Skip to main content

The Genus Azospirillum

  • Reference work entry
The Prokaryotes

Historical Aspects

The growth of a spirillum-like bacterium in nitrogen deficient malate- or lactate-based media, which had been inoculated heavily with garden soil, was first observed by Beijerinck in 1922. In contrast to carbohydrate-based media, organic acid-based media supported growth of the spirillum without overgrowth by other nitrogen-fixing bacteria like Azotobacter and Clostridium. Beijerinck found that partially purified cultures of the spirillum exhibited increases in nitrogen at the expense of malate, whereas cultures lacking the spirillum failed to show such increases. In general, cells cultured in sugar media were plump, curved rods containing many lipoidal droplets which sometimes distorted the shape of the cells. On malate or lactate agar, the cells tended to be thinner and straighter, while in dilute bouillon they had a distinct spirillum shape with one or more helical turns. Because of the ease of cultivation on salts of organic acids, as well as the spirillum shape...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Abdel-Salam, M. S., and W. Klingmüller. 1987 Transposon Tn5 mutagenesis in Azospirillum lipoferum: Isolation of indole acetic acid mutants Molec. Gen. Genet. 210 165–170

    Article  CAS  Google Scholar 

  • Alexandre, G., C. Jacoud, D. Faure, and R. Bally. 1996 Population dynamics of a motile and a non-motile Azospirillum lipoferum strain during rice root colonization and motility variation in the rhizosphere FEMS Microbiol. Ecol. 19 271–278

    Article  CAS  Google Scholar 

  • Alexandre, G., and R. Bally. 1999 Emergence of a laccase-negative variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process FEMS Microbiol. Lett. 174 371–378

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, M. I., R. J. Sueldo, and C. A. Barassi. 1996 Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress Cereal Res. Commun. 24 101–107

    Google Scholar 

  • Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995 Phylogenetic identification and in situ detection of individual microbial cells without cultivation Microbiol. Rev. 59 143–169

    PubMed  CAS  Google Scholar 

  • Antonyuk, L. P., O. R. Fomina, M. A. Galkin, and V. V. Ignatov. 1993 The effect of wheat germ agglutinin on nitrogen fixation, glutamine synthetase activity and ammonium excretion in Azospirillum brasilense Sp245 FEMS Microbiol. Lett. 110 285–290

    Article  CAS  Google Scholar 

  • Aßmus, B., P. Hutzler, G. Kirchhof, R. Amann, J. R. Lawrence, and A. Hartmann. 1995 In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy Appl. Environ. Microbiol. 61 1013–1019

    PubMed  Google Scholar 

  • Aßmus, B., M. Schloter, G. Kirchhof, P. Hutzler, and A. Hartmann. 1997 Improved in situ tracking of rhizosphere bacteria using dual straining with fluorescent-labeled antibodies and rRNA-targeted oligonucleotides Microb. Ecol. 33 32–40

    Article  PubMed  Google Scholar 

  • Bachhawat, A. K., and S. Ghosh. 1987a Iron transport in Azospirillum brasilense: Role of the siderophore spirilobactin J. Gen. Microbiol. 133 1759–1765

    CAS  Google Scholar 

  • Bachhawat, A. K., and S. Ghosh. 1987b Isolation and characterization of the outer membrane proteins of Azospirillum brasilense J. Gen. Microbiol. 133 1751–1759

    CAS  Google Scholar 

  • Baldani, J. I., and J. Döbereiner. 1980 Host-plant specificity in the infection of cereals with Azospirillum spp Soil Biol. Biochem. 12 433–439

    Article  Google Scholar 

  • Baldani, V. L. D., M. A. B. Alvarez, J. I. Baldani, and J. Döbereiner. 1986 Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum Plant Soil 90 35–45

    Article  Google Scholar 

  • Baldani, V. L. D., J. I. Baldani, and J. Döbereiner. 1987 Inoculation of field grown wheat with Azospirillum spp. in Brazil Biol. Fert. Soils 4 37–40

    Google Scholar 

  • Bally, R., D. Thomas-Bauzon, T. Heulin, J. Balandreau, C. Richard, and J. De Ley. 1983 Determination of the most frequent N2-fixing bacteria in a rice rhizosphere Can. J. Microbiol. 29 881–887

    Article  Google Scholar 

  • Bar, T., and Y. Okon. 1993 Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasilense Sp7 Can. J. Microbiol. 42 294–298

    Google Scholar 

  • Barbieri, P., T. Zanelli, E. Galli, and G. Zanetti. 1986 Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production FEMS Microbiol. Lett. 36 87–90

    Article  CAS  Google Scholar 

  • Bashan, Y., H. Levanony, and G. Mitiku. 1989 Changes in proton efflux of infected wheat roots induced by Azospirillum brasilense Cd Can. J. Microbiol. 35 691–697

    Article  CAS  Google Scholar 

  • Bashan, Y., and G. Holguin. 1997 Azospirillum-plant relationships: Environmental and physiological advances Can. J. Microbiol. 43 103–121

    Article  CAS  Google Scholar 

  • Bashan, Y. 1999 Interactions of Azospirillum spp. in soils: A review Biol. Fertil. Soils 29 246–256

    Article  CAS  Google Scholar 

  • Becking, J. H. 1963 Fixation of molecular nitrogen by an aerobic vibrio or spirillum J. Microbiol. Serol. 29 326

    Google Scholar 

  • Beijerinck. M. W. 1925 über ein Spirillum, welches freien Stickstoff binden kann? Centralbl. Bakt. II Abt. 63 353–357

    Google Scholar 

  • Berg, R. H., V. Vasil, and I. K. Vasil. 1979 The biology of Azospirillum sugarcane association. II: Ultrastructure Protoplasma 101 143–163

    Article  Google Scholar 

  • Boddey, R. M., and R. L. Victoria. 1986a Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using 15N labelled organic matter and fertilizer Plant Soil 90 265–292

    Article  CAS  Google Scholar 

  • Boddey, R. M., V. L. D. Baldani, J. I. Baldani, and J. Döbereiner. 1986 Effect of inoculation of Azospirillum spp. on the nitrogen assimilation of field grown wheat Plant Soil 95 109–121

    Article  Google Scholar 

  • Bossier, P., M. Hofte, and W. Verstraete. 1988 Ecological significance of siderophores in soil In: K. C. Marshall (Ed.) Advances in Microbial Ecology Plenum Press New York, NY 10 385–403

    Chapter  Google Scholar 

  • Bothe, H., B. Klein, M. P. Stephan, and J. Döbereiner. 1981 Transformations of inorganic nitrogen by Azospirillum spp Arch. Microbiol. 130 96–100

