Skip to main content

Methionine Biosynthesis in Escherichia coli and Corynebacterium glutamicum

  • Chapter
  • First Online:
Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering

Part of the book series: Microbiology Monographs ((MICROMONO,volume 5))

Abstract

The sulphur-containing amino acid methionine and its derivatives play important roles in cellular metabolism. These include initiation of protein biosynthesis, methyl transfer and synthesis of polyamines. Methionine cannot be synthesized by humans and animals and must therefore be obtained from the diet. Since concentrations of methionine in plant-based diets are low, the amino acid is routinely added to animal feed. For this purpose methionine is produced in large scale by chemical synthesis. Currently, no fermentative methionine production process exists, but for economic reasons its development has recently received increasing attention. Research has mainly focused on methionine biosynthesis in the bacteria Escherichia coli and Corynebacterium glutamicum, which are already used for the production of several other amino acids. Investigation of methionine biosynthesis and its regulation in C. glutamicum has revealed major differences with the corresponding E. coli metabolism. This review intends to summarize the current knowledge on methionine biosynthesis in these organisms and discusses approaches for the construction of methionine producer strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken SM, Kim DH, Kirsch JF (2003) Escherichia coli cystathionine gamma-synthase does not obey ping-pong kinetics. Novel continuous assays for the elimination and substitution reactions. Biochemistry 42:11297–11306

    Article  PubMed  CAS  Google Scholar 

  2. Aleshin VV, Zakataeva NP, Livshits VA (1999) A new family of amino-acid-efflux proteins. Trends Biochem Sci 24:133–135

    Article  PubMed  CAS  Google Scholar 

  3. Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S (2003) Effect of cysteine desulfhydrase gene disruption on L-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol 62:239–243

    Article  PubMed  CAS  Google Scholar 

  4. Bailey RB, Blomquist P, Doten R, Driggers EM, Madden KT, O'Leary J, O'Toole GA, Trueheart J, Walbridge MJ, Yorgey P (2004) Methods and compositions for amino acid production. Int Patent Application WO 2004/108894

    Google Scholar 

  5. Banerjee RV, Johnston NL, Sobeski JK, Datta P, Matthews RG (1989) Cloning and sequence analysis of the Escherichia coli metH gene encoding cobalamin-dependent methionine synthase and isolation of a tryptic fragment containing the cobalamin-binding domain. J Biol Chem 264:13888–13895

    PubMed  CAS  Google Scholar 

  6. Belfaiza J, Parsot C, Martel A, de la Tour CB, Margarita D, Cohen GN, Saint-Girons I (1986) Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci USA 83:867–871

    Article  PubMed  CAS  Google Scholar 

  7. Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T (2003) Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3:1637–1646

    Article  PubMed  CAS  Google Scholar 

  8. Bestel-Corre GAL, Chateau M, Figge RM, Raynaud C, Soucaille PNP (2005) Recombinant enzyme with altered feed-back sensitivity. Int Patent Application WO 2005111202

    Google Scholar 

  9. Biran D, Brot N, Weissbach H, Ron EZ (1995) Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli. J Bacteriol 177:1374–1379

    PubMed  CAS  Google Scholar 

  10. Biran D, Gur E, Gollan L, Ron EZ (2000) Control of methionine biosynthesis in Escherichia coli by proteolysis. Mol Microbiol 37:1436–1443

    Article  PubMed  CAS  Google Scholar 

  11. Bonnarme P, Psoni L, Spinnler HE (2000) Diversity of L-methionine catabolism pathways in cheese-ripening bacteria. Appl Environ Microbiol 66:5514–5517

    Article  PubMed  CAS  Google Scholar 

  12. Born TL, Blanchard JS (1999) Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. Biochemistry 38:14416–14423

    Article  PubMed  CAS  Google Scholar 

  13. Bray RG (2002) Amino Acids. SRI Consulting, Menlo Park, CA

    Google Scholar 

  14. Cai XY, Maxon ME, Redfield B, Glass R, Brot N, Weissbach H (1989a) Methionine synthesis in Escherichia coli: effect of the MetR protein on metE and metH expression. Proc Natl Acad Sci USA 86:4407–4411

    Article  PubMed  CAS  Google Scholar 

  15. Cai XY, Redfield B, Maxon M, Weissbach H, Brot N (1989b) The effect of homocysteine on MetR regulation of metE, metR and metH expression in vitro. Biochem Biophys Res Commun 163:79–83

    Article  PubMed  CAS  Google Scholar 

  16. Cai XY, Jakubowski H, Redfield B, Zaleski B, Brot N, Weissbach H (1992) Role of the metF and metJ genes on the vitamin B12 regulation of methionine gene expression: involvement of N 5-methyltetrahydrofolic acid. Biochem Biophys Res Commun 182:651–658

