Skip to main content

l-Methionine Production

  • Chapter
  • First Online:
Amino Acid Fermentation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 159))

Abstract

l-Methionine has been used in various industrial applications such as the production of feed and food additives and has been used as a raw material for medical supplies and drugs. It functions not only as an essential amino acid but also as a physiological effector, for example, by inhibiting fat accumulation and enhancing immune response. Producing methionine from fermentation is beneficial in that microorganisms can produce l-methionine selectively using eco-sustainable processes. Nevertheless, the fermentative method has not been used on an industrial scale because it is not competitive economically compared with chemical synthesis methods. Presented are efforts to develop suitable strains, engineered enzymes, and alternative process of producing l-methionine that overcomes problems of conventional fermentation methods. One of the alternative processes is a two-step process in which the l-methionine precursor is produced by fermentation and then converted to l-methionine by enzymes. Directed efforts toward strain development and enhanced enzyme engineering will advance industrial production of l-methionine based on fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout text, sequence alignment was performed using Clustal-O and structure superposition with the FATCAT-server (rigid pairwise alignment). The VMD program was used to visualize the alignments. IDs (Uniprot) of sequences used in this review are as follows: MetA (B. cereus): Q72X44, MetA (T. maritima): Q9WZY3, MetA (E. coli): P07623, MetX (P. aeruginosa): P57714, MetX (P. putida): Q88CT3, MetX (P. syringae): Q4ZZ78, MetX (H. influenzae): P45131, MetX (S. cerevisiae): P08465, MetX (L. interrogans): Q8F4I0.

References

  1. Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1:228–237

    Article  CAS  PubMed  Google Scholar 

  2. Jankowski J, Kubińska M, Zduńczyk Z (2014) Nutritional and immunomodulatory function of methionine in poultry diets – a review. Ann Anim Sci 14:17–31

    Article  CAS  Google Scholar 

  3. Oliva-Teles A (2012) Nutrition and health of aquaculture fish. J Fish Dis 35:83–108

    Article  CAS  PubMed  Google Scholar 

  4. Hummel W, Geueke B, Osswald S, Weckbecker C, Huthmacher K (2007) With recombinant microorganism transformed with polynucleotides encoding the enzymes: D-amino acid oxidase; L-amino acid dehydrogenase, and an enzyme that regenerates NADH; overexpression. US7217544 B2, 15 May 2007

    Google Scholar 

  5. Wöltinger J, Karau A, Leuchtenberger W, Drauz K (2005) Membrane reactors at Degussa, vol 92., Advances in Biochemical Engineering Biotechnology

    Google Scholar 

  6. FeedInfo (2014) Methionine: supply/demand overview 2014. www.feedinfo.com

  7. Lussling T, Muller K-P, Schreyer G, Theissen F (1981) Process for the recovery of methionine and potassium bicarbonate. US4303621 A, 1 Dec 1981

    Google Scholar 

  8. Ferla MP, Patrick WM (2014) Bacterial methionine biosynthesis. Microbiology 160:1571–1584

    Article  CAS  PubMed  Google Scholar 

  9. Figge R (2007) Methionine biosynthesis in Escherichia coli and Corynebacterium glutamicum. In: Wendisch V (ed) Amino acid biosynthesis – pathways, regulation and metabolic engineering, vol 5, Microbiology monographs. Springer, Berlin, pp 163–193

    Chapter  Google Scholar 

  10. Ikeda M, Takeno S (2013) Amino acid production by Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum, vol 23, Springer. Springer, Berlin, pp 107–147

    Chapter  Google Scholar 

  11. Adrio JL, Demain AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187–214

    Article  CAS  PubMed  Google Scholar 

  12. Tamano K (2014) Enhancing microbial metabolite and enzyme production: current strategies and challenges. Front Microbiol 5:718

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283

    Article  CAS  PubMed  Google Scholar 

  14. Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem 65:849–859

    Article  CAS  PubMed  Google Scholar 

  15. Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5:1197–1204

    Article  CAS  PubMed  Google Scholar 

  16. Peoples OP, Liebl W, Bodis M, Maeng PJ, Follettie MT, Archer JA, Sinskey AJ (1988) Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon. Mol Microbiol 2:63–72

    Article  CAS  PubMed  Google Scholar 

  17. Park SD, Lee JY, Kim Y, Kim JH, Lee HS (1998) Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum. Mol Cells 8:286–294