    Article  CAS  Google Scholar 

  • Bottini, R., M. Fulchieri, D. W. Pearce, and R. P. Pharis. 1989 Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum Plant Physiol. 90 45–47

    Article  PubMed  CAS  Google Scholar 

  • Braun, V., K. Hantke, and W. Köstner. 1998 Iron transport and storage in microorganisms, plants, and animals In: A. Siegel and H. Siegel (Eds.) Metal Ions in Biological Systems Marcel Dekker New York, NY 67–145

    Google Scholar 

  • Burdman, S., H. Volpin, L. Kigel, Y. Kapulnik, and Y. Okon. 1996 Promotion of nod-gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd Appl. Environ. Microbiology 62 3030–3033

    CAS  Google Scholar 

  • Burdman, S., E. Jurkevitch, B. Schwartsburd, M. Hampel., and Y. Okon. 1998 Aggregation in Azospirillum brasilense: Effects of chemical and physical factors and involvement of extracellular components Microbiology 144 1989–1999

    Article  PubMed  CAS  Google Scholar 

  • Burdman, S., E. Jurkevitch, B. Schwartsburd, and Y. Okon. 1999 Involvement of outer-membrane proteins in the aggregation of Azospirillum brasilense Microbiology 145 1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Caballero-Mellado, J., M. Carcano-Montiel, M., and M. A. Mascarua-Esparza. 1993 Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate Symbiosis 13 243–253

    Google Scholar 

  • Caballero-Mellado, J., L. Lupez-Reyes, and R. Bustillos-Cristales. 1999 Presence of 16S rRNA genes in multiple replicons in Azospirillum brasilense FEMS Microbiol.Lett 178 283–288

    Article  CAS  Google Scholar 

  • Castellanos, T., F. Ascencio, and Y. Bashan. 1998 Cell-surface lectins of Azospirillum spp Curr. Microbiol. 36 241–244

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty, B., and K. R. Samaddar. 1995 Evidence for the occurrence of an alternative nitrogenase system in Azospirillum brasilense FEMS Microbiol. Lett. 127 127–131

    Article  CAS  Google Scholar 

  • Chan, Y. K., L. M. Nelson, and R. Knowles. 1980 Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium Can. J. Microbiol. 26 1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Christiansen-Weniger, C., and J. A. Van Veen. 1991 NH4 +-excreting Azospirillum brasilense mutants enhance the nitrogen supply of a wheat host Appl. Environ. Microbiology 56 3006–3012

    Google Scholar 

  • Christiansen-Weniger, C. 1992 N2-fixation by ammonium-excreting Azospirillum brasilense in auxin-induced root tumours of wheat (Triticum aestivum, L.) Biol. Fertil. Soils 13 165–172

    CAS  Google Scholar 

  • Costacurta, A., V. Keijers, and J. Vanderleyden. 1994 Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene Molec. Gen. Genet. 243 463–472

    PubMed  CAS  Google Scholar 

  • Costacurta, A., and J. Vanderleyden. 1995 Synthesis of phytohormones by plant-associated bacteria Crit. Rev. Microbiol. 21 1–18

    Article  PubMed  Google Scholar 

  • Creus, C. M., R. J. Sueldo, and C. A. Barassi. 1997 Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stress Plant Physiol. Biochem. 35 939–944

    CAS  Google Scholar 

  • Croes, C., E. Van Bastelaere, E. DeClercq, M. Eyers, J. Vanderleyden, and K. Michielis. 1991 Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-Mda plasmid Plasmid 26 83–93

    Article  PubMed  CAS  Google Scholar 

  • Csonka, L. N., and A. D. Hanson. 1991 Prokaryotic osmoregulation: Genetics and physiology Ann. Rev. Microbiol. 45 569

    Article  CAS  Google Scholar 

  • Dekhil, S. B., M. Cahill, E. Stackbrandt, and L. I. Sly. 1997 Transfer of Conglomeromonas largomobilis subs. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subs. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov Syst. Appl. Microbiol. 20 72–77

    Article  Google Scholar 

  • Del Gallo, M., M. Negi, and C. A. Neyra. 1989 Calcofluor-and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum J. Bacteriol. 171 3504–3510

    PubMed  Google Scholar 

  • Del Gallo, M., and I. Fendrik. 1994 The rhizosphere and Azospirillum In: Y. Okon (Ed.) Azospirillum/Plant Associations CRC Press Boca Raton, FL 57–75

    Google Scholar 

  • Delledonne, M., R. Porcari, and C. Fogher. 1990 Nucleotide sequence of the nodG gene of Azospirillum brasilense Nucleic Acids Res. 18 6435

    Article  PubMed  CAS  Google Scholar 

  • De Smedt, J., M. Bauwens, R. Tytgat, and J. De Ley. 1980 Intra-and intergeneric similarities of ribosomal ribonucleic acid cistrons of free-living, nitrogen-fixing bacteria Int. J. Syst. Bacteriol. 30 106–122

    Article  Google Scholar 

  • De Troch, P., S. Philip-Hollingsworth, G. Orgambide, F. B. Dazzo, and J. Vanderleyden. 1992 Analysis of extracellular polysaccharides isolated from Azospirillum brasilense wild type and mutant strains Symbiosis 13 229–241

    Google Scholar 

  • De Troch, P., and J. Vanderleyden. 1996 Surface properties and motility of Rhizobium and Azospirillum in relation to plant root attachment Microb. Ecol. 32 149–169

    Article  PubMed  Google Scholar 

  • De Zamaroczy, M., A. Paquelin, G. Peltre, K. Forchhammer, and C. Elmerich. 1996 Coexistence of two structurally similar but functionally different PII proteins in Azospirillum brasilense J. Bacteriol. 178 4143–4149

    PubMed  Google Scholar 

  • De Zamaroczy, M. 1998 Structural homologes PII and PZ of Azospirillum brasilense provide intracellular signalling for selective regulation of variuos nitrogen dependent functions Molec. Microbiol. 29 449–463

    Article  Google Scholar 

  • Dobbelaere, S., A. Croonenborghs, A. Thys, A. Van de Broek, and J. Vanderleyden. 1999 Phytostimulatoty effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat Plant Soil 212 155–164

    Article  CAS  Google Scholar 

  • Dobbelaere, S., A. Croonenborghs, A. Thys, D. Ptacek, J. Vanderleyden, P. Dutto, C. Labandera-Gonzalez, J. Caballero-Mellado, J. F. Aguirre, Y. Kapulnik, S. Brener, S. Burdman, D. Kadouri, S. Sarig, and Y. Okon. 2001 Responses of agronomically important crops to inoculation with Azospirillum Aust. J. Plant Physiol. 28 871–879