    Article  PubMed  CAS  Google Scholar 

  17. Chateau M, Gonzalez B, Meynial-Salles I, Soucaille PNP, Zink O (2005) Method for the production of evolved microorganisms which permit the generation or modification of metabolic pathways. European Patent Application EP 1597364

    Google Scholar 

  18. Chattopadhyay MK, Ghosh AK, Sengupta S (1991) Control of methionine biosynthesis in Escherichia coli K12: a closer study with analogue-resistant mutants. J Gen Microbiol 137:685–691

    PubMed  CAS  Google Scholar 

  19. Chattopadhyay MK, Ghosh AK, Sengupta S, Sengupta D, Sengupta S (1995) Threonine analogue resistant mutants of Escherichia coli K-12. Biotechnol Lett 17:567–570

    Article  CAS  Google Scholar 

  20. Chattopadhyay MK, Tabor CW, Tabor H (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci USA 100:2261–2265

    Article  PubMed  CAS  Google Scholar 

  21. Clausen T, Huber R, Prade L, Wahl MC, Messerschmidt A (1998) Crystal structure of Escherichia coli cystathionine gamma-synthase at 1.5 A resolution. EMBO J 17:6827–6838

    Article  PubMed  CAS  Google Scholar 

  22. Cooper A, McAlpine A, Stockley PG (1994) Calorimetric studies of the energetics of protein-DNA interactions in the E. coli methionine repressor (MetJ) system. FEBS Lett 348:41–45

    Article  PubMed  CAS  Google Scholar 

  23. Cornell KA, Riscoe MK (1998) Cloning and expression of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase: identification of the pfs gene product. Biochim Biophys Acta 1396:8–14

    PubMed  CAS  Google Scholar 

  24. Cowan JM, Urbanowski ML, Talmi M, Stauffer GV (1993) Regulation of the Salmonella typhimurium metF gene by the MetR protein. J Bacteriol 175:5862–5866

    PubMed  CAS  Google Scholar 

  25. DeLisa MP, Wu CF, Wang L, Valdes JJ, Bentley WE (2001) DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol 183:5239–5247

    Article  PubMed  CAS  Google Scholar 

  26. Dibner JJ, Knight CD (1984) Conversion of 2-hydroxy-4-(methylthio)butanoic acid to L-methionine in the chick: a stereospecific pathway. J Nutr 114:1716–1723

    PubMed  CAS  Google Scholar 

  27. Dixon MM, Huang S, Matthews RG, Ludwig M (1996) The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12. Structure 4:1263–1275

    Article  PubMed  CAS  Google Scholar 

  28. Driskell LO, Tucker AM, Winkler HH, Wood DO (2005) Rickettsial metK-encoded methionine adenosyltransferase expression in an Escherichia coli metK deletion strain. J Bacteriol 187:5719–5722

    Article  PubMed  CAS  Google Scholar 

  29. Drummond JT, Huang S, Blumenthal RM, Matthews RG (1993) Assignment of enzymatic function to specific protein regions of cobalamin-dependent methionine synthase from Escherichia coli. Biochemistry 32:9290–9295

    Article  PubMed  CAS  Google Scholar 

  30. Duchange N, Zakin MM, Ferrara P, Saint-Girons I, Park I, Tran SV, Py MC, Cohen GN (1983) Structure of the metJBLF cluster in Escherichia coli K12. Sequence of the metB structural gene and of the 5′- and 3′- flanking regions of the metBL operon. J Biol Chem 258:14868–14871

    PubMed  CAS  Google Scholar 

  31. Duclos B, Cortay JC, Bleicher F, Ron EZ, Richaud C, Saint Girons I, Cozzone AJ (1989) Nucleotide sequence of the metA gene encoding homoserine trans-succinylase in Escherichia coli. Nucleic Acids Res 17:2856

    Article  PubMed  CAS  Google Scholar 

  32. Dwivedi CM, Ragin RC, Uren JR (1982) Cloning, purification, and characterization of beta-cystathionase from Escherichia coli. Biochemistry 21:3064–3069

    Article  PubMed  CAS  Google Scholar 

  33. Eggeling L (2005) Export of amino acids and other solutes. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, FL, pp 187–211

    Google Scholar 

  34. Eggeling L, Sahm H (2003) New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch Microbiol 180:155–160

    Article  PubMed  CAS  Google Scholar 

  35. Evans JC, Huddler DP, Hilgers MT, Romanchuk G, Matthews RG, Ludwig ML (2004) Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc Natl Acad Sci USA 101:3729–3736

