  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nature Biotechnol 15:1351–1357

    Article  CAS  Google Scholar 

  • Attfield PV, Kletsas S (2000) Hyperosmotic stress response by strains of bakers’ yeasts in high sugar concentration medium. Lett Appl Microbiol 31:323–327

    Article  CAS  Google Scholar 

  • Barrett J (2001) Thermal hysteresis proteins. Int J Biochem Cell Biol 33:105–117

    Article  CAS  Google Scholar 

  • Bell M, Capone R, Pashtan I, Levitzki A, Engelberg D (2001) Isolation of hyperactive mutants of the MAP kinase p38/Hogl that are independent of MAPKK activation. J Biol Chem 276:25351–25358

    Article  CAS  Google Scholar 

  • Belloch C, Querol A, Garcia MD, Barrio E (2000) Phylogeny of the genus Kluyveromyces inferred from the mitochondrial cytochrome-c oxidase II gene. Int J Syst Evol Microbiol 50:405–416

    CAS  Google Scholar 

  • Benitez T, Castrejón F, Gasent-Ramírez JM, Codón AC (1996) Development of new strains for the food industry. Biotechnol Prog 12:149–163

    Article  CAS  Google Scholar 

  • Blom J, De Mattos MJ, Grivell LA (2000) Redirection of the respiro-fermentative flux distribution in Saccharomyces cerevisiae by overexpression of the transcription factor Hap4p. Appl Environ Microbiol 66:1970–1973

    Article  CAS  Google Scholar 

  • Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182:1–8

    Article  CAS  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Phys 33:145–212

    Article  CAS  Google Scholar 

  • Bonhivers M, Carbrey JM, Gould SJ, Agre P (1998) Aquaporins in Saccharomyces-genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem 273:27565–27572

    Article  CAS  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  CAS  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    CAS  Google Scholar 

  • Chakrabartty A, Hew CL, Shears M, Fletcher G (1988) Primary structures of the alaninerich antifreeze polypeptides from grubby sculpin, Myoxocephalus aenaeus. Can J Zool 66:403–408

    CAS  Google Scholar 

  • Codón AC, Benítez T (1995) Variability of the physiological features and of the nuclear and mitochondrial genomes of baker’s yeasts. System Appl Microbiol 18:343–352

    Google Scholar 

  • Codón AC, Gasent-Ramírez JM, Benítez T (1995) Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker’s yeasts. Appl Environ Microbiol 61:630–638

    Google Scholar 

  • Codón AC, Benítez T, Korhola M (1997) Chromosomal reorganization during meiosis of Saccharomyces cerevisiae baker’s yeasts. Curr Genet 32:247–59

    Article  Google Scholar 

  • Codón AC, Benitez T, Korhola M (1998) Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Appl Microbiol Biotechnol 49:154–63

    Article  Google Scholar 

  • Codón AC, Rincón AM, Moreno-Mateos MA, Delgado-Jarana J, Rey M, Limon C, Rosado IV, Cubero B, Peiiate X, Castrejón F, Benítez T (2003). New Saccharomyces cerevisiae baker’s yeast displaying enhanced resistance to freezing. J Agric Food Chem 51:483–491

    Article  CAS  Google Scholar 

  • Cornish-Bowden A, Hofmeyr JH (1995) Determination of control coefficients in intact metabolic systems. Biochem J 298:367–375

    Google Scholar 

  • Craig EA, Jacobsen K (1985) Mutations in cognate genes of Saccharomyces cerevisiae hsp70 result in reduced growth rates at low temperatures. Mol Cell Biol 5:3517–3524

    CAS  Google Scholar 

  • Crespo JL, Hall MN (2002) Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 66:579–591

    Article  CAS  Google Scholar 

  • Crespo JL, Daicho K, Ushimaru T, Hall MN (2001) The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276:34441–34444

    Article  CAS  Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in bacteria and archaea. In: Antranikian G (ed) Biotechnology of extremophiles. Advances in biochemical engineering/biotechnology, vol 61. Springer, New York, pp 117–153

    Google Scholar 

  • de Groot E, Bebelman JP, Mager WH, Planta RJ (2000) Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae. Microbiology 146:367–375

    Google Scholar 

  • de Jesus Ferreira MC, Bao X, Laizé V, Hohmann S (2001) Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature. Curr Genet 40:27–39

    Article  CAS  Google Scholar 

  • Dequin S (2001) The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol 56:577–588

    Article  CAS  Google Scholar 

  • Diderich JA, Raamsdonk LM, Kruckeberg AL, Berden JA, van Dam K (2001) Physiological properties of Saccharomyces cerevisiae from which hexokinase II has been deleted. Appl Environ Microbiol 67:1587–1593