    Google Scholar 

  • Döbereiner, J., and J. M. Day. 1976a Associative symbioses in tropical grasses: Characterization of microorganisms and dinitrogen fixing sites In: Newton, W. E. and C. J. Nyman. (Eds.) Proceedings of the First International Symposium on Nitrogen Fixation Washington State University Press Pullman, WA 2 518–538

    Google Scholar 

  • Döbereiner, J., I. E. Marriel, and M. Nery. 1976b Ecological distribution of Spirillum lipoferum Beijerinck Can. J. Microbiol. 22 1464–1473

    Article  PubMed  Google Scholar 

  • Döbereiner, J., and V. L. D. Baldani. 1979 Selective infection of maize roots by streptomycin-resistant Azospirillum lipoferum and other bacteria Can. J. Microbiol. 25 264–269

    Article  Google Scholar 

  • Döbereiner, J., and F. O. Pedrosa. 1987 Nitrogen-fixing Bacteria in Nonleguminous Crop Plants Science Tech Publishers Madison, WI

    Google Scholar 

  • Döbereiner, J. 1990 The genera Azospirillum and Herbaspirillum In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag Berlin, Germany 2236–2253

    Google Scholar 

  • Döbereiner, J. 1992 History and new perspectives of diazotrophs in association with non-leguminous plants Symbiosis 13 1–13

    Google Scholar 

  • Döbereiner, J. 1995 Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants In: K. Alef and P. Nannipieri (Eds.) Methods in Applied Soil Microbiology and Biochemistry Academic Press London, UK 134–141

    Google Scholar 

  • Eckert, B., O. B. Weber, G. Kirchhof, A. Halbritter, M. Stoffels, and A. Hartmann. 2001 Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus Int. J. Syst. Evol. Microbiol. 51 17–26

    PubMed  CAS  Google Scholar 

  • Estrada-de los Santos, P., R. Bustillos-Cristales, and J. Caballero-Mellado. 2001 Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution Appl. Environ. Microbiol. 67 2790–2798

    Article  Google Scholar 

  • Fages, J. 1994 Azospirillum inoculants and field experiments In: Y. Okon (Ed.) Azospirillum/Plant Associations CRC Press Boca Raton, FL 87–109

    Google Scholar 

  • Falk, E. C., J. Döbereiner, J. L. Johnson, and N. R. Krieg. 1985 Deoxyribonucleic acid homology of Azospirillum amazonense Magalhães et al.: 1984 and emendation of the description of the genus Azospirillum Int. J. Syst. Bacteriol. 35 117–118

    Article  CAS  Google Scholar 

  • Falk, E. C., J. L. Johnson, V. L. D. Baldani, J. Döbereiner, and N. R. Krieg. 1986 Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and Conglomeromonas Int. J. Syst. Bacteriol. 36 80–85

    Article  CAS  Google Scholar 

  • Fallik, E., Y. Okon, and M. Fischer. 1988 The effect of Azospirillum brasilense inoculation on metabolic enzyme activity in maize root seedlings Symbiosis 6 17–28

    Google Scholar 

  • Fallik, E., Y. Okon, E. Epstein, A. Goldman, and M. Fischer. 1989 Identification and quantification of IAA and IBA in Azospirillum brasilense-inoculated maize roots Soil Biol. Biochem. 21 147–153

    Article  CAS  Google Scholar 

  • Fallik, E., S. Sarig, and Y. Okon. 1994 Morphology and physiology of plant roots associated with Azospirillum In: Y. Okon (Ed.) Azospirillum/Plant Associations CRC Press Boca Raton, FL 77–85

    Google Scholar 

  • Fancelli S. M. Castaldini M. T. Ceccherini C. Di Serio, R. Fani, E. Gallori, M. Marangolo, N. Miclaus, and M. Bazzicalupo. 1998 Use of RAPD markers for the detection of Azospirillum strains in soil microcosms Appl. Microbiol. Biotechnol. 49 221–225

    Article  CAS  Google Scholar 

  • Favinger, J., R. Stadtwald, and H. Gest. 1989 Rhodospirillum centenum sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium Ant. van Leeuwenhoek 55 291–296

    Article  CAS  Google Scholar 

  • Ferreira, M. C. B., M. S. Fernandes, and J. Döbereiner. 1987 Role of Azospirillum nitrate reductase in nitrate assimilation by wheat plants Biol. Fert. Soils 4 47–53

    CAS  Google Scholar 

  • Fu, C., and R. Knowles. 1988 H2 supports nitrogenase activity in carbon-starved Azospirillum lipoferum and A. amazonense Can. J. Microbiol. 34 825–829

    Article  CAS  Google Scholar 

  • Fu, C., and R. Knowles. 1989a Intracellular location and sensitivity of uptake hydrogenase in Azospirillum spp Appl. Environ. Microbiol. 55 2315–2319

    PubMed  CAS  Google Scholar 

  • Fu H.-A. A. Hartmann R. G. Lowery W. P. Fitzmaurice, G. P. Roberts, and R. H. Burris. 1989b Posttranslational regulatory system for nitrogenase activity in Azospirillum spp J. Bacteriol. 171 4679–4685

    PubMed  CAS  Google Scholar 

  • Fu, H.-A., W. P. Fitzmaurice, G. P. Roberts, and R. H. Burris. 1990 Cloning and expression of draTG genes from Azospirillum lipoferum Gene 86 95–98

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Ramirez, L. E., R. Bustillos-Cristales, A. Tapia-Hernandez, T. Jimenez-Salgado, E. T. Wang, E. Martinez-Romero, and J. Caballero-Mellado. 2001 Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants Int. J. Syst. Evol. Microbiol. 51 1305–1314

    PubMed  CAS  Google Scholar 

  • Fulchieri, M., C. Lucangeli, and R. Bottini. 1993 Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots Plant Cell Physiol. 34 1305–1309

    CAS  Google Scholar 

  • Gillis, M., K. Kersters, B. Hoste, D. Janssens, R. M. Kroppenstedt, M. P. Stephan, K. R. S. Teixeira, J. Döbereiner, and J. De Ley. 1989 Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane Int. J. Syst. Bacteriol. 39 361–364

    Article  Google Scholar 

  • Gillis, M., V. Tran Van, R. Bardin, M. Goor, P. Hebbar, A. Willems, P. Segers, K. Kersters, T. Heulin, and M. P. Fernandez. 1995 Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam Int. J. Syst. Bacteriol. 45 274–289

    Article  CAS  Google Scholar 

  • Glick, B. R., D. M. Penrose, and J. Li. 1998 A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria J. Theor. Biol. 190 63–68

    Article  PubMed  CAS  Google Scholar 

  • Goebel, E. M., and N. R. Krieg. 1984 Fructose catabolism in Azospirillum brasilense and Azospirillum lipoferum J. Bacteriol. 159 86–92