    CAS  PubMed  Google Scholar 

  18. Hwang BJ, Kim Y, Kim HB, Hwang HJ, Kim JH, Lee HS (1999) Analysis of Corynebacterium glutamicum methionine biosynthetic pathway: isolation and analysis of metB encoding cystathionine gamma-synthase. Mol Cells 9:300–308

    CAS  PubMed  Google Scholar 

  19. Rossol I, Pühler A (1992) The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine. J Bacteriol 174:2968–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hwang BJ, Yeom HJ, Kim YH, Lee HS (2002) Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol 184:1277–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee HS, Hwang BJ (2003) Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation. Appl Microbiol Biotechnol 62:459–467

    Article  CAS  PubMed  Google Scholar 

  22. Rückert C, Pühler A, Kalinowski J (2003) Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J Biotechnol 104:213–228

    Article  PubMed  Google Scholar 

  23. Rey DA, Nentwich SS, Koch DJ, Rückert C, Pühler A, Tauch A, Kalinowski J (2005) The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56:871–887

    Article  CAS  PubMed  Google Scholar 

  24. Ozaki H, Shiio I (1982) Methionine biosynthesis in Brevibacterium flavum: properties and essential role of O-acetylhomoserine sulfhydrylase. J Biochem 91:1163–1171

    Article  CAS  PubMed  Google Scholar 

  25. Cassan M, Parsot C, Cohen GN, Patte JC (1986) Nucleotide sequence of lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12. Evolutionary pathway leading to three isofunctional enzymes. J Biol Chem 261:1052–1057

    CAS  PubMed  Google Scholar 

  26. Clark RB, Ogilvie JW (1972) Aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12. Subunit molecular weight and nicotinamide-adenine dinucleotide phosphate binding. Biochemistry (Mosc) 11:1278–1282

    Article  CAS  Google Scholar 

  27. Zakin MM, Duchange N, Ferrara P, Cohen GN (1983) Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor. J Biol Chem 258:3028–3031

    CAS  PubMed  Google Scholar 

  28. Cohen GN (1985) Aspartate-semialdehyde dehydrogenase from Escherichia coli. Methods Enzymol 113:600–602

    Article  CAS  PubMed  Google Scholar 

  29. Kikuchi Y, Kojima H, Tanaka T (1999) Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli. FEMS Microbiol Lett 173:211–215

    Article  CAS  PubMed  Google Scholar 

  30. Wright JK, Takahashi M (1977) Interaction of substrates and inhibitors with the homoserine dehydrogenase of kinase-inactivated aspartokinase I. Biochemistry (Mosc) 16:1541–1548

    Article  CAS  Google Scholar 

  31. Saint-Girons I, Duchange N, Cohen GN, Zakin MM (1984) Structure and autoregulation of the metJ regulatory gene in Escherichia coli. J Biol Chem 259:14282–14285

    CAS  PubMed  Google Scholar 

  32. Duclos B, Cortay JC, Bleicher F, Ron EZ, Richaud C, Saint Girons I, Cozzone AJ (1989) Nucleotide sequence of the metA gene encoding homoserine trans-succinylase in Escherichia coli. Nucleic Acids Res 17:2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Belfaiza J, Parsot C, Martel A, de la Tour CB, Margarita D, Cohen GN, Saint-Girons I (1986) Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci U S A 83:867–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Banerjee RV, Johnston NL, Sobeski JK, Datta P, Matthews RG (1989) Cloning and sequence analysis of the Escherichia coli metH gene encoding cobalamin-dependent methionine synthase and isolation of a tryptic fragment containing the cobalamin-binding domain. J Biol Chem 264:13888–13895

    CAS  PubMed  Google Scholar 

  35. Maxon ME, Wigboldus J, Brot N, Weissbach H (1990) Structure-function studies on Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl Acad Sci U S A 87:7076–7079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee LW, Ravel JM, Shive W (1966) Multimetabolite control of a biosynthetic pathway by sequential metabolites. J Biol Chem 241(22):5479–5480

    CAS  PubMed  Google Scholar 

  37. Mondal S, Das YB, Chatterjee SP (1996) Methionine production by microorganisms. Folia Microbiol 41(6):465–472

    Article  CAS  Google Scholar 

  38. Born TL, Blanchard JS (1999) Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. Biochemistry (Mosc) 38(43):14416–14423

    Article  CAS  Google Scholar 

  39. Born TL, Franklin M, Blanchard JS (2000) Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Haemophilus influenzae met2-encoded homoserine transacetylase. Biochemistry (Mosc) 39(29):8556–8564