    Article  CAS  Google Scholar 

  • Driedonks RA, Toschka HY, Van Almkerk JW, Schaffers IM, Verbakel JM (1995) Expression and secretion of antifreeze peptides in the yeast Saccharomyces cerevisiae. Yeast 11:849–864

    Article  CAS  Google Scholar 

  • Dyer JM, Chapital DC, Cary JW, Pepperman AB (2001) Chilling-sensitive, posttrans criptional regulation of a plant fatty acid desaturase expressed in yeast. Biochem Biophys Res Commun 282:1019–1025

    Article  CAS  Google Scholar 

  • Esteve-Zarzoso B, Gostincar A, Bobet R, Uruburu F, Querol A (2001) Selection and molecular characterization of wine yeasts isolated from the “El Penedes” area. Food Microbiol 17:553–562

    Article  CAS  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    Article  CAS  Google Scholar 

  • Evans IH (1990). Yeast strains for baking: recent developments. In: Spencer JFT, Spencer DM (eds) Yeast Technology. Springer-Verlag, Heidelberg, pp 13–54

    Google Scholar 

  • Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J17:5606–5614

    Article  CAS  Google Scholar 

  • Flikweert MT, Van Der Zanden L, Janssen WM, Steensma HY, Van Dijken JP, Pronk JT (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12:247–257

    Article  CAS  Google Scholar 

  • Flikweert MT, Kuyper M, van Maris AJ, Kotter P, van Dijken JP, Pronk JT (1999) Steadystate and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 66:42–50

    Article  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  Google Scholar 

  • Gasent-Ramirez JM, Castrejón F, Querol A, Ramón D, Benítez T (1999) Genomic stability of Saccharomyces cerevisiae baker’s yeasts. System Appl Microbiol 22:329–340

    CAS  Google Scholar 

  • Gaxiola R, de Larrinoa IF, Villalba JM, Serrano R (1992) A novel and conserved saltinduced protein is an important determinant of salt tolerance in yeast. EMBO J 11:3157–3164

    CAS  Google Scholar 

  • Gélinas P, Fiset G, Willemot C, Goulet J (1991) Lipid content and cryotolerance of baker’s yeast in frozen doughs. Appl Environ Microbiol 57:463–468

    Google Scholar 

  • Gélinas P, Lagimonière M, Dubord C (1993) Baker’s yeast sampling and frozen dough stability. Cereal Chem 70:219–225

    Google Scholar 

  • Gonçalves P, Planta RJ (1998) Starting up yeast glycolysis. Trends Microbiol 6:314–319

    Article  Google Scholar 

  • Görner W, Durchschlag E, Wolf J, Brown EL, Ammerer G, Ruis H, Schuller C (2002) Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J 21:135–144

    Article  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    CAS  Google Scholar 

  • Hahn Y-S, Kawai H (1990) Isolation and characterization of freeze-tolerant yeasts from nature available for the frozen-dough method. Agric Biol Chem 54:829–831

    CAS  Google Scholar 

  • Hampsey M (1997) A review of phenotypes in Saccharomyces cerevisiae. Yeast 13:1099–1133

    Article  CAS  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNFl protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Bio chem 67:821–855

    CAS  Google Scholar 

  • Haro R, Garciadeblas B, Rodriguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291:189–191

    Article  CAS  Google Scholar 

  • Hermes-Lima M, Storey KB (1993) Antioxidant defences in the tolerance of freezing and anoxia by garter snakes. Am J Physiol 265:R646–R652

    CAS  Google Scholar 

  • Hernandez-Lopez MJ, Prieto JA, Randez-Gil F (2002) Isolation and characterization of the gene URA3 encoding the orotidine-5′-phosphate decarboxylase from Tondaspora delbrueckii. Yeast 19:1431–1435

    Article  CAS  Google Scholar 

  • Hernandez-Lopez MJ, Prieto JA, Randez-Gil F (2003a) Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Tondaspora delbrueckii and Saccharomyces cerevisiae baker’s yeast strains. Antonie van Leeuwenhoek (in press)

    Google Scholar 

  • Hernandez-Lopez MJ, Prieto JA, Randez-Gil F (2003b) Ura host strains for genetic manipulation and heterologous expression of Tondaspora delbrueckii. Int J Food Microbiol (in press)

    Google Scholar 

  • Hew C, Gong Z (2001) Intracellular antifreeze polypeptides and nucleic acids. United States Patent US 6,307,020 Bl

    Google Scholar 

  • Higgins V, Braidwood M, Bell P, Bissinger P, Dawes IW, Attfield PV (1999) Genetic evidence that high noninduced maltase and maltose permease activities, governed by MALx3-encoded transcriptional regulators, determine efficiency of gas production by baker’s yeast in unsugared dough. Appl Environ Microbiol 65:680–685