    PubMed  CAS  Google Scholar 

  • Grishanin, R. N., I. I. Chalmina, and I. B. Zhulin. 1991 Behaviour of Azospirillum brasilense in a spatial gradient of oxygen and “redox” gradient of an alternative electron acceptor J. Gen. Microbiol. 137 2781–2785

    Article  CAS  Google Scholar 

  • Gündisch, C., G. Kirchhof, M. Baur, W. Bode, and A. Hartmann. 1993 Identification of Azospirillum species by RFLP and pulsed-field gel electrophoresis Microb. Releases 2 41–45

    PubMed  Google Scholar 

  • Haahtela, K., T. Wartiovaara, V. Sundman, and J. Skujins. 1981 Root associated N2 fixation (acetylene reduction) by Enterobacteriaceae and Azospirillum strains in cold-climate spodosols Appl. Environ. Microbiol. 41 203–206

    PubMed  CAS  Google Scholar 

  • Hall, P. G., and N. R. Krieg. 1983 Swarming of Azospirillum brasilense on solid media Can. J. Microbiol. 29 1592–1594

    Article  Google Scholar 

  • Halsall, D. M., and A. H. Gibson. 1985a Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans Appl. Environ. Microbiol. 50 1021–1026

    PubMed  CAS  Google Scholar 

  • Halsall, D. M., G. L. Turner, and A. M. Gibson. 1985b Straw and xylem utilization by pure cultures of nitrogen-fixing Azospirillum spp Appl. Environ. Microbiol. 49 423–428

    PubMed  CAS  Google Scholar 

  • Han, S. O., and P. B. New. 1998 Variation in nitrogen fixing ability among natural isolates of Azospirillum Microb. Ecol. 36 193–201

    Article  PubMed  CAS  Google Scholar 

  • Harari, A., J. Kigel, and Y. Okon. 1988 Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots Plant Soil 110 275–282

    Article  CAS  Google Scholar 

  • Hartmann, A., and D. Kleiner. 1982 Ammonium (methylammonium) transport by Azospirillum spp FEMS Microbiol. Lett. 15 65–67

    Article  CAS  Google Scholar 

  • Hartmann, A., M. Singh, and W. Klingmüller. 1983 Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid Can. J. Microbiol. 29 916–923

    Article  CAS  Google Scholar 

  • Hartmann, A., H.-A. Fu, S.-D. Song, and R. H. Burris. 1985 Comparison of nitrogenase regulation in A. brasilense, A. lipoferum and A. amazonense In: W. Klingmüller (Ed.) Azospirillum III: Genetics, Physiology and Ecology Springer-Verlag Berlin, Germany 116–126

    Chapter  Google Scholar 

  • Hartmann, A., H.-A. Fu, and R. H. Burris. 1986 Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp J. Bacteriol. 165 864–870

    PubMed  CAS  Google Scholar 

  • Hartmann, A., and R. H. Burris. 1987 Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum J. Bacteriol. 169 944–948

    PubMed  CAS  Google Scholar 

  • Hartmann, A. 1988a Osmoregulatory properties of Azospirillum spp In: W. Klingmüller (Ed.) Azospirillum IV: Genetics, Physiology, and Ecology Springer-Verlag Berlin, Germany 122–130

    Google Scholar 

  • Hartmann A. 1988b Ecophysiological aspects of growth and nitrogen fixation in Azospirillum spp Plant Soil 110 225–238

    Article  CAS  Google Scholar 

  • Hartmann, A., and T. Hurek. 1988c Effect of carotenoid overproduction on oxygen tolerance of nitrogen fixation in Azospirillum brasilense Sp7 J. Gen. Microbiol. 134 2449–2455

    CAS  Google Scholar 

  • Hartmann, A., H.-A. Fu, and R. H. Burris. 1988d Influence of amino acids on nitrogen fixation activity and growth of Azospirillum spp Appl. Environ. Microbiol. 54 87–93

    PubMed  CAS  Google Scholar 

  • Hartmann, A., S. R. Prabhu, and E. A. Galinski. 1991 Osmotolerance of diazotrophic rhizosphere bacteria Plant Soil 137 105–109

    Article  CAS  Google Scholar 

  • Hartmann, A., C. Gündisch, and W. Bode. 1992 Azospirillum mutans improved in iron acquisition and osmotolerance as tools for the investigation of environmental fitness traits Symbiosis 13 271–279

    Google Scholar 

  • Hartmann, A. 1994a Biotechnological aspects of diazotrophic bacteria associated with rice In: M. Rahman, A. K. Podder, C. Van Hove, Z. N. T. Begum, T. Heulin, and A. Hartmann (Eds.) Biological Nitrogen Fixation Associated with Rice Production Kluwer Academic Publishers Dordrecht, The Netherlands 211–223

    Google Scholar 

  • Hartmann, A., and W. Zimmer. 1994b Physiology of Azospirillum In: Y. Okon (Ed.) Azospirillum/Plant Associations CRC Press Boca Raton, FL 15–39

    Google Scholar 

  • Hartmann, A., M. Stoffels, B. Eckert, G. Kirchhof, and M. Schloter. 2000 Analysis of the presence and diversity of diazotrophic endophytes In: E. W. Triplett (Ed.) Prokaryotic Nitrogen Fixation: A Model System for Analysis of a Biological Process Horizon Scientific Press Wymondham, UK 727–736

    Google Scholar 

  • Hegazi, N. A., N. A. Amer, and M. Monib. 1979 Enumeration of N2-fixing spirilla Soil Biol. Biochem. 11 437–438

    Article  Google Scholar 

  • Hegazi, N. A., and M. Monib. 1983 Response of maize plants to inoculation with azospirilla and (or) straw amendment in eastern Egypt Can. J. Microbiol. 29 888–894

    Article  Google Scholar 

  • Hochman, A., I. Goldberg, V. Nadler, and A. Hartmann. 1987 The reversible inhibition in nitrogen fixation by oxygen In: W. R. Ullrich, P. J. Apaticia, P. J. Syrett, and F. Castillo (Eds.) Inorganic Nitrogen Fixation Springer-Verlag Berlin, Germany 173–176

    Google Scholar 

  • Holguin, G., and B. R. Glick. 2001 Expression of the ACC Deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense Microb. Ecol. 41 281–288

    PubMed  CAS  Google Scholar 

  • Iosipenko, A., and V. Ignatov. 1995 Physiological aspects of phytohormone production by Azospirillum brasilense Sp7 NATO ASI, Ser. G., 37 271–278

    Google Scholar 

  • Jain, D. K., and D. G. Patriquin. 1984 Root hair deformation, bacterial attachment, and plant growth in wheat-Azospirillum associations Appl. Environ. Microbiol. 48 1208–1213