    Article  PubMed  CAS  Google Scholar 

  36. Ferianc P, Farewell A, Nystrom T (1998) The cadmium-stress stimulon of Escherichia coli K-12. Microbiology 144:1045–1050

    Article  PubMed  CAS  Google Scholar 

  37. Flavin M, Slaughter C (1965) Synthesis of the succinic ester of homoserine, a new intermediate in the bacterial biosynthesis of methionine. Biochemistry 4:1370–1375

    Article  PubMed  CAS  Google Scholar 

  38. Flavin M, Slaughter C (1967) Enzymatic synthesis of homocysteine or methionine directly from O-succinyl-homoserine. Biochim Biophys Acta 132:400–405

    PubMed  CAS  Google Scholar 

  39. Fontecave M, Atta M, Mulliez E (2004) S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29:243–249

    Article  PubMed  CAS  Google Scholar 

  40. Fritsch PS, Urbanowski ML, Stauffer GV (2000) Role of the RNA polymerase alpha subunits in MetR-dependent activation of metE and metH: important residues in the C-terminal domain and orientation requirements within RNA polymerase. J Bacteriol 182:5539–5550

    Article  PubMed  CAS  Google Scholar 

  41. Gal J, Szvetnik A, Schnell R, Kalman M (2002) The metD D-methionine transporter locus of Escherichia coli is an ABC transporter gene cluster. J Bacteriol 184:4930–4932

    Article  PubMed  CAS  Google Scholar 

  42. Garvie CW, Phillips SE (2000) Direct and indirect readout in mutant Met repressor-operator complexes. Struct Fold Des 8:905–914

    Article  CAS  Google Scholar 

  43. Gery S, Ron EZ (1997) An Escherichia coli gene divergently transcribed from a promoter overlapping the metA promoter. FEMS Microbiol Lett 154:219–222

    Article  PubMed  CAS  Google Scholar 

  44. Gophna U, Bapteste E, Doolittle WF, Biran D, Ron EZ (2005) Evolutionary plasticity of methionine biosynthesis. Gene 355:48–57

    Article  PubMed  CAS  Google Scholar 

  45. Greene RC (1996) Biosynthesis of Methionine. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol 1. ASM Press, Washington, DC, pp 542–560

    Google Scholar 

  46. Greene RC, Smith AA (1984) Insertion mutagenesis of the metJBLF gene cluster of Escherichia coli K-12: evidence for a metBL operon. J Bacteriol 159:767–769

    PubMed  CAS  Google Scholar 

  47. Greene RC, Su CH, Holloway CT (1970) S-Adenosylmethionine synthetase deficient mutants of Escherichia coli K-12 with impaired control of methionine biosynthesis. Biochem Biophys Res Commun 38:1120–1126

    Article  PubMed  CAS  Google Scholar 

  48. Großmann K, Herbster K, Mack M (2000) Rapid cloning of metK encoding methionine adenosyltransferase from Corynebacterium glutamicum by screening a genomic library on a high density colony-array. FEMS Microbiol Lett 193:99–103

    Article  PubMed  Google Scholar 

  49. Guenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG, Ludwig ML (1999) The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 6:359–365

    Article  PubMed  CAS  Google Scholar 

  50. Gur E, Biran D, Gazit E, Ron EZ (2002) In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures. Mol Microbiol 46:1391–1397

    Article  PubMed  CAS  Google Scholar 

  51. Gyaneshwar P, Paliy O, McAuliffe J, Jones A, Jordan MI, Kustu S (2005) Lessons from Escherichia coli genes similarly regulated in response to nitrogen and sulfur limitation. Proc Natl Acad Sci USA 102:3453–3458

    Article  PubMed  CAS  Google Scholar 

  52. He YY, Stockley PG, Gold L (1996) In vitro evolution of the DNA binding sites of Escherichia coli methionine repressor MetJ. J Mol Biol 255:55–66

    Article  PubMed  CAS  Google Scholar 

  53. He YY, Garvie CW, Elworthy S, Manfield IW, McNally T, Lawrenson ID, Phillips SE, Stockley PG (2002) Structural and functional studies of an intermediate on the pathway to operator binding by Escherichia coli MetJ. J Mol Biol 320:39–53

    Article  PubMed  CAS  Google Scholar 

  54. Herzberg M, Kaye IK, Peti W, Wood TK (2006) YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 188:587–598

    Article  PubMed  CAS  Google Scholar 

  55. Holbrook EL, Greene RC, Krueger JH (1990) Purification and properties of cystathionine gamma-synthase from overproducing strains of Escherichia coli. Biochemistry 29:435–442

    Article  PubMed  CAS  Google Scholar 

  56. Holloway CT, Greene RC, Su CH (1970) Regulation of S-adenosylmethionine synthetase in Escherichia coli. J Bacteriol 104:734–747