    CAS  Google Scholar 

  • Higgins VJ, Bell PJL, Dawes IW, Attfield PV (2001) Generation of a novel Saccharomyces cerevisiae strain that exhibits strong maltose utilization and hyperosmotic resistance using nonre combinant techniques. Appl Environ Mi crobiol 67:4346–4348

    Article  CAS  Google Scholar 

  • Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32

    Article  CAS  Google Scholar 

  • Hirasawa R, Yokoigawa K (2001) Leavening ability of baker’s yeast exposed to hyperosmotic media. FEMS Microbiol Lett 194:159–162

    Article  CAS  Google Scholar 

  • Hirasawa R, Yokoigawa K, Isobe Y, Kawai H (2001) Improving the freeze tolerance of baker’s yeast by loading with trehalose. Biosci Biotechnol Biochem 65:522–526

    Article  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signalling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  Google Scholar 

  • Hohmann S, Bill RM, Kayingo G, Prior BA (2000) Microbial MIP channels. Trends Microbiol 8:33–38

    Article  CAS  Google Scholar 

  • Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248

    Article  CAS  Google Scholar 

  • Inoue Y, Sapirstein HD, Bushuk W (1995) Studies on frozen doughs. IV. Effect of shortening systems on baking and rheological properties. Cereal Chem 72:221–226

    CAS  Google Scholar 

  • Inouye M (1999) Cold-shock response and adaptation. J Mol Microbiol Biotechnol 1:191

    CAS  Google Scholar 

  • James SA, Collins MD, Roberts IN (1996) Use of an rRNA internal transcribed spacer region to distinguish phylogenetic ally related species of the genera Zygosaccharomyces and Tondaspora. Int J Syst Bacteriol 46:189–194.

    Article  CAS  Google Scholar 

  • Johnston M (1999) Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet 15:29–33

    Article  CAS  Google Scholar 

  • Kaul SC, Obuchi K, Iwahashi H, Komatsu Y (1992) Cryoprotection provided by heat shock treatment in Saccharomyces cerevisiae. Cell Mol Biol 38:135–143

    CAS  Google Scholar 

  • Kim J, Alizadeh P, Harding T, Hefner-Gravink A, Klionsky DJ (1996) Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing and ethanol shock: potential commercial applications. Appl Environ Microbiol 62:1563–1569

    CAS  Google Scholar 

  • Klein CJ, Rasmussen JJ, Ronnow B, Olsson L, Nielsen J (1999) Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae. J Biotechnol 68:197–212

    Article  CAS  Google Scholar 

  • Ko CH, Gaber RF (1991) TRKI and TRK2 encodes structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11:4266–4273

    CAS  Google Scholar 

  • Kondo K, Inouye M (1991) TIP1, a cold-shock inducible gene of Saccharomyces cerevisiae. J Biol Chem 266:17537–17544

    CAS  Google Scholar 

  • Kowalski LRZ, Kondo K, Inouye M (1995) Cold-shock induction of a family of TIP1- related proteins associated with the membrane in Saccharomyces cerevisiae. Mol Microbiol 15:341–353

    Article  CAS  Google Scholar 

  • Kuge S, Jones N (1994) YAP I dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664

    CAS  Google Scholar 

  • Kurtzman CP (1998) Tondaspora Lindner. In Kurtzman CP, Fell JW (eds) The Yeasts. A taxonomyc study. Elsevier Science B.V., Amsterdam, pp 404–408

    Chapter  Google Scholar 

  • Larsson K, Eriksson P, Ansell R, Adler L (1993) A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol 10:1101–1111

    Article  CAS  Google Scholar 

  • Latterich M, Watson MD (1993) Evidence for a dual osmoregulatory mechanism in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 191:1111–1117

    Article  CAS  Google Scholar 

  • Lee BN, Elion EA (1999) The MAPKKK Stell regulates vegetative growth through a kinase cascade of shared signaling components. Proc Natl Acad sci USA 96:12679–12684

    Article  CAS  Google Scholar 

  • Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB (1999) Yapl and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274:16040–16046

    Article  CAS  Google Scholar 

  • Lee SJ, Baserga SJ (1997) Functional separation of pre-rRNA processing steps revealed by truncation of the U3 small nucleolar ribonucleoprotein component, Mpp 10. Proc Natl Acad sci USA 94:13536–13541

    Article  CAS  Google Scholar 

  • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrich JJ, Tagne J-B, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  Google Scholar 

  • Lehman K, Rossi G, Adamo JE, Brennwald P (1999) Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J Cell Biol 146:125–140

    CAS  Google Scholar 

  • Lewis JG, Learmonth RP, Watson K (1993) Role of growth phase and ethanol in freezethaw resistance of Saccharomyces cerevisiae. Appl Environ Microbiol 59:1065–1071

    CAS  Google Scholar 

  • Lewis JG, Learmonth RP, Attfield PV, Watson K (1997) Stress co-tolerance and trehalose content in baking strains of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 18:30–36