    PubMed  CAS  Google Scholar 

  • Kabir M. M. D. Faure J. Haurat P. Normand C. Jacoud, P. Wadoux, and R. Bally. 1995 Oligonucleotide probes based on 16S rRNA sequences for the identification of four Azospirillum species Can. J. Microbiol. 41 1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Kapulnik, Y., S. Sarig, I. Nur, Y. Okon, and Y. Henis. 1982 The effect of Azospirillum inoculation on growth and yield of corn Isr. J. Bot. 31 247–255

    Google Scholar 

  • Kapulnik, Y., Y. Okon, and Y. Henis. 1985 Changes in root morphology of wheat caused by Azospirillum inoculation Can. J. Microbiol. 31 881–887

    Article  Google Scholar 

  • Karpati, E., P. Kiss, T. Ponyi, I. Fendrik, M. de Zamaroczy, and L. Orosz. 1999 Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation J. Bacteriol. 181 3949–3955

    PubMed  CAS  Google Scholar 

  • Katupitiya, S., J. Millet, M. Vesk, L. Viccars, A. Zeman, Z. Lidong, C. Elmerich, and I. R. Kennedy. 1995 A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat Appl. Environ. Microbiol. 61 1987–1995

    PubMed  CAS  Google Scholar 

  • Kavimandan, S. K., N. S. Subba Rao, and A. Mohair. 1978 Isolation of Spirillum lipoferum from the stems of wheat and nitrogen fixation in enrichment cultures Curr. Sci. 47 96–98

    Google Scholar 

  • Kawasaki, H., Y. Hoshino, H. Kuraishi, and K. Yamasato. 1992 Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group J. Gen. Appl. Microbiol. 38 541–551

    Article  CAS  Google Scholar 

  • Khammas, K. M., E. Ageron, P. A. D. Grimont, and P. Kaiser. 1989 Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil Res. Microbiol. 140 679–693

    PubMed  CAS  Google Scholar 

  • Khammas, K. M., and P. Kaiser. 1991 Characterization of a pectinolytic activity with Azospirillum irakense Plant Soil 137 75–79

    Article  CAS  Google Scholar 

  • Kirchhof, G., and A. Hartmann. 1992 Development of gene-probes for Azospirillum based on 23S-rRNA sequences Symbiosis 13 27–35

    CAS  Google Scholar 

  • Kirchhof, G., V. M. Reis, J. I. Baldani, B. Eckert, J. Döbereiner, and A. Hartmann. 1997a Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants Plant Soil 194 45–55

    Article  CAS  Google Scholar 

  • Kirchhof, G., M. Schloter, B. Aßmus, and A. Hartmann. 1997b Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes Soil Biol. Biochem. 29 853–862

    Article  CAS  Google Scholar 

  • Kirchhof, G., B. Eckert, M. Stoffels, J. I. Baldani, V. M. Reis, and A. Hartmann. 2001 Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants Int. J. Syst. Evol. Microbiol. 51 157–168

    PubMed  CAS  Google Scholar 

  • Krieg, N. R., and J. Döbereiner. 1984 Genus Azospirillum In: J. G. Holt and N. R. Krieg (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 1 94–104

    Google Scholar 

  • Kulasooriya, S. A., P. A. Roger, W. L. Barraquio, and I. Watanabe. 1981 Epiphytic nitrogen fixation in deepwater rice Soil Sci. Plant Nutr. 27 19–27

    Article  Google Scholar 

  • Lambrecht, M., Y. Okon, A. Vande Broek, and J. Vanderleyden. 2000 Indole-3-acetic acid: A reciprocal signalling molecule in bacteria-plant interactions Trends Microbiol. 8 298–300

    Article  PubMed  CAS  Google Scholar 

  • Lebuhn, M., and A. Hartmann. 1993 Method for the determination of indole-3-acetic acid and related compounds of L-tryptophan catabolism in soil J. Chromatogr. 629 255–266

    Article  CAS  Google Scholar 

  • Lebuhn, M., and A. Hartmann. 1994 Production of auxin and L-tryptophan related indolic and phenolic compounds by Azospirillum brasilense and Azospirillum lipoferum In: M. H. Ryder, P. M. Stephens, and G. D. Bowen (Eds.) Improving Plant Productivity with Rhizosphere Bacteria CSIRO, Division of Soils Adelaide, Australia 145–147

    Google Scholar 

  • Liang, Y. Y., P. A. Kaminski, and C. Elmerich. 1991 Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia Molec. Microbiol. 5 2735–2744

    Article  CAS  Google Scholar 

  • Liang, Y. Y., M. Pde Zamaroczy, F. Arsene, A. Paquelin, and C. Elmerich. 1992 Regulation of nitrogen fixation in Azospirillum brasilense Sp7: Involvement of nifA, glnA and glnB gene products FEMS Microbiol. Lett. 100 113–119

    CAS  Google Scholar 

  • Liang, Y. Y., F. Arsene, and C. Elmerich. 1993 Characterization of the ntrBC genes of Azospirillum brasilense Sp7: Their involvement in the regulation of nitrogenase synthesis and activity Molec. Gen. Genet. 240 188–196

    Article  PubMed  CAS  Google Scholar 

  • Lin, W. Y., Y. Okon, and R. W. F. Hardy. 1983 Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense Appl. Environ. Microbiol. 45 1775–1779

    PubMed  CAS  Google Scholar 

  • Lucangeli, C., and R. Bottini. 1997 Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole Symbiosis 23 63–71

    CAS  Google Scholar 

  • Martinez-Drets, G., M. Del Gallpo, C. Burpee, and R. H. Burris. 1984 Catabolism of carbohydrates and organic acids and expression of nitrogenase by azospirilla J. Bacteriol. 159 80–85

    PubMed  CAS  Google Scholar 

  • Mascarua-Esparza, M. A., R. Villa-Gonzalez, and J. Caballero-Mellado. 1988 Acetylene reduction and indoleacetic acid production by Azospirillum isolates from Cactaceous plants Plant Soil 106 91–95

    Article  CAS  Google Scholar 

  • Magalhães, F. M. M., J. I. Baldani, S. M. Souto, J. R. Kuykendall, and J. Döbereiner. 1983 A. new acid-tolerant Azospirillum species An. Acad. Bras. Cien. 55 417–430

    Google Scholar 

  • Michiels, K., J. Vanderleyden, A. P. Van Gool, and E. R. Signer. 1988 Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutants J. Bacteriol. 170 5401–5404

    PubMed  CAS  Google Scholar 

  • Michiels, K., C. L. Croes, and J. Vanderleyden. 1991 Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots J. Gen. Microbiol. 137 2241–2246