    PubMed  CAS  Google Scholar 

  57. Hondorp ER, Matthews RG (2004) Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biol 2:e336

    Article  PubMed  CAS  Google Scholar 

  58. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154

    Article  PubMed  CAS  Google Scholar 

  59. Hwang BJ, Kim Y, Kim HB, Hwang HJ, Kim JH, Lee HS (1999) Analysis of Corynebacterium glutamicum methionine biosynthetic pathway: isolation and analysis of metB encoding cystathionine gamma-synthase. Mol Cells 9:300–308

    PubMed  CAS  Google Scholar 

  60. Hwang BJ, Yeom HJ, Kim Y, Lee HS (2002) Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol 184:1277–1286

    Article  PubMed  CAS  Google Scholar 

  61. Hyre DE, Spicer LD (1995) Thermodynamic evaluation of binding interactions in the methionine repressor system of Escherichia coli using isothermal titration calorimetry. Biochemistry 34:3212–3221

    Article  PubMed  CAS  Google Scholar 

  62. Kadner RJ (1974) Transport systems for L-methionine in Escherichia coli. J Bacteriol 117:232–241

    PubMed  CAS  Google Scholar 

  63. Kadner RJ, Watson WJ (1974) Methionine transport in Escherichia coli: physiological and genetic evidence for two uptake systems. J Bacteriol 119:401–409

    PubMed  CAS  Google Scholar 

  64. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  PubMed  CAS  Google Scholar 

  65. Kase H, Nakayama K (1974) The regulation of L-methionine synthesis and the properties of cystathionine γ-synthase and β-cystathionase in Corynebacterium glutamicum. Agric Biol Chem 38:2235–2242

    CAS  Google Scholar 

  66. Kase H, Nakayama K (1975) L-methionine production by methionine analog-resistant mutants of Corynebacterium glutamicum. Agric Biol Chem 39:153–160

    CAS  Google Scholar 

  67. Kennerknecht N, Sahm H, Yen MR, Patek M, Saier MH Jr, Eggeling L (2002) Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956

    Article  PubMed  CAS  Google Scholar 

  68. Kim JW, Kim HJ, Kim Y, Lee MS, Lee HS (2001) Properties of the Corynebacterium glutamicum metC gene encoding cystathionine beta-lyase. Mol Cells 11:220–225

    PubMed  CAS  Google Scholar 

  69. Kirby TW, Hindenach BR, Greene RC (1986) Regulation of in vivo transcription of the Escherichia coli K-12 metJBLF gene cluster. J Bacteriol 165:671–677

    PubMed  CAS  Google Scholar 

  70. Koch DJ, Rückert C, Albersmeier A, Huser AT, Tauch A, Pühler A, Kalinowski J (2005) The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol 58:480–494

    Article  PubMed  CAS  Google Scholar 

  71. Komoto J, Yamada T, Takata Y, Markham GD, Takusagawa F (2004) Crystal structure of the S-adenosylmethionine synthetase ternary complex: a novel catalytic mechanism of S-adenosylmethionine synthesis from ATP and Met. Biochemistry 43:1821–1831

    Article  PubMed  CAS  Google Scholar 

  72. Kraus J, Soll D, Low KB (1979) Glutamyl-gamma-methyl ester acts as a methionine analogue in Escherichia coli: analogue resistant mutants map at the metJ and metK loci. Genet Res 33:49–55

    Article  PubMed  CAS  Google Scholar 

  73. Kredich NM (1996) Biosynthesis of Cysteine. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol 1. ASM Press, Washington, DC, pp 514–527

    Google Scholar 

  74. Krömer JO, Heinzle E, Schroder H, Wittmann C (2006a) Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J Bacteriol 188:609–618

    Article  PubMed  CAS  Google Scholar 

  75. Krömer JO, Wittmann C, Schroder H, Heinzle E (2006b) Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8:353–369

    Article  PubMed  CAS  Google Scholar 

  76. Kumar D, Gomes J (2005) Methionine production by fermentation. Biotechnol Adv 23:41–61

    Article  PubMed  CAS  Google Scholar 

  77. Kung HF, Spears C, Greene RC, Weissbach H (1972) Regulation of the terminal reactions in methionine biosynthesis by vitamin B12 and methionine. Arch Biochem Biophys 150:23–31

    Article  PubMed  CAS  Google Scholar 

  78. Kutukova EA, Livshits VA, Altman IP, Ptitsyn LR, Zyiatdinov MH, Tokmakova IL, Zakataeva NP (2005) The yeaS (leuE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression. FEBS Lett 579:4629–4634