    Article  CAS  Google Scholar 

  • Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394:3–15

    CAS  Google Scholar 

  • Louis EJ, Naumova ES, Lee A, Naumov G, Haber JE (1994) The chromosome end in yeast: its mosaic nature and influence on re combinational dynamics. Genetics 136:789–802

    CAS  Google Scholar 

  • Luvten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fpsl, a yeast member of the MIP family of channel proteins, is a facilitator of glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371

    Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 19:242–245

    Article  Google Scholar 

  • Maeda T, Takekawa M, Saito H (1995) Activation of yeast PBS2 MAPKK by MPKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558

    Article  CAS  Google Scholar 

  • Mager WH, Planta RJ (1991) Coordinate expression of ribosomal protein genes in yeast as a function of cellular growth rate. Mol Cell Biochem 104:181–187

    Article  CAS  Google Scholar 

  • Mager WH, Ferreira M (1993) Stress response of yeast. Biochem J 290:1–13

    CAS  Google Scholar 

  • Marquez JA, Pascual-Ahuir A, Proft M, Serrano R (1998) The Ssn6-Tupl repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and-independent genes. EMBO J 17:2543–2553

    Article  CAS  Google Scholar 

  • Martin CE, Oh C-S, Kandasamy P, Chellapa R, Vemula M (2002) Yeast desaturases. Biochem Soc Trans 30:1080–1082

    Article  CAS  Google Scholar 

  • Matheos DP, Kingsbury TJ, Ahsan US, Cunningham KW (1997) Tcnlp/Crzlp, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev 11:3445–3458

    Article  CAS  Google Scholar 

  • McCartney RR, Schmidt MC (2001) Regulation of Snfl kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem 276:36460–36466

    Article  CAS  Google Scholar 

  • McKown RL, Warren GJ (1991) Enhanced survival of yeast expressing an antifreeze gene analogue after freezing. Cryobiology 28:472–482

    Article  Google Scholar 

  • Meyrial V, Laizé V, Gobin R, Ripoche P, Hohmann S, Tacnet F (2001) Existence of a tightly regulated water channel in Saccharomyces cerevisiae. Eur J Biochem 268:334–343

    Article  CAS  Google Scholar 

  • Moradas-Ferreira P, Costa V (2000) Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death. Redox Report 5:277–285

    Article  CAS  Google Scholar 

  • Moreno F, Herrero P (2002) The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae. FEMS Microbiol Rev 26:83–90

    Article  CAS  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2003) L-Proline accumulation and freeze tolerance in Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding γ-glutamyl kinase. Appl Environ Microbiol 69:212–219

    Article  CAS  Google Scholar 

  • Morris GJ, Coulson GE, Clarke KJ (1988) Freezing injury in Saccharomyces cerevisiae. The effects of growth conditions. Cryobiology 25:471–472

    Article  Google Scholar 

  • Murakami Y, Yokoigawa K, Kawai F, Kawai H (1996) Lipid composition of commercial baker’s yeasts having different freeze-tolerance in frozen dough. Biosci Biotech Biochem 60:1874–1876

    Article  CAS  Google Scholar 

  • Myers DK, Attfield PV (1999) Intracellular concentration of exogenous glycerol in Saccharomyces cerevisiae provides for improved leavening of frozen sweet doughs. Food Microbiol 16:45–51

    Article  CAS  Google Scholar 

  • Myers DK, Lawl or DTM, Attfield PV (1997) Influence of invertase activity and glycerol synthesis and retention on fermentation of media with high sugar concentration by Saccharomyces cerevisiae. Appl Environ Microbiol 63:145–150

    CAS  Google Scholar 

  • Myers DK, Joseph VM, Pehm S, Galvagno M, Attfield PV (1998) Loading of Saccharomyces cerevisiae with glycerol leads to enhanced fermentation in sweet bread doughs. Food Microbiol 15:51–58

    Article  CAS  Google Scholar 

  • Nakagawa S, Ouchi K (1994) Construction from a single parent of baker’s yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs. Appl Environ Microbiol 60:3499–3502

    CAS  Google Scholar 

  • Nakagawa Y, Sakumoto N, Kaneko Y, Harashima S (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun 291:707–713

    Article  CAS  Google Scholar 

  • Nakashima N, Hayashi N, Noguchi E, Nishimoto T (1996) Putative GTPase Gtrlp genetically interacts with the Ran GTPase cycle in Saccharomyces cerevisiae. J Cell sci 109:2311–2318

    CAS  Google Scholar 

  • Naumov GI, Naumova ES, Lantto RA, Louis EJ, Korhola M (1992) Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bay anus: electrophoretic karyotypes. Yeast 8:599–612

