Skip to main content

The Analytical Ultracentrifuge for the Characterization of Polydisperse Polyelectrolytes

  • Conference paper
  • First Online:
Analytical Ultracentrifugation VIII

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 131))

Abstract

High molar mass polyelectrolytes, which are polydisperse concerning the molar mass, the charge density, and the chain architecture were characterized by hydrodynamic methods, in particular analytical ultracentrifugation. The samples of interest were a series of copolymers differing in the degree of branching at constant chemical composition/charge density and highly branched polyelectrolytes of various charge density/chemical composition. Combining synthetic boundary and sedimentation velocity experiments, and running at various speeds, allowed to identify the degree of homogeneity of the various distributions of the samples. It was illustrated that homogeneous batches of highly branched high molar mass polyelectrolytes can be synthesized with a negligible fraction of cross-linked molecules. Surprisingly, the sedimentation coefficient distribution of the main fraction was relatively narrow indicating a tight branching distribution. Overall, AUC delivers a variety of detail information, which cannot be obtained by other methods either due to lack of sensitivity or non-resolution of polydispersity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nalco Water Handbook (1988) Kemmer FN (ed) 2nd Ed, McGraw-Hill

    Google Scholar 

  2. Chen CY (1993) Water Sci Technol 28:1–7

    CAS  Google Scholar 

  3. Hocking MB, Klimchuk KA, Lowen S (1999) J Macromol Sci-Rev Macromol Chem Phys C39:177–203

    CAS  Google Scholar 

  4. Mortimer DA (1991) Polym Internat 25:29–41

    CAS  Google Scholar 

  5. Ayol A, Dentel SK, Filibeli A (2005) J Environ Eng-ASCE 131:1132–1138

    CAS  Google Scholar 

  6. Rebitzer G (2005) Doctoral Thesis EPFL

    Google Scholar 

  7. Farinato R, Hawkins P (1988) US Pat 5,807,489, Sept 15

    Google Scholar 

  8. Farinato R (1999) US Pat 5,879,564 March 9

    Google Scholar 

  9. Ulrich S, Laguecir A, Stoll S (2004) J Nanoparticle Res 6:595–603

    Article  CAS  Google Scholar 

  10. Hernandez Barajas J, Hunkeler D, Wandrey C (2004) Polym News 29:239–246

    Google Scholar 

  11. Hernandez Barajas J, Wandrey C, Hunkeler D (2001) US Pat 6,294,622 B1, Sept 25, (2003) US Pat 6,617,402 B2, Sept 9, (2003) US Par 6.667,374 B1, Dec 23

    Google Scholar 

  12. Hernandez Barajas J, Hunkeler D (1997) Polymer 38:437

    CAS  Google Scholar 

  13. Huggins ML (1942) J Am Chem Soc 64:2716

    CAS  Google Scholar 

  14. Schulz GV, Blaschke F (1941) J Prakt Chem 158:130, ibid (1941) 159:146

    Google Scholar 

  15. Wandrey C, Bartkowiak A, Hunkeler D (1999) Langmuir 15:4062–4068

    CAS  Google Scholar 

  16. Mabire F, Audebert R, Quivoron C (1984) Polymer 25:1317

    Article  CAS  Google Scholar 

  17. Griebel T, Kulicke WM (1992) Makromol Chem 193:811

    Article  CAS  Google Scholar 

  18. Griebel T, Kulicke WM, Hashemzadeh (1991) Colloid Polym Sci 269:113

    Article  CAS  Google Scholar 

  19. Wandrey C, Görnitz E (1995) Polym News 20:377–384

    CAS  Google Scholar 

  20. Wandrey C (1997) Polyelektrolyte-Makromolekulare Parameter und Elektrolytverhalten. Cuvillier, Göttingen

    Google Scholar 

  21. Wandrey C, Görnitz E (1992) Acta Polym 43:320–326

    Article  CAS  Google Scholar 

  22. Schuck P (2000) Biophys J 78:1606

    CAS  Google Scholar 

  23. Wales M, Van Holde KE (1954) J Polym Sci 14:81–86

    Article  CAS  Google Scholar 

  24. Harding SE, Berth G, Ball A, Michell JR, Garcia de la Torre J (1991) 16:1–15

    Google Scholar 

  25. Mandelkern L, Flory P (1952) J Chem Phays 20:212

    CAS  Google Scholar 

  26. Tsvetkov V, Klenin S (1953) Dokl Akad Nauk SSSR 88:49

    CAS  Google Scholar 

  27. Tsvetkov VN (1989) Rigid-chain polymers. Consultants Bureau, New York

    Google Scholar 

  28. Pavlov GM, Frenkel SYa (1995) Progr Colloid Polym Sci 99:101

    CAS  Google Scholar 

  29. Pavlov GM (1997) Europ Biophys J 25:385

    CAS  Google Scholar 

  30. Linow KJ, Philipp B (1968) Faserforsch Textiltech 19:509

    CAS  Google Scholar 

Download references

Acknowledgments

The Swiss National Science Foundation (FNS) and the Innovation Promotion Agency (CTI) is gratefully acknowledged for the financial support (grants, 21-64996.01, 200020-103615/1, and 6824.1 IWS-IW9). Special thank is due to Vesela Malinova, Hugues Seitert, and Ricardo Losada for their experimental support, and to Georges Pavlov for his helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Wandrey .

Editor information

Christine Wandrey Helmut Cölfen

Rights and permissions

Reprints and permissions

About this paper

Cite this paper

Bourdillon, L., Hunkeler, D., Wandrey, C. The Analytical Ultracentrifuge for the Characterization of Polydisperse Polyelectrolytes. In: Wandrey, C., Cölfen, H. (eds) Analytical Ultracentrifugation VIII. Progress in Colloid and Polymer Science, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_018

Download citation

Publish with us

Policies and ethics