    Article  PubMed  CAS  Google Scholar 

  79. Lamonte BL, Hughes JA (2006) In vivo hydrolysis of S-adenosylmethionine induces the met regulon of Escherichia coli. Microbiology 152:1451–1459

    Article  PubMed  CAS  Google Scholar 

  80. Lawrenson ID, Stockley PG (2004) Kinetic analysis of operator binding by the E. coli methionine repressor highlights the role(s) of electrostatic interactions. FEBS Lett 564:136–142

    Article  PubMed  CAS  Google Scholar 

  81. Lee H-S (2005) Sulfur Metabolism and its regulation. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, FL, pp 351–376

    Google Scholar 

  82. Lee H-S, Hwang BJ (2003) Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation. Appl Microbiol Biotechnol 62:459–467

    Article  PubMed  CAS  Google Scholar 

  83. Lee LW, Ravel JM, Shive W (1966) Multimetabolite control of a biosynthetic pathway by sequential metabolites. J Biol Chem 241:5479–5480

    PubMed  CAS  Google Scholar 

  84. Leichert LI, Jakob U (2004) Protein thiol modifications visualized in vivo. PLoS Biol 2:e333

    Article  PubMed  CAS  Google Scholar 

  85. Liu R, Blackwell TW, States DJ (2001) Conformational model for binding site recognition by the E.coli MetJ transcription factor. Bioinformatics 17:622–633

    Article  PubMed  CAS  Google Scholar 

  86. Ludwig ML, Matthews RG (1997) Structure-based perspectives on B12-dependent enzymes. Annu Rev Biochem 66:269–313

    Article  PubMed  CAS  Google Scholar 

  87. Maier T, Winterhalter C, Pfeiffer K (2004) Verfahren zur fermentativen Herstellung von L-Methionin. European Patent Application EP 1445310

    Google Scholar 

  88. Mampel J, Schroder H, Haefner S, Sauer U (2005) Single-gene knockout of a novel regulatory element confers ethionine resistance and elevates methionine production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 68:228–236

    Article  PubMed  CAS  Google Scholar 

  89. Marconi R, Wigboldus J, Weissbach H, Brot N (1991) Transcriptional start and MetR binding sites on the Escherichia coli metH gene. Biochem Biophys Res Commun 175:1057–1063

    Article  PubMed  CAS  Google Scholar 

  90. Mares R, Urbanowski ML, Stauffer GV (1992) Regulation of the Salmonella typhimurium metA gene by the MetR protein and homocysteine. J Bacteriol 174:390–397

    PubMed  CAS  Google Scholar 

  91. Marincs F, Manfield IW, Stead JA, McDowall KJ, Stockley PG (2006) Transcript analysis reveals an extended regulon and the importance of protein-protein co-operativity for the Escherichia coli methionine repressor. Biochem J 396:227–234

    Article  PubMed  CAS  Google Scholar 

  92. Markham GD, DeParasis J, Gatmaitan J (1984) The sequence of metK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. J Biol Chem 259:14505–14507

    PubMed  CAS  Google Scholar 

  93. Matthews RG (2001) Cobalamin-dependent methyltransferases. Acc Chem Res 34:681–689

    Article  PubMed  CAS  Google Scholar 

  94. Maxon ME, Redfield B, Cai XY, Shoeman R, Fujita K, Fisher W, Stauffer G, Weissbach H, Brot N (1989) Regulation of methionine synthesis in Escherichia coli: effect of the MetR protein on the expression of the metE and metR genes. Proc Natl Acad Sci USA 86:85–89

    Article  PubMed  CAS  Google Scholar 

  95. Maxon ME, Wigboldus J, Brot N, Weissbach H (1990) Structure-function studies on Esche- richia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl Acad Sci USA 87:7076–7079

    Article  PubMed  CAS  Google Scholar 

  96. Mendez-Ortiz MM, Hyodo M, Hayakawa Y, Membrillo-Hernandez J (2006) Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3′,5′-cyclic diguanylic acid. J Biol Chem 281:8090–8099

    Article  PubMed  CAS  Google Scholar 

  97. Merlin C, Gardiner G, Durand S, Masters M (2002) The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol 184:5513–5517

    Article  PubMed  CAS  Google Scholar 

  98. Michaeli S, Mevarech M, Ron EZ (1984) Regulatory region of the metA gene of Escherichia coli K-12. J Bacteriol 160:1158–1162

    PubMed  CAS  Google Scholar 

  99. Miyajima R, Shiio I (1973) Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. VII. Properities of homoserine O-transacetylase. J Biochem (Tokyo) 73:1061–1068

    CAS  Google Scholar 

  100. Möckel B, Pfefferle W, Huthmacher K, Rückert C, Kalinowski J, Pühler A, Binder M, Greissinger D, Thierbach G (2002) Nucleotide sequences which code for the metY gene. International Patent Application WO 02/18613