    Article  CAS  Google Scholar 

  • Navas MA, Cerdan S, Gancedo JM (1993) Futile cycles in S. cerevisiae strains expressing gluconeogenic enzymes during growth on glucose. Proc Natl Acad sci USA 90:1290–1294

    Article  CAS  Google Scholar 

  • Noble SM, Guthrie C (1996) Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations. Genetics 143:67–80

    CAS  Google Scholar 

  • Noguchi E, Kayashi N, Nakashima N, Nishimoto T (1997) Yrb2p, a Nup2p-related yeast protein, has a functional overlap with Rnalp, a yeast Ran-GTPase-activating protein. Mol Cell Biol 17:2235–2246

    CAS  Google Scholar 

  • Noguchi E, Sayito Y, Saber S, Nishimoto T (1999) Disruption of the YRB2 gene retards nuclear protein export, causing a profound mitotic delay, and can be rescued by overexpression of XPO1/CRM1. J Biochem 125:574–585

    CAS  Google Scholar 

  • Norbeck J, Blomberg A (1998) Amino acid uptake is strongly affected during exponential growth of Saccharomyces cerevisiae in 0.7 M NaCl medium. FEMS Microbiol Lett 158:121–126

    Article  CAS  Google Scholar 

  • Norbeck J, Pahlman AK, Akhtar N, Blomberg A, Adler L (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271:13875–13881

    Article  CAS  Google Scholar 

  • Oda Y, Tonomura K (1993) Selection of a novel baking strain from the Torulaspora yeasts. Biosci Biotech Biochem 57:1320–1322

    CAS  Google Scholar 

  • Oda Y, Tonomura K (1995) Electrophoretic karyotyping of the yeast genus Torulaspora. Lett Appl Microbiol 21:190–193

    Article  CAS  Google Scholar 

  • Oda Y, Yabuki M, Tonomura K, Fukunaga M (1997) A phylogenetic analysis of Saccharomyces species by the sequence of 18S-28S rRNA spacer regions. Yeast 13:1243–1250

    Article  CAS  Google Scholar 

  • Olsson L, Nielsen J (2000) The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme Microb Technol 26:785–792

    Article  CAS  Google Scholar 

  • O’Rourke SM, Herskowitz I, O’Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18:405–412

    Article  CAS  Google Scholar 

  • Osinga KA, Beudeker RE, van der Plaat JB, Hollander JA (1988) New yeast strains providing for an enhanced rate of fermentation of sugars, a process to obtain such yeasts and the use of these yeasts. European Patent 0306107 A2.

    Google Scholar 

  • Ozcan S (2002) Two different signals regulate repression and induction of gene expression by glucose. JBiol Chem277:46993–46997

    Article  CAS  Google Scholar 

  • Ozcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    CAS  Google Scholar 

  • Ozcan S, Leong T, Johnston M (1996) Rgtlp of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 16:6419–6426

    CAS  Google Scholar 

  • Özcan S, Vallier LG, Flick JS, Carlson M, Johnston M (1997) Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose. Yeast 13:127–137

    Article  Google Scholar 

  • Park J-I, Grant CM, Attfield PV, Dawes IW (1997) The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Appl Environ Microbiol 63:3818–3824

    CAS  Google Scholar 

  • Park J-I, Grant CM, Davis MJ, Dawes IW (1998) The cytoplasmic Cu,Zn Superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress. J Biol Chem 273:22921–22928

    Article  CAS  Google Scholar 

  • Pascual-Ahuir A, Serrano R, Proft M (2001) The Skolp repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae. Mol Cell Biol 21:16–25

    Article  CAS  Google Scholar 

  • Pedersen MB (1998) The use of nucleotide sequence polymorphisms and DNA karyotyping in the identification of brewer’s yeast strains and in microbiological control. In: Linskens HF, Jackson JF (eds). Beer analysis. Modern methods of plant analysis. New series, vol 7. Springer-Verlag, Berlin Heidelberg New York, pp 180–194.

    Google Scholar 

  • Peyou-Ndi MM, Watts JL, Browse J (2000) identification and characterization of an animal A fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Arch Biochem Biophys 376:399–408

    Article  CAS  Google Scholar 

  • Philips J, Herskowitz I (1997) Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae. J Cell Biol 138:961–974

    Article  CAS  Google Scholar 

  • Piao HL, Pih KT, Lim JH, Kang SG, Jin JB, Kim SH, Hwang I. (1999) An Arabidopsis GSK3/shaggy-like gene that complements yeast salt stress-sensitive mutants is induced by NaCl and abscisic acid. Plant Physiol 119:1527–1534

    Article  CAS  Google Scholar 

  • Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255

    Article  CAS  Google Scholar 

  • Praekelt UM, Meacock PA (1990) HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 223:97–106

    Article  CAS  Google Scholar 

  • Prieto JA, Aguilera J, Randez-Gil F (2003) Genetic engineering of baker’s yeast: challenges and outlook. In: Kalidas S, Pometto A, Paliyath G (eds) Food biotechnology: second edition, revised and expanded. Marcel Dekker Inc., New York (in press).