    Article  CAS  Google Scholar 

  • Milcamps, A., A. Van Dommelen, J. Stigter, J. Vanderleyden, and F. J. de Bruijn. 1996 The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake and flagellar biosynthesis Can. J. Microbiol. 42 467–478

    Article  PubMed  CAS  Google Scholar 

  • Moens, S., K. Michiels, V. Keijers, F. Van Leuven, and J. Vanderleyden. 1995a Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagella of Azospirillum brasilense Appl. Environ. Microbiol. 47 433–435

    Google Scholar 

  • Moens, S., K. Michiels, and J. Vanderleyden. 1995b Glycosylation of the flagellin of the polar flagellum of Azospirillum brasilense, a Gram-negative nitrogen-fixing bacterium Microbiology 141 2651–2657

    Article  CAS  Google Scholar 

  • Moens, S., M. Schloter, and J. Vanderleyden. 1996 Expression of the structural gene lafl encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7 J. Bacteriol. 178 5017–5019

    PubMed  CAS  Google Scholar 

  • Mori, E., R. Fani, E. Gallori, O. Fantappié, and M. Bazzicalupo. 1992 Mutants of Azospirillum brasilense altered in the uptake of iron Symbiosis 13 115–122

    CAS  Google Scholar 

  • Mori, E., M. Fulchieri, C. Indorato, and M. Bazzicalupo. 1996 Cloning, nucleotide sequencing, and expression of the Azospirillum brasilense lon gene: Involvement in iron uptake J. Bacteriol. 178 3440–3446

    PubMed  CAS  Google Scholar 

  • Nayak, D. N., and V. R. Rao. 1977 Nitrogen fixation by Spirillum sp. from rice roots Arch. Microbiol. 115 359–360

    Article  PubMed  CAS  Google Scholar 

  • Nayak, D. N., A. Swain, and V. R. Rao. 1979 Nitrogen-fixing Azospirillum lipoferum from common weeds associated with rice and aquatic ecosystems Curr. Sci. 48 866–867

    CAS  Google Scholar 

  • Nelson, L. M., and R. Knowles. 1978 Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continous culture Can. J. Microbiol. 24 1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Okon, Y., S. L. Albrecht, and R. H. Burris. 1976 Factors affecting growth and nitrogen fixation of Spirillum lipoferum J. Bacteriol. 127 1248–1254

    PubMed  CAS  Google Scholar 

  • Okon, Y. 1982 Azospirillum: Physiology, properties, mode of association with roots and its application for the benefit of cereal and forage grass crops Isr. J. Bot. 31 214–220

    Google Scholar 

  • Okon, Y. 1985 Azospirillum as a potential inoculant for agriculture Trends Biotechnol. 3 223–228

    Article  Google Scholar 

  • Okon, Y., and Y. Kapulnik. 1986 Development and function of Azospirillum-inoculated roots Plant Soil 90 63–71

    Article  Google Scholar 

  • Okon, Y. 1994a Azospirillum/Plant Associations CRC Press Boca Raton, FL

    Google Scholar 

  • Okon, Y., and C. A. Labandera-Gonzalez. 1994b Agronomic application of Azospirillum: An evaluation of 20 years worldwide field inoculation Soil Biol. Biochem. 26 1591–1601

    Article  CAS  Google Scholar 

  • Onyeocha, I., C. Vieille, W. Zimmer, B. E. Baca, M. Flores, R. Palacios, and C. Elmerich. 1990 Physical map and properties of a 90-Mda plasmid of Azospirillum brasilense Sp7 Plasmid 23 169–182

    Article  PubMed  CAS  Google Scholar 

  • Patriquin, D. G., and J. Döbereiner. 1978 Light microscopy obersvations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil Can. J. Microbiol. 24 734–742

    Article  PubMed  CAS  Google Scholar 

  • Patriquin, D. G., J. Döbereiner, and D. K. Jain. 1983 Sites and processes of association between diazotrophs and grasses Can. J. Microbiol. 29 900–915

    Article  Google Scholar 

  • Pedrosa, F. O., M. P. Stephan, J. Döbereiner, and M. G. Yates. 1982 Hydrogen-uptake hydrogenase activity in nitrogen-fixing Azospirillum brasilense J. Gen. Microbiol. 128 161–166

    CAS  Google Scholar 

  • Pereg-Gerk, L., A. Paquelin, P. Gounon, I. R. Kennedy, and C. Elmerich. 1998 A transcriptional regulator of the LuxR-UhpA family, FlcA, controls flocculation and wheat root surface colonization by Azospirillum brasilense Sp7 Molec. Plant-Microbe Interact. 11 177–187

    Article  CAS  Google Scholar 

  • Pereg-Gerk, L., K. Gilchrist, and I. R. Kennedy. 2000 Mutants with enhanced nitrogenase activity in hydroponic Azospirillum brasilense-wheat associations Appl. Environ. Microbiol. 66 2175–2184

    Article  PubMed  CAS  Google Scholar 

  • Prinsen, E., A. Costacurta, K. Michiels, J. Vanderleyden, and H. Van Onckelen. 1993 Azospirillum brasilense indole-3-acetic acid biosynthesis: Evidence for a non-tryptophan dependent pathway Molec. Plant-Microbe Interact. 6 609–615

    Article  CAS  Google Scholar 

  • Quiviger, B., C. Franche, G. Lutfalla, D. Rice, R. Haselkorn, and C. Elmerich. 1982 Cloning of a nitrogen fixation (nif) gene cluster of Azospirillum brasilense Biochimie 64 495–502

    Article  PubMed  CAS  Google Scholar 

  • Raina, S., R. Raina, T. V. Venkatesh, and H. K. Das. 1995 Isolation and characterization of a locus from Azospirillum brasilense Sp7 that complements the tumorigenic defect of Agrobacterium tumefaciens chvB mutant Molec. Plant-Microbe Interact. 8 322–326

    Article  CAS  Google Scholar 

  • Reinhold, B., T. Hurek, I. Fendrik, B. Pot, M. Gillis, K. Kertsers, D. Thielemans, and J. De Ley. 1987 Azospirillum halopraeferans sp. nov., a nitrogen fixing organism associated with roots of kallar grass [Leptochloa fusca (L.) Kunth.] Int. J. Syst. Bacteriol. 37 43–51

    Article  Google Scholar 

  • Reinhold, B., T. Hurek, and I. Fendrik. 1988 Plant-bacteria interactions with special emphasis on the kallar grass Plant Soil 110 249–257

    Article  Google Scholar 

  • Reinhold, B., T. Hurek, M. Gillis, B. Hoste, M. Vancanneyt, K. Kersters, and J. De Ley. 1993 Azoarcus gen.nov., nitrogen-fixing Proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov Int. J. Syst. Bacteriol. 43 574–584

    Article  Google Scholar 

  • Riou, N., and D. Le Rudulier. 1990 Osmoregulation in Azospirillum brasilense: Glycine betaine transport enhances growth and nitrogen fixation under salt stress J. Gen. Microbiol. 136 1455–1462

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues Neto, J., J. R. Malavolta, and O. Victot. 1986 Meio simples para isolamento e cultivo de Xanthomonas campestris pv. citri Tipo B Suma Phytopath. 12 16

    Google Scholar 

  • Römheld, V., and H. Marscher. 1986 Evidence for a specific uptake system for iron phytosiderophores in roots of grasses Plant Physiol. 80 175–180

    Article  PubMed  Google Scholar 

  • Sadasivan, L., and C. A. Neyra. 1985 Flocculation of Azospirillum brasilense and Azospirillum lipoferum: Exopolysaccarides and cyst formation J. Bacteriol. 163 716–723

    PubMed  CAS  Google Scholar 

  • Sarig, S., A. Blum, and Y. Okon. 1988 Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense J. Agric. Sci. Camb. 110 271–277

    Article  Google Scholar 

  • Sarig, S., Y. Okon, and A. Blum. 1990 Promotion of leaf area development and yield in Sorghum bicolor inoculated with Azospirllum brasilense Symbiosis 9 235–245

    Google Scholar 

  • Sarig, S., A. Blum, and Y. Okon. 1992 Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots J. Plant Nutr. 15 805–819

    Article  Google Scholar 

  • Saxena, B., M. Modi, and V. V. Modi. 1986 Isolation and characterization of siderophores from Azospirillum lipoferum D-2 J. Gen. Microbiol. 132 219–224

    Google Scholar 

  • Schloter, M., and A. Hartmann. 1998 Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies Symbiosis 25 159–179

    Google Scholar 

  • Schröder, M. 1932 Die Assimilation des Luftstickstoffs durch einige Bakterien Zentralbl. Bakt. Parasitenkd. 85 178–212

    Google Scholar 

  • Scott, D. B., C. A. Scott, and J. Döbereiner. 1979 Nitrogenase activity and nitrate respiration in Azospirillum spp Arch. Microbiol. 121 141–145

    Article  CAS  Google Scholar 

  • Skerman, V. B. D., L. I. Sly, and M. L. Williamson. 1983 Conglomeromonas largomobilis gen. nov., sp. nov., a sodium-sensitive, mixed-flagellated organism from fresh waters Int. J. Syst. Bacteriol. 33 300–308

    Article  Google Scholar 

  • Sly, L. I., and E. Stackebrandt. 1999 Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum Int. J. Syst. Bacteriol. 49 541–544

    Article  Google Scholar 

  • Smith, R. L., S. C. Schank, J. R. Milam, and A. A. Baltensperger. 1984 Responses of Sorghum and Pennisetum species to the N2 fixing bacterium Azospirillum brasilense Appl. Environ. Microbiol. 47 1331–1336

    PubMed  CAS  Google Scholar 

  • Song, S. D., A. Hartmann, and R. H. Burris. 1985 Purification and properties of the nitrogenase of Azospirillum amazonense J. Bacteriol. 164 1271–1276

    PubMed  CAS  Google Scholar 

  • Sriskandarajah, S., I. R. Kennedy, D. Yu, and Y. T. Tchan. 1993 Effects of plant growth regulation on acetylene-reducung associations between Azospirillum brasilense and wheat Plant Soil 153 165–178

    Article  CAS  Google Scholar 

  • Steenhoudt, O., and J. Vanderleyden. 2000 Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects FEMS Microbiol. Rev. 24 487–506

    Article  PubMed  CAS  Google Scholar 

  • Stephan, M. P., W. Zimmer, and H. Bothe. 1984 Denitrification by Azospirillum brasilense Sp7. II: Growth with nitrous oxide as respiratory electron acceptor Arch. Microbiol. 138 212–216

    Article  CAS  Google Scholar 

  • Stoffels, M., T. Castellanos, and A. Hartmann. 2001 Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-Cluster Syst. Appl. Microbiol. 24 83–97

    Article  PubMed  CAS  Google Scholar 

  • Strunk, O., and W. Ludwig. 1997 ARB: A software environment for sequence data [{http://www.arb-home.de}].

    Google Scholar 

  • Subba Rao, N. S. 1981 Response of crops to Azospirillum inoculation in India In: P. B. Vose and A. P. Ruschel (Eds.) Associative N2-fixation CRC Press Boca Raton, FL 1 137–144

    Google Scholar 

  • Subba Rao, N. S. 1983 Nitrogen-fixing bacteria associated with plantation and orchard plants Can. J. Microbiol. 29 863–873

    Article  Google Scholar 

  • Tapia-Hernandez, A., M. A. Mascarua-Esparza, and J. Caballero-Mellado. 1990 Production of bacteriocin and siderophore-like activity by Azospirillum brasilense Microbios 64 73–83

    PubMed  CAS  Google Scholar 

  • Tarrand, J. J., N. R. Krieg, and J. Döbereiner. 1978 A taxonomic study of the Spirillum lipoferum group with description of a new genus. Azospirillum gen. nov. and two species. Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov Can. J. Microbiol. 24 967–980

    Article  PubMed  CAS  Google Scholar 

  • Tien, T. M., M. H. Gaskins, and D. H. Hubbell. 1979 Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) Appl. Environ. Microbiol. 37 1016–1024

    PubMed  CAS  Google Scholar 

  • Tripathi, A. K., R. Tripathi, A. Ganguli, and M. Bazzicalupo. 1998 Duplication of insertion element IS50 associated with Tn5 transposition in Azospirillum brasilense Can. J. Microbiol. 44 1110–1113

    PubMed  CAS  Google Scholar 

  • Turbanti, L., M. Bazzicalupo, E. Canalone, R. Fani, E. Galori, and M. Polsinelli. 1988 Mutants of Azospirillum brasilense resistant to methylammonium Arch. Microbiol. 150 421–425

    Article  CAS  Google Scholar 

  • Tyler M. E. J. R. Milam R. L. Smith, S. C. Schank, and D. A. Zuberer. 1979 Isolation of Azospirillum from diverse geographic regions Can. J. Microbiol. 25 693–697

    Article  PubMed  CAS  Google Scholar 

  • Umali-Garcia, M., D. H. Hubbel, H. Gaskins, and F. B. Dazzo. 1980 Association of Azospirillum with grass roots Appl. Environ. Microbiol. 39 219–226

    PubMed  CAS  Google Scholar 

  • Urquiaga, S., K. H. S. Cruz, and R. M. Boddey. 1992 Contribution of nitrogen fixation to sugar cane: Nitrogen-15 and nitrogen balance estimates Soil Sci. Soc. Am. J. 56 105–113