    Article  CAS  Google Scholar 

  40. Zubieta C, Arkus KAJ, Cahoon RE, Jez JM (2008) A single amino acid change is responsible for evolution of acyltransferase specificity in bacterial methionine biosynthesis. J Biol Chem 283(12):7561–7567

    Article  CAS  PubMed  Google Scholar 

  41. Zubieta C, Krishna S, McMullan D, Miller MD, Abdubek P, Agarwalla S, Ambing E, Astakhova T, Axelrod HL, Carlton D et al (2007) Crystal structure of homoserine O-succinyltransferase from Bacillus cereus at 2.4 Å resolution. Proteins 68(4):999–1005

    Article  CAS  PubMed  Google Scholar 

  42. Crystal structure of Homoserine O-succinyltransferase (EC 2.3.1.46) (Homoserine O-transsuccinylase) (HTS) (tm0881) from THERMOTOGA MARITIMA at 2.52 A resolution (2006) Joint Center for Structural Genomics

    Google Scholar 

  43. Goudarzi M, Born TL (2006) Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase. Extremophiles 10(5):469–478

    Article  CAS  PubMed  Google Scholar 

  44. Coe DM, Viola RE (2007) Assessing the roles of essential functional groups in the mechanism of homoserine succinyltransferase. Arch Biochem Biophys 461(2):211–218

    Article  CAS  PubMed  Google Scholar 

  45. Ziegler K, Noble SM, Mutumanje E, Bishop B, Huddler DP, Born TL (2007) Identification of catalytic cysteine, histidine, and lysine residues in Escherichia coli homoserine transsuccinylase. Biochemistry (Mosc) 46(10):2674–2683

    Article  CAS  Google Scholar 

  46. Ziegler K, Yusupov M, Bishop B, Born TL (2007) Substrate analysis of homoserine acyltransferase from Bacillus cereus. Biochem Biophys Res Commun 361(2):510–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Michaeli S, Ron EZ (1984) Expression of the metA gene of Escherichia coli K-12 in recombinant plasmids. FEMS Microbiol Lett 23(2–3):125–129

    Article  CAS  Google Scholar 

  48. Gur E, Biran D, Gazit E, Ron EZ (2002) In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures. Mol Microbiol 46(5):1391–1397

    Article  CAS  PubMed  Google Scholar 

  49. Mordukhova EA, Pan JG (2014) Stabilization of homoserine-O-succinyltransferase (MetA) decreases the frequency of persisters in Escherichia coli under stressful conditions. PLoS One 9(10):e110504

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ron EZ, Davis BD (1971) Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J Bacteriol 107(2):391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ron EZ, Shani M (1971) Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. J Bacteriol 107(2):397–400

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Usuda Y, Kurahashi O (2009) Method for producing L-methionine by fermentation. United States Patent US7611873 B1, 3 Nov 2009

    Google Scholar 

  53. Bestel-corre G, Chateau M, Figge R, Raynaud C, Soucaille P (2014) Recombinant enzyme with altered feedback sensitivity. United States Patent US8795990 B2, 5 Aug 2014

    Google Scholar 

  54. Leonhartsberger S, Winterhalter C, Pfeiffer K, Bauer B (2007) Feedback-resistant homoserine transsuccinylases having a modified c-terminus. United States Patent US7195897 B2, 27 Mar 2007

    Google Scholar 

  55. Brazeau B, Chang JS, Cho KM, Cho YW, Desouza M, Jessen HJ, Kim SY, Niu W, Sanchez-Riera FA, Shin YU, Um HW (2013) Compositions and methods of producing methionine. United States Patent US8551742 B2, 8 Oct 2013

    Google Scholar 

  56. Mordukhova EA, Lee HS, Pan JG (2008) Improved thermostability and acetic acid tolerance of Escherichia coli via directed evolution of homoserine o-succinyltransferase. Appl Environ Microbiol 74(24):7660–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eijsink VGH, Bjørk A, Gåseidnes S, Sirevåg R, Synstad B, Bvd B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113(1):105–120

    Article  CAS  PubMed  Google Scholar 

  58. Strickler SS, Gribenko AV, Gribenko AV, Keiffer TR, Tomlinson J, Reihle T, Loladze VV, Makhatadze GI (2006) Protein stability and surface electrostatics: a charged relationship. Biochemistry (Mosc) 45(9):2761–2766