    Google Scholar 

  • Prior C, Potier S, Souciet JL, Sychrova H (1996) Characterization of the NHA1 gene encoding a Na+/K+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett 387:89–93

    Article  CAS  Google Scholar 

  • Radji M, Kim J-M, Togan T, Yoshikawa H, Shirahige K (2001) The cloning and characterization of the CDC50 gene family in Saccharomyces cerevisiae. Yeast 18:195–205

    Article  CAS  Google Scholar 

  • Randez-Gil F, Sanz P (1994) Construction of industrial baker’s yeast strains able to assimilate maltose under catabolite repression conditions. Appl Microbiol Biotechnol 42:581–586

    Article  CAS  Google Scholar 

  • Randez-Gil F, Blasco A, Prieto JA, Sanz P (1995) DOGR1 and DOGR2: two genes from Saccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed. Yeast 11:1233–1240

    Article  CAS  Google Scholar 

  • Randez-Gil F, Sanz P, Prieto JA (1999) Engineering baker’s yeast: room for improvement. Trends Biotechnol 17:237–244

    Article  CAS  Google Scholar 

  • Randez-Gil F, Prieto JA, Hernandez-Lopez MJ (2002) Utilization of Tondaspora delbrueckii strains in the production of sweet dough. PCT/ES02/00431

    Google Scholar 

  • Reed G, Nagodawithana TW (1991) Yeast Technology(2nd edn). Van Nostrand Reinhold.

    Google Scholar 

  • Reiser V, Ruis H, Ammerer G (1999) Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hogl mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10:1147–1161

    CAS  Google Scholar 

  • Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65:143–149

    CAS  Google Scholar 

  • Remize F, Barnavon L, Dequin S (2001) Glycerol export and glycerol 3-phosphate dehydrogenase, but not glycerol phosphatases, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab Eng 3:301–312

    Article  CAS  Google Scholar 

  • Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H (1999) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msnlp and the novel nuclear factor Hotlp. Mol Cell Biol 19:5474–5485

    CAS  Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hotlp and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300

    Article  CAS  Google Scholar 

  • Rincón AM, Codón AC, Castrejón F, Benítez T (2001) Improved properties of baker’s yeast mutants resistant to 2-deoxy-D-glucose. Appl Environ Microbiol 67:4279–4285

    Article  Google Scholar 

  • Ripmaster TL, Vaughn GP, Woolford Jr JL (1993) DRS1 to DRS7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae. Mol Cell Biol 13:7901–7912

    CAS  Google Scholar 

  • Rodriguez-Navarro A (2000) Potasium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    CAS  Google Scholar 

  • Rodriguez-Vargas S, Estruch F, Randez-Gil F (2002) Gene expression analysis of cold and freeze stress in baker’s yeast. Appl Environ Microbiol 68:3024–3030

    Article  CAS  Google Scholar 

  • Rogers DT, Szostak JW (1987) Yeast strains. PCT WO87/03006

    Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and-signalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    CAS  Google Scholar 

  • Ronne H (1995) Glucose repression in fungi. Trends Genet 11:12–17

    Article  CAS  Google Scholar 

  • Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521

    CAS  Google Scholar 

  • Sahara T, Goda T, Ohgiya S (2002) Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem 277:50015–50021

    Article  CAS  Google Scholar 

  • Sakamoto T, Murata N (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol 5:206–210

    Article  CAS  Google Scholar 

  • Sales K, Brandt W, Rumbak E, Lindsey G (2000) The LEA-like protein HSP12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim Biophys Acta 1463:267–278

    Article  CAS  Google Scholar 

  • Samuel D, Kumar TKS, Ganesh G, Jayaraman G, Yang P-W, Chang M-M, Trivedi VD, Wang S-L, Hwang K-C, Chang D-K, Yu C (2000) Proline inhibits aggregation during protein refolding. Protein sci 9:344–352

    CAS  Google Scholar 

  • Sano F, Asakawa N, Inoue Y, Sakurai M (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39:80–87

    Article  CAS  Google Scholar 

  • Sanz P, Randez-Gil F, Prieto JA (1994) Molecular characterization of a gene that confers 2-deoxyglucose resistance in yeast. Yeast 10:1195–1202

    Article  CAS  Google Scholar 

  • Sanz P, Alms GR, Haystead TA, Carlson M (2000) Regulatory interactions between the Regl-Glc7 protein phosphatase and the Snfl protein kinase. Mol Cell Biol 20:1321–1328

    Article  CAS  Google Scholar 

  • Sasaki T, Ohshima Y (1987) Induction and characterization of artificial diplois from the haplolid yeast Tondaspora delbrueckii. Appl Environ Microbiol 53:1504–1511