    Google Scholar 

  101. Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    Article  PubMed  CAS  Google Scholar 

  102. Mondal S, Das YB, Chatterjee SP (1994) L-Methionine production by double auxotrophic mutants of an ethionine resistant strain of Brevibacterium heali. Acta Biotechnol 14:61–66

    Article  CAS  Google Scholar 

  103. Nakamori S, Kobayashi S, Nishimura T, Takagi H (1999) Mechanism of L-methionine overproduction by Escherichia coli: the replacement of Ser-54 by Asn in the MetJ protein causes the derepression of L-methionine biosynthetic enzymes. Appl Microbiol Biotechnol 52:179–185

    Article  PubMed  CAS  Google Scholar 

  104. Newman EB, Budman LI, Chan EC, Greene RC, Lin RT, Woldringh CL, D'Ari R (1998) Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. J Bacteriol 180:3614–3619

    PubMed  CAS  Google Scholar 

  105. Old IG, Phillips SE, Stockley PG, Saint Girons I (1991) Regulation of methionine biosynthesis in the Enterobacteriaceae. Prog Biophys Mol Biol 56:145–185

    Article  PubMed  CAS  Google Scholar 

  106. Ozaki H, Shiio I (1982) Methionine biosynthesis in Brevibacterium flavum: properties and essential role of O-acetylhomoserine sulfhydrylase. J Biochem (Tokyo) 91:1163–1171

    CAS  Google Scholar 

  107. Park SD, Lee JY, Kim Y, Kim JH, Lee HS (1998) Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum. Mol Cells 8:286–294

    PubMed  CAS  Google Scholar 

  108. Parsons ID, Persson B, Mekhalfia A, Blackburn GM, Stockley PG (1995) Probing the molecular mechanism of action of co-repressor in the E. coli methionine repressor-operator complex using surface plasmon resonance (SPR). Nucleic Acids Res 23:211–216

    Article  PubMed  CAS  Google Scholar 

  109. Patte J-C (1996) Biosynthesis of Threonine and Lysine. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol 1. ASM Press, Washington, DC, pp 528–541

    Google Scholar 

  110. Paulsen IT, Sliwinski MK, Saier MH Jr (1998) Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J Mol Biol 277:573–592

    Article  PubMed  CAS  Google Scholar 

  111. Pejchal R, Ludwig ML (2005) Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel That Evolved by Gene Duplication. PLoS Biol 3:e31

    Article  PubMed  CAS  Google Scholar 

  112. Peoples OP, Liebl W, Bodis M, Maeng PJ, Follettie MT, Archer JA, Sinskey AJ (1988) Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon. Mol Microbiol 2:63–72

    Article  PubMed  CAS  Google Scholar 

  113. Phillips K, Phillips SE (1994) Electrostatic activation of Escherichia coli methionine repressor. Structure 2:309–316

    Article  PubMed  CAS  Google Scholar 

  114. Phillips SE (1991) Specific beta-sheet interactions. Curr Opin Struct Biol 1:89–98

    Article  CAS  Google Scholar 

  115. Phillips SE (1994) The beta-ribbon DNA recognition motif. Annu Rev Biophys Biomol Struct 23:671–701

    Article  PubMed  CAS  Google Scholar 

  116. Phillips SE, Stockley PG (1996) Structure and function of Escherichia coli met repressor: similarities and contrasts with trp repressor. Philos Trans R Soc Lond B Biol Sci 351:527–535

    Article  PubMed  CAS  Google Scholar 

  117. Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356

    Article  PubMed  CAS  Google Scholar 

  118. Rey DA, Nentwich SS, Koch DJ, Rückert C, Pühler A, Tauch A, Kalinowski J (2005) The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56:871–887

    Article  PubMed  CAS  Google Scholar 

  119. Rey DA, Pühler A, Kalinowski J (2003) The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 103:51–65

    PubMed  CAS  Google Scholar 

  120. Rosen R, Becher D, Buttner K, Biran D, Hecker M, Ron EZ (2004a) Highly phosphorylated bacterial proteins. Proteomics 4:3068–3077

    Article  PubMed  CAS  Google Scholar 

  121. Rosen R, Becher D, Buttner K, Biran D, Hecker M, Ron EZ (2004b) Probing the active site of homoserine trans-succinylase. FEBS Lett 577:386–392

    Article  PubMed  CAS  Google Scholar 

  122. Rossol I, Pühler A (1992) The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine. J Bacteriol 174:2968–2977

    PubMed  CAS  Google Scholar 

  123. Rückert C, Pühler A, Kalinowski J (2003) Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J Biotechnol 104:213–228