    Article  CAS  Google Scholar 

  59. Mirza IA, Nazi I, Korczynska M, Wright GD, Berghuis AM (2005) Crystal structure of homoserine transacetylase from Haemophilus influenzae reveals a new family of α/β-hydrolases. Biochemistry (Mosc) 44(48):15768–15773

    Article  CAS  Google Scholar 

  60. Wang M, Liu L, Wang Y, Wei Z, Zhang P, Li Y, Jiang X, Xu H, Gong W (2007) Crystal structure of homoserine O-acetyltransferase from Leptospira interrogans. Biochem Biophys Res Commun 363(4):1050–1056

    Article  CAS  PubMed  Google Scholar 

  61. Thangavelu B, Pavlovsky AG, Viola R (2014) Structure of homoserine O-acetyltransferase from Staphylococcus aureus: the first Gram-positive ortholog structure. Acta Crystallogr F Struct Biol Commun 70(10):1340–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Osipiuk J, Zhou M, Grimshaw S, AndersonWF, Joachimiak A (2009) X-ray crystal structure of homoserine O-acetyltransferase from Bacillus anthracis. doi:10.2210/pdb3i1i/pdb

  63. Knapik AA, Petkowski JJ, Otwinowski Z, Cymborowski MT, Cooper DR, Majorek KA, Chruszcz M, Krajewska WM, Minor W (2012) A multi-faceted analysis of RutD reveals a novel family of α/β hydrolases. Proteins 80(10):2359–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bains J, Kaufman L, Farnell B, Boulanger MJ (2011) A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain. J Mol Biol 406(5):649–658

    Article  CAS  PubMed  Google Scholar 

  65. Lejon S, Ellis J, Valegård K (2008) The last step in cephalosporin C formation revealed: crystal structures of deacetylcephalosporin C acetyltransferase from Acremonium chrysogenum in complexes with reaction intermediates. J Mol Biol 377(3):935–944

    Article  CAS  PubMed  Google Scholar 

  66. Foglino M, Borne F, Bally M, Ball G, Patte JC (1995) A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology 141(2):431–439

    Article  CAS  PubMed  Google Scholar 

  67. Bourhy P, Martel A, Margarita D, Saint Girons I, Belfaiza J (1997) Homoserine O-acetyltransferase, involved in the Leptospira meyeri methionine biosynthetic pathway, is not feedback inhibited. J Bacteriol 179(13):4396–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamagata S (1987) Partial purification and some properties of homoserine O-acetyltransferase of a methionine auxotroph of Saccharomyces cerevisiae. J Bacteriol 169(8):3458–3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clausen T, Huber R, Laber B, Pohlenz HD, Messerschmidt A (1996) Crystal structure of the pyridoxal-5′-phosphate dependent cystathionine beta-lyase from Escherichia coli at 1.83 Å. J Mol Biol 262(2):202–224

    Article  CAS  PubMed  Google Scholar 

  70. Eliot AC, Kirsch JF (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 73:383–415

    Article  CAS  PubMed  Google Scholar 

  71. Kim SY, Cho KM, Shin YU, Um HW, Choi KO, Chang JS, Cho YW, Park YH (2008) Microorganism producing L-methionine precursor and method of producing L-methionine and organic acid from the L-methionine precursor. WO2008013432 A1, 31 Jan 2008

    Google Scholar 

  72. Hacham Y, Gophna U, Amir R (2003) In vivo analysis of various substrates utilized by cystathionine gamma-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. Mol Biol Evol 20(9):1513–1520

    Article  CAS  PubMed  Google Scholar 

  73. Clausen T, Huber R, Prade L, Wahl MC, Messerschmidt A (1998) Crystal structure of Escherichia coli cystathionine gamma-synthase at 1.5 A resolution. EMBO J 17:6827–6838. doi:10.1093/emboj/17.23.6827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clifton MC, Abendroth J, Edwards TE, Leibly DJ, Gillespie AK, Ferrell M, Dieterich SH, Exley I, Staker BL, Myler PJ, Van Voorhis WC, Stewart LJ (2011) Structure of the cystathionine γ-synthase MetB from Mycobacterium ulcerans. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:1154–1158. doi:10.1107/S1744309111029575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Halavaty AS, Brunzelle JS, Wawrzak Z, Onopriyenko O, Savchenko A, Anderson WF (2014) 2.35 Angstrom resolution crystal structure of putative O-acetylhomoserine (thiol)-lyase (metY) from Campylobacter jejuni subsp. jejuni NCTC 11168 with N’-Pyridoxyl-Lysine-5’-Monophosphate at position 205. doi:10.2210/pdb4oc9/pdb