    Google Scholar 

  • Schmelzte T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  Google Scholar 

  • Schnell N, Krems B, Entian KD (1992) The PARI (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism. Curr Genet 21:269–273

    Article  CAS  Google Scholar 

  • Schuller D, Corte-Real M, Leao C (2001) A differential medium for the enumeration of the spoilage yeast Zygosaccharotnyces bailu in wine. J Food Prot 63:1570–1575

    Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52

    Article  CAS  Google Scholar 

  • Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404

    Article  CAS  Google Scholar 

  • Serrano R, Marquez JA, Rios G (1997) Crucial factors in salt stress tolerance. In: Hohmann S, Mager WH (eds) Yeast Stress Responses. Springer-Verlag, Heidelberg, pp 147–169

    Google Scholar 

  • Serrano R, Mulet JM, Rios G, Marquez JA, de LIF, Leube MP, Mendizabal I, Pascual AA, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    Article  CAS  Google Scholar 

  • Shen B, Hohmann S, Jensen RG, Bohnert H (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121:45–52

    Article  CAS  Google Scholar 

  • Shima J, Hino A, Yamada-Iyo C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano H (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker’s yeast. Appl Environ Microbiol 65:2841–2846

    CAS  Google Scholar 

  • Shima J, Sakata-Tsuda Y, Suzuki Y, Nakajima R, Watanabe H, Kawamoto S, Takano H (2003) Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker’s yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69:715–718

    Article  CAS  Google Scholar 

  • Shirayama M, Matsui Y, Toh-e A (1996) Dominant mutant alleles of yeast protein kinase gene CDC15 suppress the ltel defect in termination of M phase and genetically interact with CDC14. Mol Gen Genet 251:176–185

    CAS  Google Scholar 

  • Sleator RD, Hill C (2001) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    Article  Google Scholar 

  • Smits HP, Hauf J, Muller S, Hobley TJ, Zimmermann FK, Hahn-Hagerdal B, Nielsen J, Olsson L (2000) Simultaneous overexpression of enzymes of lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16:1325–1334

    Article  CAS  Google Scholar 

  • Stathopoulos AM, Cyert MS (1997) Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11:3432–3444

    Article  CAS  Google Scholar 

  • Sterner DE, Moon Lee J, Hardin SE, Greenleaf AL (1995) The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex. Mol Cell Biol 15:5716–5724

    CAS  Google Scholar 

  • Sutherland FCW, Lages F, Lucas C, Luyten K, Albertyn J, Hohmann S, Prior BA, Kilian SG (1997) Characteristics of Fpsl-dependent and-independent glycerol transport in Saccharomyces cerevisiae. JBacteriol 179:7790–7795

    CAS  Google Scholar 

  • Swan TM, Watson K (1998) Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol Lett 169:191–197

    Article  CAS  Google Scholar 

  • Swire-Clark GA, Marcotte Jr WR (1999) The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol 39:117–128

    Article  CAS  Google Scholar 

  • Tao W, Deschenes RJ, Fassler JS (1999) Intracellular glycerol levels modulate the activity of Slnlp, a Saccharomyces cerevisiae two-component regulator. J Biol Chem 274:360–367

    Article  CAS  Google Scholar 

  • Takagi H, Iwamoto F, Nakamori S (1997) Isolation of freeze-tolerant laboratory strain of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Microbiol Biotechnol 47:405–411

    Article  CAS  Google Scholar 

  • Takagi H, Sakai K, Mori da K, Nakamori S (2000) Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol Lett 184:103–108

    Article  CAS  Google Scholar 

  • Tamás MJ, Luyten K, Sutherland FCW, Hernandez A, Albertyn, J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fpslp controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104

    Article  Google Scholar 

  • Tanghe A, Teunissen A, Van Dijck P, Thevelein JM (2000) Identification of genes responsible for improved cryoresi stance in fermenting yeast cells. Int J Food Microbiol 55:259–262

    Article  CAS  Google Scholar 

  • Tanghe A, Van Dijck P, Dumortier F, Teunissen A, Hohmann S, Thevelein JM (2002) Aquaporin expression correlates with freeze tolerance in baker’s yeast, and overexpression improves freeze tolerance in industrial strains. Appl Environ Microbiol 68:5981–5989

    Article  CAS  Google Scholar 

  • Teunissen A, Dumortier F, Gorwa M-F, Bauer J, Tanghe A, Loïez A, Smet P, Van Dijck P, Thevelein JM (2002) Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker’s yeast strain and its use in frozen doughs. Appl Environ Microbiol 68:4780–4787

    Article  CAS  Google Scholar 

  • Thammavongs B, Panoff J-M, Guéguen M (2000) Phenotypic adaptation to freeze-thaw stress of the yeast-like fungus Geotnchwn candidum. Int J Food Microbiol 60:99–105

