Skip to main content
Log in

Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The methionine biosynthetic pathway found in bacteria is controlled at the first step, acylation of the γ-hydroxyl of homoserine. This reaction is catalyzed by one of two unique enzymes, homoserine transacetylase or homoserine transsuccinylase, which have no amino acid sequence similarity. We cloned, expressed, and purified homoserine transsuccinylase from the thermophilic bacterium Thermotoga maritima. Substrate specificity experiments demonstrated that acetyl-coenzyme A (CoA) is the preferred acyl donor and is used at least 30-fold more efficiently than succinyl-CoA. Steady-state kinetic experiments confirm that the enzyme utilizes a ping-pong kinetic mechanism in which the acetate group of acetyl-CoA is initially transferred to an enzyme nucleophile before subsequent transfer to homoserine. The maximal velocity, V/K acetyl-CoA and V/K homoserine, all exhibited bell-shaped pH curves with apparent pKs of 6.0–6.9 and 8.2–8.8. The enzyme was inactivated by iodoacetamide in a pH-dependent manner, with an apparent pK of 6.3, suggesting the presence of an active-site cysteine residue which forms an acetyl-enzyme thioester intermediate during catalytic turnover, similar to observations with other transsuccinylases. In addition, the enzyme is highly stable at elevated temperatures, maintaining full activity at 70°C. Taken together, these data suggest that the T. maritima enzyme functions biochemically as a transacetylase, despite having the sequence of a transsuccinylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EcHTS :

Escherichia coli homoserine transsuccinylase

HiHTA :

Haemophilus influenzae homoserine transacetylase;

HTA :

Homoserine transacetylase

HTS :

Homoserine transsuccinylase

IAA :

Iodoacetamide

OAH :

O-acetylhomoserine

OSH :

O-succinylhomoserine

PLP :

Pyridoxal phosphate

SAM :

S-adenosylmethionine

SDS-PAGE :

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SELDI-TOF MS :

Surface-enhanced laser desorption/ionization-time of flight mass spectrometry

TEA :

Triethanolamine

TmHTA :

Thermotoga maritima homoserine transacetylase

References

  • Aitken SM, Kirsch JF (2005) The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity. Arch Biochem Biophys 433:166–175

    Article  PubMed  CAS  Google Scholar 

  • Andersen GL, Beattie GA, Lindow SE (1998) Molecular characterization and sequence of a methionine biosynthetic locus from Pseudomonas syringae. J Bacteriol 180:4497–4507

    PubMed  CAS  Google Scholar 

  • Andres HH, Klem AJ, Schopfer LM, Harrison JK, Weber WW (1988) On the active site of liver acetyl-CoA. Arylamine N-acetyltransferase from rapid acetylator rabbits (III/J). J Biol Chem 263:7521–7527

    PubMed  CAS  Google Scholar 

  • Born TL, Blanchard JS (1999) Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. Biochemistry 38:14416–14423

    Article  PubMed  CAS  Google Scholar 

  • Born TL, Franklin M, Blanchard JS (2000) Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Haemophilus influenzae met2-encoded homoserine transacetylase. Biochemistry 39:8556–8564

    Article  PubMed  CAS  Google Scholar 

  • Brumlik MJ, Buckley JT (1996) Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila. J Bacteriol 178:2060–2064

    PubMed  CAS  Google Scholar 

  • Costello CA, Kelleher NL, Abe M, McLafferty FW, Begley TP (1996) Mechanistic studies on thiaminase I. Overexpression and identification of the active site nucleophile. J Biol Chem 271:3445–3452

    Article  PubMed  CAS  Google Scholar 

  • Flavin M (1975) Methionine biosynthesis. In: Greenberg DM (ed.) Metabolic pathways, vol 7, pp457–503. Academic, New York

  • Foglino M, Borne F, Bally M, Ball G, Patte JC (1995) A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology 141:431–439

    Article  PubMed  CAS  Google Scholar 

  • Gluch MF, Typke D, Baumeister W (1995) Motility and thermotactic responses of Thermotoga maritima. J Bacteriol 177:5473–5479

    PubMed  CAS  Google Scholar 

  • Hacham Y, Gophna U, Amir R (2003) In vivo analysis of various substrates utilized by cystathionine gamma-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. Mol Biol Evol 20:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Hemila H, Koivula TT, Palva I (1994) Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: identification of a superfamily of esterases and lipases. Biochim Biophys Acta 1210:249–253

    PubMed  CAS  Google Scholar 

  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke R, Bohm G (2001) Thermostability of proteins from Thermotoga maritima. Methods Enzymol 334:438–469

    PubMed  CAS  Google Scholar 

  • Kerr DS, Flavin M (1970) The regulation of methionine synthesis and the nature of cystathionine gamma-synthase in Neurospora. J Biol Chem 245:1842–1855

    PubMed  CAS  Google Scholar 

  • Miziorko HM, Clinkenbeard KD, Reed WD, Lane MD (1975) 3-hydroxy-3-methylglutaryl coenzyme A synthase. Evidence for an acetyl-S-enzyme intermediate and identification of a cysteinyl sulfhydryl as the site of acetylation. J Biol Chem 250:5768–5773

    PubMed  CAS  Google Scholar 

  • Nagai S, Flavin M (1967) Acetylhomoserine: an intermediate in the fungal biosynthesis of methionine. J Biol Chem 242:3884–3895

    PubMed  CAS  Google Scholar 

  • Nagai S, Flavin M (1971) Synthesis of O-acetylhomoserine. Methods Enzymol 17B:423–424

    Google Scholar 

  • Nazi I, Wright GD (2005) Catalytic mechanism of fungal homoserine transacetylase. Biochemistry 44:13560–13566

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE, Eisen JA, Fraser CM (2001) Genome of Thermotoga maritima MSB8. Methods Enzymol 330:169–180

    Article  PubMed  CAS  Google Scholar 

  • Pysz MA, Conners SB, Montero CI, Shockley KR, Johnson MR, Ward DE, Kelly RM (2004) Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima. Appl Environ Microbiol 70:6098–6112

    Article  PubMed  CAS  Google Scholar 

  • Ron EZ, Davis BD (1971) Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J Bacteriol 107:391–396

    PubMed  CAS  Google Scholar 

  • Ron EZ, Shani M (1971) Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine transsuccinylase. J Bacteriol 107:397–400

    PubMed  CAS  Google Scholar 

  • Saint-Girons E, Parsot C, Zakin MM, Barzu O, Cohen GN (1988) Methionine biosynthesis in Enterobacteriaceae: biochemical, regulatory, and evolutionary aspects. CRC Crit Rev Biochem 23:S1–S42

    PubMed  Google Scholar 

  • Savin MA, Flavin M (1972) Cystathionine synthesis in yeast: an alternative pathway for homocysteine biosynthesis. J Bacteriol 112:299–303

    PubMed  CAS  Google Scholar 

  • Schrag JD, Cygler M (1997) Lipases and α/β hydrolase fold. Methods Enzymol 284:85–107

    PubMed  CAS  Google Scholar 

  • Weber WW, Cohen SN (1967) N-acetylation of drugs: isolation and properties of an N-acetyltransferase from rabbit liver. Mol Pharmacol 3:266–273

    PubMed  CAS  Google Scholar 

  • Wyman A, Shelton E, Paulus H (1975) Regulation of homoserine transacetylase in whole cells of Bacillus polymyxa. J Biol Chem 250:3904–3908

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (GM064513 to TLB). The authors would like to thank Katharine Ziegler for the critical reading of this manuscript and her assistance in the experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Born.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goudarzi, M., Born, T.L. Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase. Extremophiles 10, 469–478 (2006). https://doi.org/10.1007/s00792-006-0522-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0522-3

Keywords

Navigation