  76. Edwards TE, Gardberg AS, Sankaran B (2010) Crystal structure of O-succinylhomoserine sulfhydrylase from Mycobacterium tuberculosis covalently bound to pyridoxal-5-phosphate. doi:10.2210/pdb3ndn/pdb

  77. Vinci VA, Byng G (1999) Strain improvement by non-recombinant methods. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, 2nd edn. ASM, Washington, pp 103–113

    Google Scholar 

  78. Kumar D, Gomes J (2005) Methionine production by fermentation. Biotechnol Adv 23(1):41–61

    Article  CAS  PubMed  Google Scholar 

  79. Mondal S, Das YB, Chatterjee SP (1994) L-Methionine production by double auxotrophic mutants of a ethionine resistant strain of Brevibacterium heali. Acta Biotechnol 14:61–66

    Article  CAS  Google Scholar 

  80. Kumar D, Garg S, Bisaria VS, Sreekrishnan TR, Gomes J (2003) Production of methionine by a multi-analogue resistant mutant of Corynebacterium lilium. Process Biochem 38:1165–1171

    Article  CAS  Google Scholar 

  81. Roy SK, Biswas SR, Mishra AK, Nanda G (1989) Production and purification of methionine from a multi-analog resistant mutant B6US-215 of Bacillus megaterium B71. J Microbial Biotech 4:37–41

    Google Scholar 

  82. Chattopadhyay MK, Ghosh AK, Sengupta S (1991) Control of methionine biosynthesis in Escherichia coli K12: a closer study with analogue-resistant mutants. J Gen Microbiol 137:685–691

    Article  CAS  PubMed  Google Scholar 

  83. Chattopadhyay MK, Ghosh AK, Sengupta S, Sengupta D, Sengupta S (1995) Threonine analogue resistant mutants of Escherichia coli K-12. Biotechnol Lett 17:567–570

    Article  CAS  Google Scholar 

  84. Willke T (2014) Methionine production: a critical review. Appl Microbiol Biotechnol 98(24):9893–9914

    Article  CAS  PubMed  Google Scholar 

  85. Krömer JO, Wittmann C, Schröder H, Heinzle E (2006) Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8(4):353–369

    Article  PubMed  Google Scholar 

  86. Lee WH, Kim MD, Jin YS, Seo JH (2013) Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol 97:2761–2772

    Article  CAS  PubMed  Google Scholar 

  87. Sahm H, Eggeling L, de Graaf AA (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899–910

    Article  CAS  PubMed  Google Scholar 

  88. Bolten CJ, Schröder H, Dickschat J, Wittmann C (2010) Towards methionine overproduction in Corynebacterium glutamicum – methanethiol and dimethyldisulfide as reduced sulfur sources. J Microbiol Biotechnol 20:1196–1203

    Article  CAS  PubMed  Google Scholar 

  89. Nakamori S, Kobayashi S, Nishimura T, Takagi H (1999) Mechanism of L-methionine overproduction by Escherichia coli: the replacement of Ser-54 by Asn in the MetJ protein causes the derepression of L-methionine biosynthetic enzymes. Appl Microbiol Biotechnol 52:179–185

    Article  CAS  PubMed  Google Scholar 

  90. Maier TD, Winterhalter CD, Pfeiffer K (2006) Process for the fermentative production of L-methionine. EP1445310 B1, 17 May 2006

    Google Scholar 

  91. Moeckel B, Pfefferle W, Huthmacher K, Rueckert C, Kalinowski J, Puehler A, Binder M, Greissinger D, Thierbach G (2002) Nucleotide sequences which code for the metY gene. WO2002018613 A1, 7 Mar 2002

    Google Scholar 

  92. Park SD, Lee JY, Sim SY, Kim YH, Lee HS (2007) Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng 9:327–336

    Article  CAS  PubMed  Google Scholar 

  93. Zelder O, Schroeder H, Klopprogge C, Herold A, Haefner S, Patterson T (2008) Microorganisms with deregulated vitamin b12 system. WO2008152016 A1, 18 Dec 2008

    Google Scholar 

  94. Qin T, Hu X, Hu J, Wang X (2014) Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine. Biotechnol Appl Biochem. doi:10.1002/bab.1290