    Article  CAS  Google Scholar 

  • Thevelein JM, Hohmann S (1995) Trehalose synthase, guard to the gate of glycolysis in yeast? Trends Biochem sci 20:3–10

    Article  CAS  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMPprotein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    Article  CAS  Google Scholar 

  • Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. BioEssays 20:49–57

    Article  CAS  Google Scholar 

  • Tsujimoto Y, Izawa S, Inoue Y (2000) Cooperative regulation of DOG2, encoding 2-deoxyglucose-6-phosphate phosphatase, by Snfl kinase and the high-osmolarity glycerol-mitogen-activated protein kinase cascade in stress responses of Saccharomyces cerevisiae. J Bacteriol 182:5121–5126

    Article  CAS  Google Scholar 

  • Valentine JS, Wertz DL, Lyons TJ, Liou L-L, Goto JJ, Gralla EB (1998) The dark side of dioxygen biochemistry. Curr Opin Chem Biol 2:253–262

    Article  CAS  Google Scholar 

  • van Dijck P, Colavizza D, Smet P, Thevelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61:109–115

    Google Scholar 

  • van Dijck P, Ma P, Versele M, Gorwa M-F, Colombo S, Lemaire K, Bossi D, Loïez A, Thevelein JM (2000) A baker’s yeast mutant (fill) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth. J Mol Microbiol Biotechnol 2:521–530

    Google Scholar 

  • van Heeswijk WC, Bakker BM, Teusink B, Kholodenko BN, Somsen OJ, Snoep JL, Westerhoff HV (1999) Live control ofthe living cell. Biochem Soc Trans 27:261–264

    Google Scholar 

  • van Hoek P, van Dijken JP, Pronk JT (2000) Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Technol 26:724–736

    Article  Google Scholar 

  • van Rooijen RJ, Schoppink PJ, Baankreis R (1994) Improvement of gas and alcohol production by yeast. European patent EP0645094B1

    Google Scholar 

  • Varela JC, Praekelt UM, Meacock PA, Planta RJ, Mager WH (1995) The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 15:6232–6245

    CAS  Google Scholar 

  • Vaughan-Martin A, Martini A (1998) Saccharomyces Meyen ex Reess. In Kurtzman CP, Fell JW (eds) The Yeasts. A taxonomyc study. Elsevier Science B.V., Amsterdam, pp 358–371

    Chapter  Google Scholar 

  • Wang ZJ, Ponte JG Jr (1995) Storage stability of gluten-fortified frozen dough. Cereal Foods World40:827–831

    Google Scholar 

  • Werner-Washburne M, Braun EL, Johnston GC, Singer RA (1993) Stationary phase in Saccharomyces cerevisiae. Microbiol Rev 57:383–401

    CAS  Google Scholar 

  • Whitsitt MS, Collins RG, Mullet JE (1997) Modulation of dehydration tolerance in soybean seedlings (Dehydrin Matl is induced by dehydration but not by abscisic acid). Plant Physiol 114:917–925

    CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW, et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  Google Scholar 

  • Wolfe J, Bryant G (1999) Freezing, crying, and/or vitrification of membrane-solute-water systems. Cryobiology 39:103–129

    Article  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    CAS  Google Scholar 

  • Yale J, Bohnert HJ (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276:15996–16007

    Article  CAS  Google Scholar 

  • Yoshimoto H, Saltsman K, Gasch AP, Li HX, Ogawa N, Botstein D, Brown PO, Cyert MS (2002) Genome-wide analysis of gene expression regulated by the calcineurin/Crzlp signaling pathway in Saccharomyces cerevisiae. J Biol Chem 277:31079–31088

    Article  CAS  Google Scholar 

  • Zhang L, Yu L, Yu C-A (1998) Generation of Superoxide Anion by Suecinate-Cytochrome c Reductase from Bovine Heart Mitochondria. J Biol Chem 273:33972–33976

    Article  CAS  Google Scholar 

  • Zhang L, Ohta A, Takagi M, Imai R (2000) Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J Biochem 127:611–616

    CAS  Google Scholar 

  • Zhang L, Ohta A, Horiuchi H, Takagi M, Imai R (2001) Multiple mechanisms regulate expression of low temperature responsive (LOT) genes in Saccharomyces cerevisiae. Biochem Biophys Res Commun 283:531–535

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Randez-Gil, F., Aguilera, J., Codón, A., Rincón, A.M., Estruch, F., Prieto, J.A. (2003). Baker’s yeast: challenges and future prospects. In: de Winde, J.H. (eds) Functional Genetics of Industrial Yeasts. Topics in Current Genetics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37003-X_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-37003-X_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02489-7

  • Online ISBN: 978-3-540-37003-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics