Skip to main content
Log in

Transposon Tn5 mutagenesis in Azospirillum lipoferum: isolation of indole acetic acid mutants

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A method for transposon mutagenesis in Azospirillum lipoferum 29708 is reported with transposon Tn5. The suicide plasmid pSUP2021 was used to deliver Tn5 in A. lipoferum using Escherichia coli SM10 as the donor. Neomycin-resistant transconjugants were detected at a frequency of 6x10-6 per recipient. Different types of mutants were isolated, e.g. auxotrophic, coloured, IAA-negative, and IAA-overproducers. Among the auxotrophic mutants, cysteine and methionine requirers prevailed. Random Tn5-insertion with only one copy per mutant was demonstrated by Southern blotting and hybridization. Tn5-induced mutants are relatively stable, with reversion rates of 2–20×10-8. A gene which is a part of the carotenoid pathway is closely linked to the histidine genes. The existence of two pathways for IAA production in A. lipoferum is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht SL, Okon Y (1980) Cultures of Azospirillum. Methods Enzymol 69:740–749

    Google Scholar 

  • Chesney RH, Scott JR, Vapnek D (1979) Integration of the plasmid prophages P1 and P7 into the chromosome of E. coli. J Mol Biol 130:161–173

    Google Scholar 

  • De Francesco R, Zanetti G, Barbieri P, Galli E (1985) Auxin production by Azospirillum brasilense under different cultural conditions. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin Heidelberg New York Tokyo, pp 109–115

    Google Scholar 

  • Del Gallo MM, Gratani L, Morpurgo G (1985) Mutation in Azospirillum brasilense. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin Heidelberg New York Tokyo, pp 85–97

    Google Scholar 

  • Elmerich C, Franche C (1982) Azospirillum genetics: plasmids, bacteriophages and chromosome mobilization. In: Klingmüller W (ed) Azospirillum: genetics, physiology, ecology: Experientia [Suppl] 42:9–17

  • Follin A, Inzé D, Budar F, Genetello C, Van Montagu M, Schell J (1985) Genetic evidence that the tryptophan 2-mono-oxygenase gene of Pseudomonas savastanoi is functionally equivalent to one of the T-DNA genes involved in plant tumour formation by Agrobacterium tumefaciens. Mol Gen Genet 201:178–185

    Google Scholar 

  • Goa J (1953) A micro biuret method for protein determination. Determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest 5:218–222

    Google Scholar 

  • Hartmann A, Singh M, Klingmüller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29:916–923

    Google Scholar 

  • Holliday R (1956) A new method for the identification of biochemical mutants of micro-organisms. Nature 178:987

    Google Scholar 

  • Humphreys GO, Willshaw GA, Anderson ES (1975) A simple method for the preparation of large quantities of pure plasmid DNA. Biochim Biophys Acta 383:457–463

    Google Scholar 

  • Kleckner N, Roth J, Botstein D (1977) Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol 166:125–159

    Google Scholar 

  • Kosuge T, Heskett MG, Wilson EE (1966) Microbial synthesis and degradation of indole-3-acetic acid. 1 — The conversion of l-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi. J Biol Chem 241:3738–3744

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrock J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Nguyen ND, Göttfert M, Singh M, Klingmüller W (1983) Nifhybrids of Enterobacter cloacae: Selection for nif-gene integration with nif-plasmids containing the Mu transposon. Mol Gen Genet 192:439–443

    Google Scholar 

  • O'Hoy K, Krishnapillai V (1985) Transposon mutagenesis of the Pseudomonas aeruginosa PAO chromosome and the isolation of high frequency of recombination donors. FEMS Microbiol Lett 29:299–303

    Google Scholar 

  • Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechnology 3:223–228

    Google Scholar 

  • Schwabe G, Klingmüller W (1985) Cloning of the gene for the restriction enzyme AbrI from Azospirillum brasilense ATCC 29711. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin Heidelberg New York Tokyo, pp 55–62

    Google Scholar 

  • Sembdner G, Gross D, Liebisch H-W, Schneider G (1980) Biosynthesis and metabolism of plant hormones. In: MacMillan J (ed) Hormonal regulation of development, molecular aspects of plant hormones. Springer, Berlin Heidelberg New York Tokyo, pp 281–444

    Google Scholar 

  • Shaw KJ, Berg CM (1979) Escherichia coli K12 auxotrophs induced by the insertion of the transposable element Tn5. Genetics 92:741–747

    Google Scholar 

  • Simon R (1984) In vivo Genetic Engineering: Use of transposable elements in plasmid manipulation and mutagenesis of bacteria other than E. coli. In: Pühler A, Timmis KN (eds) Advanced molecular genetics. Springer, Berlin Heidelberg New York Tokyo, pp 125–140

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A braod host-range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram-negative bacteria. Bio/technology 1:784–791

    Google Scholar 

  • Singh M, Klingmüller W (1986) Transposon mutagenesis in Azospirillum brasilense: Isolation of auxotrophic and Nif- mutants and molecular cloning of the mutagenized nif DNA. Mol Gen Genet 202:136–142

    Google Scholar 

  • Strzelczyk E, Pokojska-Burdziej A (1984) Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus silvestris L). Plant Soil 81:185–194

    Google Scholar 

  • Vanstockem M, Michiels K, Vanderleyden J, Van Gool A (1985) Transfer and random integration of Tn5 in Azospirillum. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin Heidelberg New York Tokyo, pp 74–84

    Google Scholar 

  • Vanstockem M, Michiels K, Vanderleyden J, Van Gool AP (1987) Transposon mutagenesis in Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiol 53:410–415

    Google Scholar 

  • Wood AG, Menezes EM, Dykstra C, Duggan DE (1982) Methods to demonstrate the megaplasmids (or minichromosomes) in Azospirillum: In: Klingmüller W (ed) Azospirillum: genetics, physiology, ecology. Experientia [Suppl] 42:18–34

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Böhme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Salam, M.S., Klingmüller, W. Transposon Tn5 mutagenesis in Azospirillum lipoferum: isolation of indole acetic acid mutants. Mol Gen Genet 210, 165–170 (1987). https://doi.org/10.1007/BF00337774

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337774

Key words

Navigation