    Google Scholar 

  95. Roe AJ, O’Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148:2215–2222

    Article  CAS  PubMed  Google Scholar 

  96. Kiene RP, Linn LJ, González J, Moran MA, Bruton JA (1999) Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol 65:4549–4558

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim SY, Shin YU, HEO IK, Kim HA, Kim JE, SEO CI, Son SK, Lee SM, Jhon SH, Lee HJ, NA KH, Kim IC (2012) Method for increasing methionine productivity using a mixture of methyl mercaptan and dimethyl sulfide. US20120123158 A1, 17 May 2012

    Google Scholar 

  98. Lievense JC (1993) Biosynthesis of methionine using a reduced source of sulfur. WO1993017112 A1, 2 Sept 1993

    Google Scholar 

  99. Stefan H, Andrea H, Corinna K, Hartwig S, K WM, Rogers YR, Oskar Z (2007) Use of dimethyl disulfide for methionine production in microorganisms. WO2007011939 A3, 5 July 2007

    Google Scholar 

  100. Kim SY, Shin YU, SEO CI, HEO IK, Kim JE, Kim HA, Lee HJ, NA KH, Son SK (2013) Modified polypeptide having homoserine acetyltransferase activity and microorganism expressing the same. US20130273615 A1, 17 Oct 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Young Kim .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1Fig. S2Fig. S3Fig. S4Fig. S5

Key residues in the active site of MetA of B. cereus. Residues shown in stick models are Ala108 and Trp143 consisting oxyanion hole. Lys163, Glu246 and Arg249 play a role holding amino- and carboxylic acid groups of homoserine shown in spherical representations colored transparent. Lys46 is shown away from the catalytic site (PDF 1697 kb)

Residues showing reduced feedback regulations upon mutations in MetA of E. coli. Structure of MetA of E. coli is built by homology modeling using Modeller (v9.2). Considering similar responses to heat, MetA of E. coli was modeled using MetA of B. cereus instead of MetA of T. maritima. Except for mutations on N-terminal 1-33 residues and C-terminal 297- residues, following residues are shown; Represented as ball-and-stick model is residues 58-65, 292-298, Asp101, Asn290 and Tyr291. Shown in stick model is Asn79, Glu114, Phe140, Lys163, Phe222 and Ala275. Overall structure of MetA is in the same orientation with Fig. 2 (PDF 1697 kb)

Mutation sites increasing thermostability of MetA of E. coli; Ser61, Glu213, Ile229, Asn267, and Asn271 (stick-representation). Overall structure of MetA is in the same orientation with Figs. S2 and 2 (PDF 1697 kb)

Sequence alignment of MetXs from different species, P. aeruginosa, L. interrogans, H. influenzae, S. cerevisiae, P. putida, and P. syringae. A. Largest differences arise in N- and C-terminus and additionally MetX of S. cerevisiae has much larger capping domain shown in green box. Residues in yellow box compose a unique loop in MetX which corresponds to the location of Glu/Gly111 of MetA. B. Sequence of MetX of P. aeruginosa has high similarity with its close species, P. putida and P. syringae (PDF 1697 kb)

Sequence alignment of the γ-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes, MetB, MetY and MetZ from various bacteria. MetB_Eco (E .coli MetB, PDB entry 1CS1), MetZ_Mtu (M. tuberculosis MetZ, PDB entry 3NDN), MetB_Cgl (C. glutamicum MetB), MetY_Cgl (C. glutamicum MetY), MetY_Pae (P. aeruginosa MetY), MetZ_Pae (P. aeruginosa MetZ), MetY_Lme (L. meyeri MetY), MetZ_Ppu (P. putida MetZ), MetZ_Cvi (C. violaceum MetZ), MetZ_Hne (H. neptunium MetZ), MetZ_Nfa (N. farcinica MetZ), MetZ_Rsp (R. sphaeroides MetZ). Numbering is for E. coli MetB. Conserved residues are shown in boxes with white font and red shading. Conservative substitutions are shown in boxes with a red font. The conserved active site lysine is marked with asterisk. The two conserved residues from the N-terminal domain of an adjacent monomer, which are predicted to bind to the PLP phosphate group, are marked with red triangles. Insertions that are a characteristic of OAHS members are indicated by orange box. Sequence alignment was done using Clustal Omega and Espript 3.0 (PDF 1697 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shim, J., Shin, Y., Lee, I., Kim, S.Y. (2016). l-Methionine Production. In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_30

Download citation

Publish with us

Policies and ethics