    Article  PubMed  CAS  Google Scholar 

  124. Saint-Girons I, Duchange N, Zakin MM, Park I, Margarita D, Ferrara P, Cohen GN (1983) Nucleotide sequence of metF, the E. coli structural gene for 5–10 methylene tetrahydrofolate reductase and of its control region. Nucleic Acids Res 11:6723–6732

    Article  PubMed  CAS  Google Scholar 

  125. Saint-Girons I, Duchange N, Cohen GN, Zakin MM (1984) Structure and autoregulation of the metJ regulatory gene in Escherichia coli. J Biol Chem 259:14282–14285

    PubMed  CAS  Google Scholar 

  126. Satishchandran C, Taylor JC, Markham GD (1990) Novel Escherichia coli K-12 mutants impaired in S-adenosylmethionine synthesis. J Bacteriol 172:4489–4496

    PubMed  CAS  Google Scholar 

  127. Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M (2001) A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22:4404–4422

    Article  PubMed  CAS  Google Scholar 

  128. Schalk-Hihi C, Markham GD (1999) The conformations of a substrate and a product bound to the active site of S-adenosylmethionine synthetase. Biochemistry 38:2542–2550

    Article  PubMed  CAS  Google Scholar 

  129. Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476

    Article  PubMed  CAS  Google Scholar 

  130. Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626

    Article  PubMed  CAS  Google Scholar 

  131. Schroeder HR, Barnes CJ, Bohinski RC, Mallette MF (1973) Biological production of 5-methylthioribose. Can J Microbiol 19:1347–1354

    Article  PubMed  CAS  Google Scholar 

  132. Sheppard CA, Trimmer EE, Matthews RG (1999) Purification and properties of NADH-dependent 5, 10-methylenetetrahydrofolate reductase (MetF) from Escherichia coli. J Bacteriol 181:718–725

    PubMed  CAS  Google Scholar 

  133. Shiio I, Ozaki H (1981) Feedback inhibition by methionine and S-adenosylmethionine, and desensitization of homoserine O-acetyltransferase in Brevibacterium flavum. J Biochem (Tokyo) 89:1493–1500

    CAS  Google Scholar 

  134. Shoeman R, Coleman T, Redfield B, Greene RC, Smith AA, Saint-Girons I, Brot N, Weissbach H (1985) Regulation of methionine synthesis in Escherichia coli: effect of metJ gene product and S-adenosylmethionine on the in vitro expression of the metB, metL and metJ genes. Biochem Biophys Res Commun 133:731–739

    Article  PubMed  CAS  Google Scholar 

  135. Smith MW, Neidhardt FC (1983) Proteins induced by aerobiosis in Escherichia coli. J Bacteriol 154:344–350

    PubMed  CAS  Google Scholar 

  136. Tabe L, Higgins TJV (1998) Engineering plant protein composition for improved nutrition. Trends Plant Sci 3:282–286

    Article  Google Scholar 

  137. Tabolina EA, Rybak KV, Khourges EM, Voroshilova EB, Gusyatiner MM (2002) Method for producing L-amino acid using bacteria belonging to the genus Escherichia. European Patent Application EP 1239041

    Google Scholar 

  138. Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    PubMed  CAS  Google Scholar 

  139. Tabor CW, Tabor H, Xie QW (1986) Spermidine synthase of Escherichia coli: localization of the speE gene. Proc Natl Acad Sci USA 83:6040–6044

    Article  PubMed  CAS  Google Scholar 

  140. Takusagawa F, Kamitori S, Markham GD (1996a) Structure and function of S-adenosyl- methionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 28 angstroms resolution. Biochemistry 35:2586–2596

    Article  PubMed  CAS  Google Scholar 

  141. Takusagawa F, Kamitori S, Misaki S, Markham GD (1996b) Crystal structure of S-ade- nosylmethionine synthetase. J Biol Chem 271:136–147

    Article  PubMed  CAS  Google Scholar 

  142. Taurog RE, Matthews RG (2006) Activation of methyltetrahydrofolate by cobalamin-independent methionine synthase. Biochemistry 45:5092–5102

    Article  PubMed  CAS  Google Scholar 

  143. Taylor JC, Markham GD (2000) The bifunctional active site of S-adenosylmethionine synthetase. Roles of the basic residues. J Biol Chem 275:4060–4065

    Article  PubMed  CAS  Google Scholar 

  144. Thanbichler M, Neuhierl B, Bock A (1999) S-methylmethionine metabolism in Escherichia coli. J Bacteriol 181:662–665

    PubMed  CAS  Google Scholar 

  145. Trötschel C, Deutenberg D, Bathe B, Burkovski A, Krämer R (2005) Characterization of methionine export in Corynebacterium glutamicum. J Bacteriol 187:3786–3794

    Article  PubMed  CAS  Google Scholar 

  146. Tuan LR, D'Ari R, Newman EB (1990) The leucine regulon of Escherichia coli K-12: a mutation in rblA alters expression of L-leucine-dependent metabolic operons. J Bacteriol 172:4529–4535

    PubMed  CAS  Google Scholar 

  147. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  148. Urbanowski ML, Stauffer GV (1989) Genetic and biochemical analysis of the MetR activator-binding site in the metE metR control region of Salmonella typhimurium. J Bacteriol 171:5620–5629

    PubMed  CAS  Google Scholar 

  149. Urbanowski ML, Stauffer LT, Plamann LS, Stauffer GV (1987) A new methionine locus, metR, that encodes a trans-acting protein required for activation of metE and metH in Escherichia coli and Salmonella typhimurium. J Bacteriol 169:1391–1397

    PubMed  CAS  Google Scholar 

  150. Usuda Y, Kurahashi O (2005) Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli. Appl Environ Microbiol 71:3228–3234

    Article  PubMed  CAS  Google Scholar 

  151. Vecerek B, Moll I, Afonyushkin T, Kaberdin V, Blasi U (2003) Interaction of the RNA chaperone Hfq with mRNAs: direct and indirect roles of Hfq in iron metabolism of Escherichia coli. Mol Microbiol 50:897–909

    Article  PubMed  CAS  Google Scholar 

  152. Wada M, Awano N, Haisa K, Takagi H, Nakamori S (2002) Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum and its relationship to cysteine production. FEMS Microbiol Lett 217:103–107

    Article  PubMed  CAS  Google Scholar 

  153. Wang L, Li J, March JC, Valdes JJ, Bentley WE (2005) lux S-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J Bacteriol 187:8350–8360

    Article  PubMed  CAS  Google Scholar 

  154. Wei Y, Newman EB (2002) Studies on the role of the metK gene product of Escherichia coli K-12. Mol Microbiol 43:1651–1656

    Article  PubMed  CAS  Google Scholar 

  155. Weichart D, Querfurth N, Dreger M, Hengge-Aronis R (2003) Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli. J Bacteriol 185:115–125

    Article  PubMed  CAS  Google Scholar 

  156. Weissbach H, Brot N (1991) Regulation of methionine synthesis in Escherichia coli. Mol Microbiol 5:1593–1597

    Article  PubMed  CAS  Google Scholar 

  157. Whitfield CD, Steers EJ Jr, Weisbach H (1970) Purification and properties of 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase. J Biol Chem 245:390–401

    PubMed  CAS  Google Scholar 

  158. Wild CM, McNally T, Phillips SE, Stockley PG (1996) Effects of systematic variation of the minimal Escherichia coli met consensus operator site: in vivo and in vitro met repressor binding. Mol Microbiol 21:1125–1135

    Article  PubMed  CAS  Google Scholar 

  159. Wu WF, Urbanowski ML, Stauffer GV (1992) Role of the MetR regulatory system in vitamin B12-mediated repression of the Salmonella typhimurium metE gene. J Bacteriol 174:4833–4837

    PubMed  CAS  Google Scholar 

  160. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197

    Article  PubMed  CAS  Google Scholar 

  161. Yoshida M, Kashiwagi K, Shigemasa A, Taniguchi S, Yamamoto K, Makinoshima H, Ishihama A, Igarashi K (2004) A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J Biol Chem 279:46008–46013

    Article  PubMed  CAS  Google Scholar 

  162. Zakin MM, Duchange P, Ferrara P, Cohen GN (1983) Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifucntional aspartokinase II-homoserine dehydrogenase II and the bifunctional product of the thrA gene, aspartokinase L-homoserine dehydrogenase I derive from a common ancestor. J Biol Chem 258:3028–3031

    PubMed  CAS  Google Scholar 

  163. Zhang Z, Feige JN, Chang AB, Anderson IJ, Brodianski VM, Vitreschak AG, Gelfand MS, Saier MH Jr (2003) A transporter of Escherichia coli specific for L- and D-methionine is the prototype for a new family within the ABC superfamily. Arch Microbiol 180:88–100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Tony Chevalier for help with preparing figures. Drs. Benjamin Gonzalez, Philippe Soucaille and Gwénaëlle Bestel-Corre are acknowledged for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer M. Figge .

Editor information

Volker F. Wendisch

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Figge, R.M. (2006). Methionine Biosynthesis in Escherichia coli and Corynebacterium glutamicum . In: Wendisch, V.F. (eds) Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering. Microbiology Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_059

Download citation

Publish with us

Policies and ethics