    Article  Google Scholar 

  • Van Bastelaere, E., M. Lambrecht, H. Vermeiren, A. Van Dommelen, V. Keijers, P. Proost, and J. Vanderleyden. 1999 Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars Molec. Microbiol. 32 703–714

    Article  Google Scholar 

  • Van de Broek, A., J. Michiels, A. Van Gool, and J. Vanderleyden. 1993 Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH-gene during association Molec. Plant-Microbe Interact. 6 592–600

    Article  Google Scholar 

  • Van de Broek, A., and J. Vanderleyden. 1995 The role of bacterial motility, chemotaxis, and attachment in bacteria-plant interactions Molec. Plant-Microbe Interact. 8 800–810

    Article  Google Scholar 

  • Van de Broek, A., M. Lambrecht, and J. Vanderleyden. 1998 Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense Microbiology 144 2599–2606

    Article  Google Scholar 

  • Van de Broek, A., M. Lambrecht, K. Eggermont, and J. Vanderleyden. 1999 Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense J. Bacteriol. 181 1338–1342

    Google Scholar 

  • Van Dommelen, A., V. Keijers, J. Vanderleyden, and M. de Zamaroczy. 1998 (Methyl)ammonium transport in the nitrogen-fixing bacterium Azospirillum brasilense J. Bacteriol. 180 2652–2659

    PubMed  Google Scholar 

  • Vedder-Weiss, D., E. Jukevitch, S. Burdman, D. Weiss, and Y. Okon. 1999 Root growth, respiration and β-glucosidase activity in maize (Zea mays) and common bean (Phaseolus vulgaris) inoculated with Azospirillum brasilense Symbiosis 26 363–377

    CAS  Google Scholar 

  • Vielle, C., and C. Elmerich. 1990 Characterization of two Azospirillum brasilense Sp7 plasmid genes homologous to Rhizobium meliloti nod PQ Molec. Plant-Microbe Interact. 3 389–400

    Article  Google Scholar 

  • Vielle, C., and C. Elmerich. 1992 Characterization of an Azospirillum brasilense Sp7 gene homologous to Alcaligenes eutrophus phbB and to Rhizobium meliloti nod. G Molec. Gen. Genet. 231 375–384

    Article  Google Scholar 

  • Vincent, J. M. 1970 A Manual for the Practical Study of Root-Nodule Bacteria Blackwell Scientific Publications IBP Handbook 15.

    Google Scholar 

  • Volpin, H., S. Burdman, S. Castro-Sowinski, Y. Kapulnik, and Y. Okon. 1996 Inoculation with Azospirillum increased exudation of rhizobial nod-gene inducers by alfalfa roots Molec. Plant-Microbe Interact. 9 388–394

    Article  CAS  Google Scholar 

  • Volpon, A. G. T., H. De-Polli, and J. Döbereiner. 1981 Physiology of nitrogen fixation in Azospirillum lipoferum BR 17 (ATCC29709) Arch. Microbiol. 128 371–375

    Article  CAS  Google Scholar 

  • Watanabe, I., W. L. Barraquio, M. R. Guzman, and D. A. Cabrera. 1979 Nitrogen-fixing (acetylene reduction) activity and population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland rice Appl. Environ. Microbiol. 37 813–815

    PubMed  CAS  Google Scholar 

  • Weber, O. B., V. L. D. Baldani, K. R. S. Teixeira, G. Kirchhof, J. I. Baldani, and J. Döbereiner. 1999 Isolation and characterization of diazotrophic bacteria from banana and pineapple plants Plant Soil 210 103–113

    Article  CAS  Google Scholar 

  • Weier, K. L., I. C. MaCrae, and J. Whittle. 1981 Seasonal variation in the nitrogenase activity of a Panicum maximum var. Trichoglume pasture and identification of associated bacteria Plant Soil 63 189–198

    Article  CAS  Google Scholar 

  • Winkelmann, G., K. Schmidtkunz, and F. Rainey. 1996 Characterization of a novel Spirillum-like bacterium that degrades ferrioxamine-type siderophores BioMetals 9 78–83

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann, G., B. Busch, A. Hartmann, G. Kirchhof, R. Süßmuth, and G. Jung. 1999 Degradation of desferrioxamines by Azospirillum irakense: Assignment of metabolites by HPLC/electrospray mass spectrometry BioMetals 12 255–264

    Article  PubMed  CAS  Google Scholar 

  • Wright, A. D., M. B. Sampson, M. G. Neuffer, L. Michalczuk, J. P. Slovin, and J. D. Cohen. 1991 Indole-3-acetic acid biosynthesis in mutant maize orange pericarp, a tryptophan auxotroph Science 254 998–1000

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., T. M. Embley, and A. G. O’Donell. 1994 Phylogenetic analysis of Azospirillum by direct sequencing of PCR-amplified 16S rDNA Syst. Appl. Microbiol. 17 197–201

    Article  CAS  Google Scholar 

  • Zhang, Y., R. H. Burris, and G. P. Roberts. 1992 Cloning, sequencing, mutagenesis, and functional characterization of draT and draG genes from Azospirillum brasilense J. Bacteriol. 174 3364–3369

    PubMed  CAS  Google Scholar 

  • Zhang, Y., R. H. Burris, P. W. Ludden, and G. P. Roberts. 1993 Posttranslational regulation of nitrogenase activity by anaerobiosis and ammonium in Azospirillum brasilense J. Bacteriol. 175 6781–6788

    PubMed  CAS  Google Scholar 

  • Zhang, Y., R. H. Burris, P. W. Ludden, and G. P. Roberts. 1994 Posttranslational regulation of nitrogenase activity in Azospirillum brasilense ntrBC mutants: Ammonium and anaerobic switch-off occurs through independent signal transduction pathways J. Bacteriol. 176 5780–5787

    PubMed  CAS  Google Scholar 

  • Zhang, Y., R. H. Burris, P. W. Ludden, and G. P. Roberts. 1996 Presence of a second mechanism for the posttranslational regulation of nitrogenase activity in Azospirillum brasilense in response to ammonium J. Bacteriol. 178 2948–2953

    PubMed  CAS  Google Scholar 

  • Zhulin, I. B., and J. P. Armitage. 1993 Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense J. Bacteriol. 175 952–958

    PubMed  CAS  Google Scholar 

  • Zhulin, I. B., V. A. Bespalow, M. S. Johnson, and B. L. Taylor. 1996 Oxygen taxis and proton motive force in Azospirillum brasilense J. Bacteriol. 178 5199–5204

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Hartmann, A., Baldani, J.I. (2006). The Genus Azospirillum . In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30745-1_6

Download citation

Publish with us

Policies and ethics